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ABSTRACT

The Moldauef-Simonius theorem, that relates the
modulus of the determinant of the average, optical, S-
matfix{ to the average width and spacing of the compound
nucleus resonances, is generalized to the multiclass
resonances situation encountered in pre-equilibrium
reactions. Corrections to the generalized M/S theorem
are seen to be connected primarily to the width distribu-

tion of the widest doorway class.
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1. Introduction

The recent upsurge of theoretical interestl™>)
in-multistep compound processes has brought into focus
several impeortant questions related to the statistical

theory of the compound nucleus.

One particular aspect of the statistical
theory, namely the distribution of level widths, P(r),
has recently been discussed by several authors4'7). in
connectior with the conventional, one-class of overlapping
resonances, model of the equilibrated compound system., It
was discussed in Refs. 7) that the S-matrix auto-correla-
tion function.Cs(e). should carry some information about"
P(r). However such information would be experimentally
difficult to disentangle. The calculated C(e) with a
specific P(r) was found to differ little from the one-pole
approximation toC%(e), as long as the correlation width,
r°°TT yas identified with —%?~ Tr E where.D is the mean .

level spacing and P ,.the optical transmission matrix.
oy

Clearly the above questions become even more
subtle iﬁ the case of the multi-class resonance model of
pre-equilibrium processes, since, as was demonstrated in
Ref. 3) the fluctuation cross-section and the S-matrix
auto-correlation function are not simply related. The
relation is implicit, in the sense that 0“5"" = Z G‘;fif

et
¥ 131 . 3 Y|
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and Cccf.e—) = ZG;'“,/-[-t___.f_lmand therefore C:“,(s}/a‘“_,
. M o )
EE"(E')depend on the channels. This makes the discussion
. .

of the Pn(rn) through considerations of the generalized

/



cross-section autocorrelation function more difficult,

Another quantity of theoretical interest which
involves explicitly the consideration of the level width
distribution - is- the average amount of absorption present
in the system -and its relation te T/D.. This is quanti-
tatively descripgd_through a relation involving-the
modulus of the average (optigal) S%matrix, E'apd the ratio
T/D. This relation carries the name of the Moldauer-Simonius

M/8) ppeorems)._

It would be quite instructive to generalize the
M/S. theorem. to the case of multistep compound processes (MSCP).
This generalization would help in furthering our under-
standing of the role of the level width distribution of
the different classes of doorways, in fixing the degree -
of absbrptionrin the system ard, accordingly, in relating
observable physical quantities such as E_to the inherently

unobservable average doqrway widths.

In the present paper, we demonstrate that the
generalization. of the M/S theorem to: MSCP involves very
simply the comsideration of the ratios §/4q1. Further
we show that in the limit of the well nested sequence of
doofway classes discussed in 3), the first correction to
the ¥/S theorem involves the width distribution of the

widest'width class of doorways.

The paper is organized as follows: In section
Othe M/S theorem is discussed in the context of MSCP, ..

In section III we‘ihtroduce a particular explicit form

-4 -

fo. Pn(rn) and accordingly calculate r;_which are needed to
obtain the corrections to the M/S theorem. Finally in
section IV the consequences of the generalized MS theorem

are discussed and several concluding remarks are made.

IT. The Moldauer/Simonius Theorem For MSCP

in its original form, the M/S theorem valid
for a single class of overlapping resonances system

®

reads

Relpndet T = —w7/D (1)

Though Eq. (1) relates the medulus of the determinant
of‘§ to ﬁ/b » one may obtain the corresponding relation

for l(é?lcl in the case of m equivalent channels
l:S:I = é’.xP(—ﬂ'—ﬁ/hﬂ:D) (2)

Upon insertion into the unitarity relation, this gives the

following value for the transmission coefficient P

P o=1-— a_xp<—zr= F/mD) (3)

In the more realistic case of non equivalent channels,
simple relations such as (2) and (3) are not obtained,

Nevertheless gualitative statements containing similar

- * All formulae refer to a given partial wave..




physics aslin Eqs. (2) and (3) may be made as was done

in-Ref. 9).

To generalize the M/S theorem to the case of N
classes of overlapping resonances, we start with the usual

sum-over-poles form of the S-matrix

" h ]
§_=§‘LZ = 3’; 3",|_,_ (4)
n, M mpe T "’ﬁ/z

where B is the, unitary, backgifound matrix, BB =1.
L3

Since the sum over classes, &, is just another

label, it may be considered on the same footing as u.

The background-plus- sum-over-poles representa-
tion of S given in Eg. (4} may not guarantee the absence,
in the energy-averaged cross section, of terms connected
with the interference between compound (fluctuation) and

direct processes.

One may, however, construct am alternative form
for i where these interference terms average out to zero.

This was explicitly done in Ref., 3) using the optical

10)

background representation of Kawai, Kerman and McVoy °,
appropriately géneralized to the multiclass resonances
case. For our present purpeses, however, Eq. (4) is more
appropriate.

The average S-matrix, E} (average over an energy
interval I}, may be obtained from (4) by merely adding

o

to the imaginary part of the denominators, the factor

We then obtain the following for the determinant

of E

det S = det ”S'“ = éa_tq: E—E"#_’_i"rfz_':&,#/f (3)
h)/u E ~ /‘+L1/2+Lr;w})_

where

P = et B

We consider now the real part of the logarithm of Eq. (5),
which may be written as

_ _ 1 i /z)/—E,, +HIf)

= Lnldet S| = e -
Re b det 5 =2 }4‘ ,,9_1 R""ZF L *‘.(ﬂr/z)/(E'E"f‘ﬂI/g)
(6)

ir;uu/&
E-Epptilf2

Expanding (6) in powefs of Xh”u

we finally obtain

& 2‘1‘ +
< - 1 P (I/Z)(h} )
&Idaﬁl ‘"Z(zju)! (BI) Z (E—E,,)/&)}:.I/* (7}
i=0 hyp

The sums
23+l _2-‘;“ :
Z (I/Z) (r‘r")}") - T <(r,") M) A>££I (8)
E-E) v e D,



define the average of powers of the width f*“

— M
Calling [: = < r;/“ > we then write J
™ M
o w 24 N < 3;'+|>
al - r i ‘E_ r':.\.ﬂ-l ot (%)
Wit g =) R/, =) (D) )T
o=y J‘=’-l n=1

Equation (9) is the principal result of this section.

To continue further, we have to specify the distribution
2+

of level widths Pn(rn) which are needed to evaluate< I';U}.

< 234 -
We might mention that if the assumption that —”l“T_ﬁ
[ ]
ipdependent of the averaging interval I, is made, then
we obtain immediately the simple generalization of the

M/S theorem

fer S| = exp[-n S /)] a

h=|

where the sum extends over all doorway classes.

III. The Level width Distribution and the Corrections

To The M/S Theorem

Recently several authors4)’6)’7] have discussed
the distribution of widths of overlappiﬁg resonances.
Most of these studies result in a numerical histogranm
distribution which is not convenient for analytic .

discussion. In Ref. 7), however, an attempt was made to

~V

actually construct P(I) subject to several constraints
motivated by unitarity, the uncorrected M/8 theorenm,

Eq. (10) and an expression for the coherence width of
Ericson fluctuations obtained from an analysis of the

S-matrix autoc-correlation function

peerr _ & T ?;/( ;-1> (i)

The distribution P(rI) was then constructed by use of the
maximum entropy condition subjected to the above three

constraints. The resulting P(r) has the form

r corr

p(r) = 2"?[" [0-49—3 +128 +o.|g( - ___Il_'_)]] (12)

where the numerical factors appearing in Bq. (12) were
found by treating the 20-channel example discussed by

Mol&auer4).

Although P(r) of Eq. (12Z) fits very well the
numerically generated histogram,it is quite cumbersome to
deal with in analytical studies. For the purpose of
evaluating the corrections to the M/S expression, Eq. (9},
we therefore use & simplified version of P(r) which

corr

guaranteesthe finiteness of T as defined in Eq. (L1).

Pr) =_'?:5_i _%__(_fﬁ-_)z LKF<—3 -%—) (13)




With P(T') above. plotted in Fig. (1), the correlation width
calculated using the de defining equation (11), comes out

to be

_ ] _ _ |
mee = P/s (14)

This is close to the value extracted from Moldauer's

histogram4].

To further exhibit the reasonableness of our

distribution, Eq. (13}, we calculate below the ratioc of

the S-matrix autocorrelation function to o:fll for the
e

single class resonance case7),

s .

- 1
e = L W
o 4 Lo+ is A
co’ M M

= 1 -1 3.83/74

- (3&/,'—-‘)1”;: (i3e/F) Ev(i3e/F)

where E4(x) is the exponential integrallo). The closed
s
expression for C;cfe)//a;i{ given above has the

correct behaviour at e=0 (=1) and ¢ = = (= 0).

- 10 -

In fig. (2) we show the cross- section auto-
correlation function I C (E)/4T{I ‘ . plotted

vs. the quantity —2&_ 35

The extracted correlation with
is ,,%%_2; K slightly larger than that given in Eq. (14).
For comparison, we also show the results obtained with

. . s r o~
the one-pole approximation to C;c,(fj//'dlc, i.e.

corr
——Egg;*—v——— , with T°°"T obtained from the exact

i + (&
result, Eq. (15). It is clear that the one-pole expres-
sion approximates very well the exact one in the small-¢
region. 0Of course this is the region accessible to

unambiguous experimental studies.

The above findings agree with those of Ref.7}
where P(T) of Eq. (12) was used. Further, the result
of our calculation shown im Fig., (2) are quite close to
those of Ref. 7), indicating clearly that our approximate

P(r), Eq. (13}, is quite reasonable.

Having thus given arguménts to justify the form
of P(r) employed here, we turn now to the calculation of
the corrections to M/S relatiom, Eq. (10). We assume
similar width distributions for all classes of overlapping

resonances, obtaining thus

2d+|

<(n,}*)lﬂ+l (.n+3) (‘* ) (16)

/4 A (3 )za+l

wvhere we have purposely inserted a possible I-dependence

in ﬁz . Inserting (16} into (9) we finally obtain
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.
b fdet F) = —m Y 22
L

n=1!

2 N = 24
e N LiryEita) g ); (I‘;m)
| ’:Z'Z a* Gr Z )
jl=l. h=1
(17

At this point. we assume that the average widths, r: Jof
the different classes of doorways satisfy the nested

condition 3,11)

TS0 »---->T (18)

Further, to unambiguously define an average width for a
given class, one has to introduce a heirarchy of averaging

intervals In, such that

F:-: << Ih < E—: {19)

For convenience, we assume that the degree of
I

'nestedness"”, n , is given by
In+1
Ln = fn . {20)
Ih+1 ﬂ;+|

With the above assumption, the averaging interval I, which

is, by assumption, larger than all widths, is written as

n h “h (21)

-4
i
5‘1[:.1
]
1
R
L

With the help of the above assumptions and definitioms,

we may now write Eq. (17) in a meore natural form

'J —
Llat 3| = —w Yy, b
" e Dy 2§ =¥
_,EZ 2i+9) 23+ N | (i_ o
z/ ()5 A“"zg a2, (22}
I=t n=i ’

As.a result of the nested-doorway condition, .Eq. (18),
a(h'>€> 1 , and therefore of all terms appearing in

the n-sum of Eq. (17}, n=1 would give the dominant

contribution. To lowest order in the I-variation of ff

we obtain finally

> > l_"_a (23)
ol — _ n_ o qmde e N
bojser S | = WZ D, Fa%(az) )

ne)

Equation (23) is the principal result of this
paper. It supplies the measure of abscrption in a nuclear
reaction, due to multistep compound processes. It also
dictates how the width distribution of the resonances enters
in the determination of the éverage, optical S-matrix in

terms of the average rescnance parameters.
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Though Eq. (23) deals with det;g, one may obtain
2 similar relation for the elements of S in the idealized
A
case of m equivalent channels coupled equally to all door-

way classes. Ignoring the correction factor in Eq.(23),

we obtain

N —
S, ] = expl-x H (24)
'-l P[ 2-;1 m D,

. L. =
from which the transmission factor P = |- ls |
¢ e

is obtained immediately

Fg =1 - exp[—-uri

h=|

] (25)

I, m
Assuming —Lr'_-.-— >>1 » and summing over c, we find
n

M
m 3,

= 7
28 %2
. W=t " .

<

Since in the limit, 59@!¥_j$>j. , considered above one
n

expects the correlation widths to ceincide with. the

average widthls), we may rewrite Eq. (26) in the follow-

ing form

N
ZE“ = o‘?ﬂ'Z ]‘:‘J[; 27N

- 14 -

Bquaticn (27} is a sum rule relating the trace
of the optical transmission matrix, obtainable from

optical model analysis, to the correlation widths extracted

from Ericson fluctuation analysis. The sum rule ahove has

recently been discussed by one of usl4)

in connection with
preequilibrium reactions. We view our discussion above as

a further support to the conclusions reached in Ref, 14),

IV. Conclusions

In this: paper we have generalized the Moldauer/
Simonius theorem to the multi-class tresonances situation.
In the course of assessing the nature of the corrections
to the generalized M/S theorem, we have examined the
distribution of level widths of the different classes of
doorways. It was found that in the limit of well-nested
doorways, the first, and presumably dominant, correctibn
to the generalized M/S theorem, involves the distribution

of the level widtﬁs of the widest class of doorWays.
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Figure captions

Figure 1  The width distribution P(F')XEZ;F' plotted vs.
rv/fF . The arrow indicates the correlation

corr _ <r'_'>

width |7 = =T
: <D
Figure 2 The Cross-section auto correlation function,
Eq. (15), plotted vs. BE/F {solid curve).
The dashed curve represents the one-pole

approximation to C(e).
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