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I. INTRODUCTION
MON-LINEAR 0 MODEL WITH SUPERGRAVITY

Two dimensicnal ‘models have been- extensively used:as a-
laboratory for higher dimensions, and .we are.confident to say.that .. .

in many cases this.laboratory was indeed very. useful, and current

+ ; .
E.abdalla R.8.Jasinschi
! asinsc ideas such as confinement -and @ vacua(l) appeared first..in two

Instituto de Fisica, Universid a
. rsidade de Sao Paulo dimensions. - Many methods were. applied succesfully in-toy ‘models.
also in this simplified cases as 1/N:expansion(2?,-instanton gas

contribution(3), solitons{4), role of higher conservation laws(52,-

bound-state problems'" ', examples Of non-trivial.S matrices

ABSTRACT tests of general hypotesis:of -guantum .field theory‘}ri rencormalization

. program(g}, etc,
We study a locally supersymmetric version of the O(N) non— _

. ) We are particularly interested in studying quantum
linear o model within 1/N expansion scheme, implying interesting '

supergravity in two dimensions, so that we'are able to exploit all
features due to the mass generation.

' conceptual richness emerging -in this context.  -In- two dimensions
there does not exist a kinetic term for -the Graviton. -either for
the Gravitino fields. Any quadratiec non-trivial function for these
field is originated through matter field (spinless bosons and. .
spin 1/2 fermions) gquantum fluctuations. This can be called as
induced supergravity. Ordinary quantum gravity -is non-renorma-

{9'10)~and quantum supergravityfleads, in particular cases,

(11,12,13)

lizable

to a renormalizable theory Indeed, we show that, up.

to one-loop order, the Graviten two point function-exibits only
logaritmic ultravioled divérgenées which can be shown to-be zeﬁo

in two dimensions. This means that quadratic and linear ultraviolet

* S rted by F . =
PPO y FRPESP divergences were cancelled out due to supersymmetry.

t Partially supported by CNPq. (14}

Some years ago, Deger and Zumino constructed a
classical:locally supersymmetric.lagrangian for the spinning string.
We use this approach with the global supersymmetric non-linear O{N)}

/8 ¢ model(ls). This furnishes us with a 1/N expandable supergravity
JAN 2 S ST



(induced) propagators. The Gravitino propagator has a zero mass

(1,16)

pole; which in two dimensions-means confinement But here

the question arises, about whdt is confined. We guess that only

states of zero supersymmetric charge survive: in this theory.

which’ if survives: quantization, would provide a factorizable S-

(9). Because of confinement we.think that there is an

(17}

matrix
anomaly, as:in:the case‘of,the.C?nfl'mddel

- In section-II we perform-the  functional integration

on the bosonic and fermionic fields obtaining an effective action.
‘Next, section III¥, we make use of 1/N expansion -and calculate the
Gravitino’ and Graviton quadratic functions,:up to leading-order.
The physicélhinterpretationfof'the results. are given:in section IV,

and finally'in' section V:.we draw conclusions.

II. EFFECTIVE ACTION .

{15}

By imposing local: supersymmetry on the non-linear

Q{N)- ‘e model, i - it can:be shown. that the lagrangian
density

Lo N oo | EC B
= 3¢ "9 [29 3ngd,0y g U by

A T N T B _l—a ay =mo, vV M g
+ 8_($i¢i) ‘+ wi(y Y Yag avﬂiGu '4(wi¢i) Gu(Y Y )GBGU] - (1)

is invariant under the following locally supersymmetric transfor-

*
mations for the fields{ )

(*) See Appendix B for invariancegmobf of (1.

model, so that we obtain to leading order, the Graviton and Gravitino

Classicaly it is‘ alsc possible to:define a‘'conserved non-local charge,

’ = = o
dni X} e(x)uwi(x) _ (2a)
56l = —i€a n G0+ 8L e0v ) Ghae o)
i B B a
+ Eni(x)(wj{x)wj(x))s (x) (2b)
sel ) = 20 T (y) oot © tzel
66 (x) = -(D = @) ® | (2d}
where:
i) g”v(x) = e:(x) e;(x}nab (nab is the - flat space - Minkowskian
metric(*))

ii) st(x) = Y:Be;(x} (e;(x) is the "tetrad" Gauge field assoaciated 
to local general coordinate transformation)

iii) G:(x) is the real Gravitino field-associated to local super-
symmetry.

iv) w:(x) and di(x) are N component (i=l,...,N)} real fermion and

boson fields (a is the fermionic index - a=1,2), that obey the

constraints

Also,

(*) See BAppendix A for conventions,



D (x) =3 +3%yu (x)
M u 2 S B

where mu(x) is the spin connection.

Rescaling* n and

ol -1
R+ nt o= (%§ 72 n and y°' =(§?) 72 ¥

and writting the Green function functional generator associated to

(1), gives:

- - - u3 _ 2 N .
2(F,...) = J lav] .... {deajg(mn)g(n 37!

f 2 -
exp i de/—g[—zl-g"”aunavn + 5V B+
L Fur? e THLY 1~ = 9u
IE YT kv Ty A NG - E(¢w)(GuYY G,) +
an LIy Iu
+ 3 + 3 + ... 5 Gy ] (3)
Since,
2 _ N, if == 2
§(n® = 3F1s(¥n) exp In dxv-g(yp)2 =

J[dc][d¢][dal exp Id%/:g [iﬁ (2 - Ny .

/A 2f
. . 2 :
+%(FE¢+Ecn)~%tﬁww—i§;} @)
2vN

* We will subseguently anit any index, uniess neCcessary.

and rescaling Gy »

gives for (3}):

noAn -

2(F,...) = J[dm] ... [ael] exp Jdif:? [‘ B

B p=t

- A - ¢ + yHyVG 3 In 4
2 boAL 2 [ TG v]

in = u v iVl i G .
+ == |-G - = a - iz
e [ wY Y ap + c]¢ af ¢ i1y + source terms] (5)

where:
b = 2= 5 (g™ /=gp ) 4 imz - 2e (6a)
B I ¥ v VN
s 2ivE i = v ' (6b)
bp =AM S 45y (5 vy 6 e

After performing funetional integration on the v and.n  field, we

obtain:

2(T,...) = IIGCI---[de§3 exp [i Sefe *

2 S — — — -1
+ de V=g [~%5AF5 - %(J + E AF//N c")

-1
A
(4, = & —-11; e (T + o n;la//ﬁ)]} D

The effective action is:



_7_
N —_— 2;iVE
= 38 o - i Zart
Seff i3 Tr logr-g [F . iM + e 4
i = Yu ]_ — i wv,—
+ 5 (an Gu) Tr log¥-g [—J-g 3, g V—ga)+
A—i r
s 2
+ j_mz - zil. - & _F_ c'] - Jd}Z{/—g [‘/_ﬁ o + i} {8)
<1 ™ 2f N
P v ou
where c‘ = ilc + v ¥ G“au).

ITI. MASS GENBRATION AND QUADRATIC TERM FOR THE FIELDS IN 1/N

" EXPANSION SCHEME

First, the ¥N order terms in the effective action lead

mass generation. The mass term breaks Weyl invariance and this fact

has important conseguences for our theory®. The ¢ field generates

the fermionic mass (M}. Rescaling ¢,

¢ > 9" = /%' ¢

and since,
' =8l - w/2 ' ' ' - (9}
" The YN order ¢ field term is:

n [Tr(f‘—lqh[',) + 2 Idfc H ' (10}

* See physical interpretation, sec.IV.

wh'ch as N+« diverges, unless the brachet expression is egual to

zero. This gives:

1 fdg?
=i 2 M2 (1}.)
Py k<=M
With a Pauli-Villars regularization,
L _nlogat me ' (12}

2f

In an analogous way, we have for the o field the ¥YN order term

conditon,
L oo 2 /2
T alogh?/m (13)

This shows that m=M, which is expected to occur, since we are
dealing with a supersymmetric theory.
The guadratic terms for the fields are calculated in

the 1/N expansion {that is, are given by the @'(1) terms). Parti-

cularly, we define the quantum "tetrad" field as{g’lU):

MM
A2 -a (14)

hY =-
a L3

where k2=167G (G is the Newtonian) gravitational coupling

u

a is the flat space "tetrad". In terms of the

constant} and n
quantum "tetrad" field we wxitte the metric field:
uv p.v ab

g"" = ebern™ = " @™V n™) + 2P (15)

Rescaling h;,
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LR SRS VA
ha +ha = (N} ha

such that K2N=l, where } isg fixed(laj,

makes «

proportional to

l/fﬁ, enabling us to obtain the quadratic term for h;, in the 1/N

expansion scheme. First, the Gravitino quadratic part is calculated,
in approximating the metric and tetrad fields by its corresponding

flat space terms*. 1In this approximation the effective action reads:

s

ef /N

- Tr log [i(u+m2) . 2ia

2|

a

c

e +y v Gcad)] + ... (16)
Writting F = yaaa—iM and B = —iE1+m2], we have for the Gravitino
pure quadratic part:
1 f 2z E/G
> Jaxays, 0% Cx-y1e, () =

-i - b = b -1 . -1

=-3 [—;- Tr B Gay yG - TrG,y Yoo, F YchGCEbB ] (1n

which is formally written as:

-11Y> Ychag

i {2 2 b a x
-3 [ -J dxdyGa(x)Y Y ab<x{F

iN a . $" i = b a ]
- = - + 2iX 4+ = -
77 I log[Y aa iM i o (Ga\f ¥ Gb)

1 = - T (B —imy !
N (G v v 3y, " ¢y L iM}

-l
<y|B ix>Gc(y) +

* The "Graviton—other-fields" vertixes a;peér only in the subsequent orders.

4
N |

-i0-

{ ur . . -1
Tr Jd?: 6, (x) ybYaGb(xl iF x>

with the corresponding Feynman Graphs:

II

The flat space ¢ and n fields propagators are given by:

a2 it (x-yl

¥ - M+ ie

a2 eiK{X—Y)

f
<x|F"l|y> = L J
(2m) 21
and
_1 1
«x|B™ |y> =
(2w)2i

2 - m? + ie

+(18)

(19a)

(19hb)
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Taking the Fourier transform of part I in (18) gives:

(20}

z 2= 4d
I dpdkG_ {p) TbYa(-Pb+'<b) LB ¥y k38, (P}

Iz
* [(K+p)2 - MZ] [Kszzl

e

: —
where the ic is absorved in M?, and GaLx) = f&peleGa(p), etc,
since” EéYch=0, terms containing g and £ do net contribute. Since

m=M,

d,c2+e (pb_i_Kb) kd ' r 1 ZMZ 1
7oy Cimgebed - T o ’
[Getp) -M] [x2-42] P 2 /p —AMIpZ

. _ . : :
in pLf 7p-iM7p ] - % npal T oeT - fn (M2} + T(-e/2) +
p?- /PFIEHDT ~
YoF = AMIpZ ‘n2 VOE—AMZDZ
$ 2 o P 4M_E n P + /E 4M P (21)
p? p? - fPLz_,;szz
Analogously for part II we get:
1 dk? é-(p}YbYaGb(P)M
II: — Tr a - (22)
4i 2 - M2
Since

* See Appendix B for detailed explanation of the "Gu Gauge" .

—-12-
t c-KZ‘-HE:
| =i [r(~e/2) - gam-Zn(~M?}] (23)
Kz_MZ
« bacd., _ , ab cdl
Gy vy ¥ v 6, = 4n T GE, (24a)
and
= ba, _ , ab’ _
Gav Y Gy = 2n GbGa (24b)

the sum of part I and II is independent of T (-¢/2) and the remaining

finite part is given by:

3 FG/G (p2,M?) = =M 2pbpd[ é, b —
2 "bd g

o | R PTTITRT nbd[ 2 - JRI-IMERT p2+ /p¥-aMZp”
iy T 2
p*-v/p'-4M* p P pl- /p¥=dM7p?

We have to add to (25) the term corresponding to the Gauge fixing

terms:
G, _ _1_ = v
s IRREELARE. - =
so that
1 SO, 1 sS/Cu
5 de (p2 ,M2) + 3 Pbd - 3% YpYa (27
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For the ¢ field the pure quadratic part is:

~g ] 2L oo AMEST R
% ele (p?, M2} = M on | PEHYPE-4MZp (28)
/pH-aM2p? p2~/pr-am?p?
and the ¢ field quadratic part:
1 ~3 2_am2 2 /o TANER T
= I-¢/¢ (PZ 'MZ) = 24 [P M ] in potvp iM P (291

2
YpE—iM2 p? pi-vp -AMZpt

But to obtain the complete Gravitino and ¢ field quadratic part we

have to calculate the mixed term for these fields. It is given by:

.G /c : 2 4 inT—aminT
Pbu (p2,M2) = ———Ti %2, on | BEH/RIZAMTPI
Vpr-aMZpZ p?~vp*-4MZp?
2ngp, .
2 2 _ a2 - ——hi
[ 2ppMp? + ﬁbb(p 4M2) o2 (30)

In the same way as the Gravitino field has no kinetic term, the
Graviton has no free propagator in two dimensions. It is described
by the symmetric part of the guantum tetrad field. Writting the
metric field in terms of the symmetric (S, ) and antisymmetric (apo}

parts of the guantum tetrad field gives:

uv __uv TRY Hava U _av Havd u _va
g = 4 28 T+ k25,8 + K2[sa a®™ & als’" + al av7] 30
We fix the Gauge by adding to the lagrangian:

s
w1 w_ L o vea)a 12
e > 779 {aus 53 s2] (32a)

-14="

a
U\-‘=__]_._‘__ 2 :
1 £ix ;"9 [2,,] _ (32b)
(which corresponds to have 8USPU = % avsz and auv=0). The effec—

tive action, with special attention to Graviton field occurrence, is:

= - i f— u -
S g¢ 5y Ir log/-g + Tr log[wh 3, *+F+ veee)
- Tr log [iau(g"“J:Eav) A 2,3, * im?v/=g + ...} (33)

Using (31) and a =0 gives the quadratic term for S,y

[
1 2.2 uv Ss A
3 dedy 577 (x) Mhvpi (x-y18° M y) =
i 1 r -l:, wv, =1
= = ={T - - 2 8 2
3 Ll (g%, F'] (s 3,3, B 12+
IIT v
bova =1 Leqwv
+1 8.8 auavs (s suv) (34)
v
Diagrammaticaly,
K+p
IIT. —-»— T e— agyf (o2 42)
p RS
K
K H
.
v __._.)...-J, \}------- ' —_— AB ( 2 Mz)
’ D VB _Aa  7Tp woaa P
— e ‘
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I.v’ AY
{ \
] ; .
A Y Usi - ’ s (181 . .
h \ sing dimensicnal regularization (in 2+e¢ dimensions}
! 1
v B 2 a2 gives the divergent part of (36):
Ve —dy .-...w-.’——.—-‘.’- —_ AUVQ'.G (P M ) .
1 S8ddv, 2 oy pin |1 - -
3 FuvaB(p (M2} T |3 nuaan,nuvnaB T{~e/2) (37
where
and the finite part:
Fag 1 [3k? « KA(K.+p')(K +p I Tx [YQYAYBYP} _ 1,S8fin 2 2 k 1
An“ (p2,M2) = - 3 L v S 2 pvoB (p", M7} = 3 (MagMyv = Enud"vs}
_ . '[(K+p) Z_MZ}][(KZ__MZ].
Iy vy
ae? ( ) (.]2 l/p —4M P Zn p_m - 2P2> +
2 kS x Lk P 4
“% Tx EY“YBII e (35a) p2-Ypi-amZp”
[{xrp) 2-02] [2-2]
20,2 2 -~
. nuenvip M n Ez""/—u_Z_TE'___iI_M_E_ (38}
: - - VpF—dMip?
o I dee x (e +p Yk +p.) 4vph-am2p? B P p
AB { 2 MZ) =2 Ba M h') B."R
was'P s R (35Db)
[(K+p)2-M2][KZ“sz
fae? Taking into account that two dimensions is conformally
B x K K
Auuus lpZ,Mz) = -,ﬂuB [ 2 L vz] flat(ZO} we have as a conseguence that huv(x)=h(x)nuv, and both
k¢ - M
the infinite part (37) as well as the first term in (38) equal
Zeraq,
adding (35a)}, (35b) and (35c) gives: '
f
dee? [ n K sz + 1 K kpp + kK K e p -+
aB u v af g v v oaB
[ terp) 2-32] [2-12)
- - - M2 R
+ KHKGPUPB Kuksrv pa KuKB pvpu M naB Kupu
- ) -— 2 ]
g $uSyP T Ma® K P j (36]

w]lf—
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APPENDIX A APPENDIX B

Metrie: Proof a local supersymmetry of the Lagrangian (1)

Ty = diag (1,-1). The global supersymmetric (GSS) non-linear O(N)o model

given by the lagrangian:

A matrices representation

, 0 i i : Sl . : o
.0 0 -1 1 =1 .u i- 12 )
o= o=t I,=50" o +2V 4w+ 502 R
i 0 :
(¥n=0 and n?=1)
y 1 0 _
o= 0 1 which is invariant under the GSS transformation law for the fields:
_ By ) 6(;1555 - -E‘QD : : . . (82a)
yo= Ty _ ]
0
GS8 A 1 - ’ : ) ST T LT
5 = -i 3 n + = B2b
Fierz transformation: v YoE, 3 en (vy) (B2Zb)
1 u Making ¢ local, gives the local supersymmetry (LSS):
§ 8 = = § & + ¥ ¥ + Y
a8 Ap 2 ap A8 sap ' gAB uzp AR
u .
IS =T e e 4 a¥ Gus 0 ) (83)

where J¥= Eyuyvavn is the supersymmetric Noether current.
If we introduce a spinorial vector field Gy (Gravitino),

such that
[J G = -aue . (Bé}

and add to i’o

= ToHV
il = 4YY 3,0 G

B
-G
b
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4L = zﬂ + 11 is still not independent of aue terms under LSS. We §V—g = -/:Ea(auyue) (B9c)
have to add a second. term:
1 with o a complex constant, subsequently fixed. Also, modifying
— — u AY]
= - — B6
Z, PR (B6) (B2b) and (B4) to
8555y = 655 4 1 B(G w)vte (B10a)
£t =2 +Z + Z_ is now independent of aue under LSS but does
[ 1 2 o .
not correspond to a lagrangian invariant under LSS, because it has 1nd
to be written in curved space-time. It can be trivialy seen by
56, = -D e ‘ (B10b)
[5..8.1n =25 v"e 3 n (BT b ! : o
L 2 1y S T

The Gravitino field possesses the Gauge freedom:
that the LSS corresponds to the "sguare root" of the local general
coordinate transformation law. This means that the Gravitational ~
G - G; =G, *+ry px (B11)
interaction emerges maturally in a LSS theory. So we re-writte

' in curved space—time:
L P where 4 is a scalar field. Using the Gauge

T - — lﬂ\’\. _,]_-m _:!-__ 2
P v"_g{ag aunavn +3 9 B+ 8(W) +

g =0 . (B12}
— BV l1.— 4 5 UV E :
+ 306G - 3 G G . (B8
by v 806G 7 () (G vy “ﬁ (B8) impiies that
where a
Yulu T Ty Gu (Bl3a}
L 1
/=g = (-det 2, " = e'?  ana D =3 + . : -
7 v ! a’ TR y G =¢e @ (B13b)
5 U uv _
UnderrLSS, o : a 1 — ]
. va = 5 gqu.G (B13<¢)
sS8 e; = uauyae (B9a) = a 0 .
TRV (B134)
SESSGMY = af@MyVe v V] | L e
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So, under LSS 4'', given by (B8), takes the form: ) ‘+($Yuvaﬁ)(?3vw)—% (EY”¢)3un(§py\val) -

(22) {23)
GLSS£|| =5/§{ } o+ @6{ } ) (B14)

_Big v 8 = AP 1= —_ u_v -
z(‘” €) (Guw) {Gpv yre ) Hplev) {2 ety Gu)
But
{24) i (25)°

§¥=g = 0 ((B12) Gauge} . Therefore, 1 - _ - 1 v
-g(ww)(evsv Y Gu)”v+1 (ﬁw)«%Y Y Hue) +

/=gs{ r=/~gi5[(G"y e} +(B"y e)launa“nﬂau(gw)aun—%-(?yvy”auq;)avn + {26) (.27)
(1 (2) (3) (4)

LI (py) (5 LT @ vFyY Ty (& WP Vg (B _

+‘i(¢¢1(€ #on - et w6 G + ii(my up) @y e) + H TN @y du ) @rPvTe,) By e)
(5) . (7 (28) 29)

2y yYeran 45Ty e)a a2 gy Ve)o aon + -2y (@,v*vPe ) @7y o)) - (815)

Sy Ay Wt Ty Ty ) an zwvvsuvn 4 n p

(8) (9) £L0) (30)
3 pH_V_ pu_v uv_p  .pv_.u = P WV -
%(¢¢)(¢Y e)d “+ wﬂ[(G wiyhe] + i(ww)(sv vian + Since y'yTy = + gty T+ g - gy, i(eyPy Py e 1o na o=

(11) (12} (13} _ " — v _ v
-i(eY"G“)a naun+ ifey Gu)aunaun + i(ev"a )avnsun, which compared

W

+ =) @9 (IrPe)+i (ePy® YuGu}avﬂapﬂ -

[+

to (1) and (2) ({using #=0) yield «=2i. Now, making a partial in-

(14) (15} tegration on (4):

;

B - - = DV =u = — - —_
s(ev Yy Gu)(¢GpJan + eldy v Gu)(G YOE)an + _f%i (ev“vu3u¢)3vﬂ = U ; (ev“yuwlavn+ =g {%(BueYqu¢)3vn +
{16) (17) S )
{4a) {4b}

+a(Tr"y?6 ) By e)o n -~ (Fy'y¥s eV n - o _
¥ oo e + %(sau(y“y“)w)a“n + %(ev“y”wlaua“n _
(18) {19}
{4c) (44)

- %wu($YquYsE)3vn + @6 G T +

A ather with ¢ neels (19); (44 " gith (2)
(20) (21 {Ab) togather with {9) cance (1 (44) summed with (2} gives



Y=g BU(Ewaun). Also, summiné'(S),l(ll) and (13) gives Zero.

(31)
Using Fierz transformatien, YDYqu=U and EuypGu=0 in (17}, (29} and
{30) gives zero for each term. - (21), (25) and (27) sum up to zero.
Using $=0 and Fierz transformaticn in (14) and (24) make them zero.
Since Eﬁuy“avna%($¢)§vyuyv the sum of (20), (26) and (28} is zero.

With a partial integration on (12} gives:

— ig = v z vy JiBL o VuELy (B -
=g 229778 (@0 v e]= -3, /=g v yFe) @ 0)
(12a)

NIH
0

=gl By vHe) @ 0+ (3,v"v¥e) G, )]

{12b) {l2c)

Using Fierz transformation, ¥ Y“yuavn=% (Ew)@vyuyv for (12a) and

summing .this result with {(4a) gives: -

3 .f=g. . sy :
¥ S (1e8y) (By"y e)a n

{32)
The sum of (i2b),(6), (7) and (22):

(8;-11 {(F3,0) @) + (B 2,9) (51 )]
' (33) ‘

In the same way for (16), (18) and (23) gives:

5 — - W
2(B+1)(GVY5Gu)(¢¥ YSE)B n

o (34) ..

-24-

Finally, the sum of (4¢), (8) and (l2c¢} vields:

LFB”(Y“TV )Elavn

(35)
The remaining terms are:

g = /gd L - ) T MY
gs{ ] /T;{z@ a /=g (1+81) vy e) o n 4

+ iEach“Y“}EIavn + 2" (Eva ) + (18-1) [(93 9 3 (G +
Gy a,u (5y €] + 2(841) By 6) (v'y e)a'n (B15)

If B=-i,

= 3u/:§($Yque)an + $au(Yqu)ern +

/gsi }=/-‘g‘{

+ 3t (e = /= 1 5 MY wv | = _
(E‘Papn) /_g { — aus/ g e + auE } (l‘b"(sg)avn =0

A
v oA V_ C Vol {with
8, € : =T and 3 = e

b v ueb mpbec Ful b
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IV. PHYSICAL INTERPRETATION

We verified, in lowest order, that our model is renorma-
lizable. This is achieved due to unwaited cancelations between
fermion and boson divergencies, as is clear in the case of the
Gravitino propagator. However this feature seems to be general
in supersymmetric theories(ZI).

We have already called attention to the mass generation.
It is easy to seé from expressions (25) and (38) that in the zero
mass limit the guadratic part of the Graviton and Gravitino
completely disappear from the theory. This is a consequence of the

(14}

clagsical Weyl invariance of the .thecory, in which we can rescale

the fields as:
Y

Yo ATE n >on

- 1
el 5 pTleH c ~a “%g
a u u

where 5 is a local arbitrary parameter. This invariance is broken
by the fermion mass term, so that gquantum mechanically it no longer
holds. The Weyl invariance enables us, in the c¢lassical theory,

to eliminate completely the Graviton field. In this case also the
Gravitino field could be eliminated(zz).

The rich of the structure carried by the geherated

mass does not yet stop. For zero momentum, we have a pole in the

Graviton and Gravitino propagators:

<Gu(p) Gv(-p) e L e

w =
2
P
<h (p) B (-p)> ~n._on
uv P ca P "uv Tpo 2 e
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Zero mass propagator, in two dimensions, leads to terrible

(23), and the theory could be even undefined.

1

infrared divergencies
In general it means confinement as in the cpN™ medel. In that
case we are able to construct gauge invariant bound states, such as

(16). Hdwever

N{zigg)(x) which represent the (un confined)} mesons
we were not able to do the same in our present problem, and we can
not construct the "mesons" of our theory.

Also the important relation between 2 dimensional gravit&

and string models(l4'24}

turn out to be no longer valid - or at least
screened, because to establish this relation wé neéd £§ go tb flat
space (guv=nuv), by a Weyl transformation, and there afte; the
Gravitino field can be put in the form Gu=¥p. which is made zero
through a gauge transformaticn. We guess that the string collapses
due to the Ionglrange forces involwved.

At last, the model can be seen to be classicaly integrable,

for it has a {(classically) conserved non-lccal charge, namely:

Q= de.dyz ely,=y,)J,(2,y,}J,(z,v,) - Jay [jl(t,¥)+211(t,y))
where:

Jij(t,y) = 3uninj - niapnj +

* % inuwj - %?quwi + FhyyE ninm.EjY“YUni G“

jij =3 ﬂlnj - n 3 nj

) - : vy, el - 3 Ve ot

Using current conservation, it can be shown that Q is conserved,
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implying, at élasssical level, integrabiiity of the system.
Quantum mechanically, if this non—locai charge conservation is not
spoiled by radiative corrections, it should imply a factorizable
S;matrixf .However, the existence of zerc mass gauge particles,
implying confinement of some.degrees.of freedom, can spoil the
charge conservation, and the guantum matrix would no lenger

factorize.
V. CONCLUSIONS AND OQUTLOOK

First, we should point out that it is very important to
lock for gauge invariant operators, which should display infrared
finiteness. Local supersymmetry implies Poincaré symmetry, however

it is not true in our algebra that

for all operators I, where GEI consists in the superéymmetric
variation of I with the parameter «.

Conservation .of the non-local charge should give an
exact S operator, at least in the unconfined sector. Here we have
another problem, namely, the interpretation of the Gravitino and
Graviton asymptotic fields. They are no more simply Lagrange
maltipliers. However we are not confident fo say that they survire
asymptotically.

Finally, we wonder if this structure carries over to the CPN?l

model, and what should be the consequence for & vacuum and confi-

nement in this case.
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