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1. INTRODUCTTION

- Classically, the two-dimensional generalized nonlinear
o-models are known to be integrable and to possess  higher
cénservation laws, both nonlocal and local, ﬁhenever the field
takes values in a Riemannian symmetric space [1], [2],[3]. At -
the quantum level, however, the situation is more involved because
even if one is able to quaﬁtize:the (first) nonlocal charge and
define it as a §enuine operator, this charge may develop  an
anomaly and need no longer be conserved. For example, in' the

SN_l-model (usually called the O(N}~invariant nonlinear o-model)

N-l_nodel, the guantum nonlocal charge may

as well as in the CP
be defined and analyzed within the 1l/N-expansion, and it turns
out to be conserved in the former [4], while it develops an

anomaly in the latter [5]. As a consequence, the S-matrix of

the San-model factorizes [4] and can be calculated exactly &ﬂ,

while the S-matrix of the C?N‘l

~model does not facto;izg and
is still unknown. _ B

In this paper, we give a simple and general griterion
for the absence or presence of anomalies in the guantum nonlocal
charge of the nonlinear o-model on an irreducible Riemannian
globally symmetric space M of the compact type. This means, in
particular, that we may represent M as a guotient space M = G/H,
where G is a compact connected semisimple Lie group with Lie
algebra q and He G is a closed (hence compact) subgroup with
Lie algebra ﬁ c% . For simplicity, we also assume that G is

simply connected -~ which forces H to be connected - and that

G acts almost effectively on M. (Thus for example, the complex



Grassmannians should be represented in the form SU{p+q) /S (UlpkxU(q)),
and not in the form Ulp+y) /U(p) *Ulg), in order for ocur criterion
below tq_be”appligable,;Egr_moreudetgils on the mathematics, the
reader. is referred to the books by Helgason £71_and Kobayashi-
-Nomizu [B}..) Under these circumstances, our criperion is a
simple condition on_(thgdLie algep:ﬁhﬁ of) ﬁﬁe_séability_grpup
- ! N . | | . .
(1) Apomalies are forbidden if ﬂ is simple. (This is understood
. to include the l-dimensional abelian case 4 = R, which
occurs. for the nonlinear g-model on s? = ¢pl.
(ii) Anomalies are allowed, and are to be expected, if ﬁ contains
nqntrivial ideals.
Tn particular, this condition excludes anomalies in the gt
-model, where ﬁk;'sb(ﬂ—l)f but allows anomalies’ in the B 1~
—médel,'where. ﬁrﬁ s{u(l) % u(N-1)) = u(N-1), as long as N> 2.
It also excludes anomdlies in the “ifreducible"'principal '
chiral models, i.e. the nonlinear o-models on compact simple
Lie groups - in agreement with arguments based on higher local

charges [91.

2., THE MODEL

We begin by briefly reviewing the formulation of the
classical two-dimensional nonlinear o-model on a Riemannian
globally symmetric space M = G/H, subject to the restrictions
mentioned in the introduction.

First of all, the Lie algebra q admits an orthogonal,

Ad (H)=-invariant direct decomposition
(2.1) u]=lle«w.

into the Lie algebra ﬂ of the stability group H and a comple-

mentary subspace w, with commutation relations
(2.2) Lhhleh Thuwlew, [wwlch,

and the corresponding decomposition of elements X ¢ q will be

written
{2.3) X=X,I+Xﬂ.
Moreover, the stability group H being compact, its Lie algebra

h admits a further orthogonal, Ad(H)-invariant direct deconm-

position

(2.4) !)= ‘l“ell"a"'gﬁ"

into its center ﬁu and r simple ideals hl""’ hr , with

commutation relations
(2.5) Thi byl = 10} for ieg,

and the corresponding decomposition of elements X eﬂ wili be

written

0

L
{2.6) X=X ﬂ.

5]
+

+ X L+ X
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We assume in addition that r ¢ 2 and that the center ﬁb of h
is at most one-dimensicnal, which can be justified e.g. simply
by going -through the list of all irreducible Riemannian glabally
symmetric spaces C?]. Note also that M being irreducibie, the
subspace w, does not admit any nontrivial Ad{H)-invariant

subspaces. Thﬁs
(2.7) 9 Il“ @ he.® llf.e "

constitutes an orthogonal, Ad{H)-invariant direct decomposition
of 9 into Ad(H)-irreducible subspaces (some of which may be
{oh.

Next, following [1],{2],[3], the field g = g(x) taking

values in M = G/H is (locally) lifted to a field g g(x) taking

values in G, subject to the natural gauge eguivalence

There exists a field h=h(x)
gy(x) -~ g9, (x) & qzm)qﬁ}X)4=° taking values in H such that
g, (x) = gl(x)h(x)

(2.8)

under H. As usual, we consider the (left translated) derivative
field g-laﬁg {taking values in 9 ) and split it intec its vertical

part, which is the gauge potential A, {taking values in ﬁ }, and

p
its horizontal part, which is the (left translated)} covariant

~1

derivative field kF = q DPL g (taking values in w}:

2.9 = (g2 k, s g » (g™

2.9 RS R UL L SR IR R
The gauge potential can be further split into its components
along the various ideals ﬁi:

. 0} Y i)
(2.10) R, = R+ R, +.+f,
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(Cf. {2.3) and {(2.6) for the notation.) Indeed, it follcws
from the Ad{H)-invariance of the direct decompositions (2.1)

and (2.4) that under gauge transformations g =+ gh, AH and

A(i} transform as gaﬁge potentials (i.e. AF+ h-lAPh + h_l BPh
and A‘:) > h_lA(:)h + (a7t arh)(i)), and k, 1s covariant
(i.e. k]Lt -+ h"lkF h). This motivates the introduction of gauge
fields {(curvature tensors) FF, for'AF and Ffi) for A&f),'ahd
‘of a covariant derivative Dﬁkv for RF:
(2.11) Foo = Whym R, 4 [R'“HV]
W W W W W

azn o Fos BB WA+ [RGR ]
{2.13) Dy = Yk ¥ [Ht"kd
Observe that due to (2.5) and (2.10), FF’ is simply the éﬁm'of
the E‘%i): . .

[C)) - i}
(2.14) Ty ® T‘“ PR L ’FP,

Moreover, as a consequence of the symmetric space structure

of M, the identities

(2.15) TV - D‘l"k“]

{2.186) thV = BV"‘I‘

hold for any fieid configuration; in fact, accofdiﬁg to (2.2),
the equation (2.15) resp. (2.16) is s;mply the vertiéél part
(ﬂ -component) resp. Horiéonﬁai pagt'(ug—component) of the
identity O . : .
g ) g R T
Passing to gauge invariant quaﬂtities (taking values.iy ?),
we have the Noether current . . .

-4

(2.17) | 1&* s - ‘13”" = Dy
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as well as the sSymmetric tensor-

: . e c 7 -4
@ G gk

(cf.({2.16)) and the antisymmetric tensors

PR " . N - _‘
(2.19) B A
S _ W el e
{2.20): Guv \?i’w %
Observe that due to (2.14), Gé, is siﬁply the sum of the G%i):
P : W W ’ s}
2.21 = + ..+
{ ) | Gl‘.” Gr' GP,, . GP\,

Moreover, as a conseguence of the symmetric space structure of

M, the identities o
(2.22) G Tl
(2.23) iy ® _]t“' ' O

hold for any field configuration.
The classical two-dimensional nonlinear o-model on

M is defined in terms of its action functional

sAdtact -4 t
(2.24) 8 =7 S x ('B”\t),'h“q\x” : S&‘x (hﬂ(t\,h 1\:)3
which by the usual variational principle leads to the field
equations . ' .
. . : . F -' . -. F ]
(2.25) B*ﬁ 3 bF‘ y ) g * 0

These imply that the current is conserved, i.e.
(2.26) - o R U
¥ '

and conversely, (2.26) implies (2.25) {101. Thus in the form

of the conservation law (2.26), and tbgether with the identity

(2.27) R N e 2l - 0

which results from (2.22), (2.23), the eguations of motion are
equivalent to the integrability, for any value of the (real)
parameter A, of the following system of firgt-order linear

differential equations:

{2.28) (N U™ = WY (- s V) ip - swhke,y')

Similarly, one can check that they imply conservation (i.e.

time-independence) of the (first} nonlocal charge

(2.29) AP = § gy, By Gattg), 4,y 00 - h‘ e

3. QUANTUM NONLOCAL CHARGE AND ANOMALIES

For the purposes of guantization, we shali work in
some faithful N-dimensicnal representaticn of G by unitary
matrices, which yields a faithful N-dimensional representation
of q by antihermitean matrices. The basic fiels of the model
are then the (NxN)-matrix fields g and q+ { + denoting hermitean

adjoint) which, classically, satisfy the unitarity condition
(3.1) frl I tn+

and are subject to a local H-invariance g -+gh, g+A>h+g+ which
enforces the use of covariant derivatives

(3.2) P T L A L R
YA ok + ', - +
Deq g R DDt AT+ Ry Dy



etc. Differentiating {(3.1) gives

G2 R RARIEERRITRS L

In the guantum theory, products of field operators at
the same point will in general not be well-defined, and one has
to use some definite normal product prescription for subtracting
the singularities. We suppose here that such a normal product
prescription N[.] does exist, and that it is "reasonable"
in the sense of maintaining the constraints (up to possible
renormalization dependent constants) and preserving the intermal
symmetry properties. Thus the definitions of the various compo-
site fields in Sec. 2 {equations (2.9}-(2.13) and {2.17)-(2.20})
and above (equation (3.2)) can be transferred from the classical
to the quantum theory by writing g+ for g_l L and applying a
normal product symbol to any product or commutator. Moreover,

we require that

e N{6,0,1
¢ NLG,0,]

Xio, %‘" ﬁ't]
N.[W,%1+UI]

(3.4}

n For symmetric spaces of the noncompact type. where G is
noncompact and does not admit any faithful finite-dimensional
unitary representations, a guantum definition of gal is much
more involved because g—l will depend non-linearly on g. Thus
although in some cases (such as the duals of the real, complex
or quaternionic Grassmannians), this problem can be ciramwented
by using a suitable pseudo-unitary representation, we have
for simplicity restricted ourselves to symmetric spaces of the

conpact type.

- 70 -
éﬁd,'aifféreﬁiiaﬁiﬁg'(3;4),'thAt'
3.5) NLE Dyg g B+ N0 D 0] ,-_0=
\K[U« P\f@] \N[W,\T}‘;‘W]

for all formal products (,,0,  of g, g+ and theilr covariant
derivatives, where ¢ is a renormalization dependent constant.
The formulas (3.4) and (3.5) are the guantum analogues of the
constraints (3.1) and (3.3), respectively, and should be
considered as part of the defining properties of the model .
Other constraints, defining G as a closed subgroup of U(N),
should be handled similarly. Finally, we require that under
global G-transformations g + g,9; g+ -+ g+gt and under local
H-transformations g +gh , g - h g , any nofmél produ&t'baEWES
precisely like its classical counterpart (i.e. satisfies the
correct Ward identiﬁies), and that in'particuiar,the identities
(2.15), (2.16), (2.22) and (2.23) are preserved in the quantim
theory (with a normal product symbol in front of the camntaﬁﬁm
on the rhs of (2.15) and (2.22)).

It should be mentioned at: this point that in cases -
where standard techniques can be applied to-construct normal
products within the framework of renormallzed perturbation
theory [11}, these requlrements are indeed satisfied [5],[12].

The correct deflnltlon of the {first) quantum nonlocal
charge, which is to be the quantum analogue of (2.29%), reqﬁ:és
the examination of the short-distance behavior of the commitator
between two currents. This behav;or is supposed to take the

form of a Wilson expan51on

(3.6) '[i'F«:+=)','i,\x-e)] . E c“"&e) x[u m] B CEY DI
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where k labels a complete, linearly independent set of compo-
site local operators J([Uij)] of (canonical) dimension g 2.
This is justified in view of the asymptotic freedom of this
class of models [13].. Moreover, due to ¢® < 0 and locality,
these operators should take values in q, and they should be

globally G-covariant and locally H-invariant. But the  only

operators which satisfy all these reguirements are the following:

Dimension 0 : -

Dimension 1 :. j,{x)

P

Dimension 2 : (x}y and G(D)(x}....., (r)(x)

Tpe o s
In thé préof we shall for 51mpllc1ty omlt the normal prcduct
.symbols._ o .
} Flrst observe that g, g belng &1mensmonless, any
composite local operator must be constructed from a chain of

the tyDe

+
(3.7} L*% Lli ...... Lu_t‘HL
if it dis to be globally:G-covariant and locally H-invariant,

and’ from a.chain:of.the..type.

(3'.8)_" - .L‘f 'Lla Ln"_*f' L'l.d

if it is:to_be globally Gﬂinvariént and iocélly H-covariant.
Hexg §nd bglow, the L's are either the identity or products

of @oyariant'deriVatives, and the total number of derivatives
is eqﬁal to the dimension of the composite operator under
consideration. Moreovér, using the constraints.(3.1) and (3.3},
we can eliminate superflucus products g+q, gg+ and transfer
the covariant. derlvatlves from g to g, so that the Chalns

{2.7) and (3. 8} can be rewrltten in the form

- 12 -
(3.9} L‘ﬁ 1+ s Lk1 1+
and l
(3.10) tf Liy f by

respectively. Note also that because of q c u{N}, we have to
eliminate the hermitean parts of (3.9) and (3,10), and at
least for operators of dimension ¢ 2, it turns out that this
is in fact sufficient to construct operators which take wvalues
in 9 (and not just in u(¥)). Finally, the resulting operators
- insofar as they are globally G-invariant and locally H-co-
variant - may be decomposed inte irreducible parts, without
spoiling their internal symmetry properties, by using the
Ad (H) -invariant decomposition (2.7).

In more concrete terms, this strategy p;oceeds as
follows:
Dimension 0 :
There is no candidate.
Dimensicn 1 :
There is a unigque candidate, namely

Dy gtk gk’

This is already antihermitean and does indeed take values in

% (rather than just in u(N)}. The decOmposition of k into

'.I.
irreducible parts is trivial and shows that jF is the basic
composite operateor of dimension 1.

Dimension 2:

There are two linearly independent candidates, namely

ERECERTEY
BT PN gD
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Due to

PR NIRRT O TN RTY
\%‘.i\,)* = = U

the antihermitean parts are

4 Sk oy P R T B -3 *

ALTTRN TR TR SRR T R AR ANt
'QM,, * ]r.v + G’},\v = “’D!A\‘-v +-F|’w) %+

and do indeed take values in ﬂ {rather than just in u(N}). The

decomposition of F,, and of D)k, + F into irreducible parts

pty pr

then shows that J, and G(*B) .., (!*r")

operators of dimension 2.

are the basic composite

Using this result, together with (2.21) and the identity

(2.23), we can write the Wilson expansion (3.6) in the form

{""‘\R-#U, i,\r-e}] 2 C;v(t) i‘l‘“) + B;E\a) (%wigl\r)

(3.11)

with the subsidiary condition

(3.12) E 'Bm“( ) =

vel

({Bquivalently, we could have requixed D?ﬁ(e) to be gymmetric
in ¢ and ?') The tensorial nature of the linearly divergent
coefficient function € 9(e) and the logarithmically divergent
coefficient functions D?ﬁ(e} and D{l)c?(E) can be determined
from general principles such as covariance (under the full
Poincaré group, i.e. including parity and time reversall,
current conservation etc. . This derivation proceeds along the

same lines as for the SN_l-model Dﬂ and CPN—l

-model [14], and
we shall not repeat it here.

Following [4] and [5], we now define the (first)

¥ )’jon“‘“\e)@ ix)  (e<t)

- 14 -
guantum nonlocal charge as the limit
. Wy
(3.13) S Nl 13 I PR Rt
E+¢

cof a cutoff charge

{3.14) . h“ ‘t‘)!’ )

D (g
where
(3.15} E) = owst. luwlf) .

Here, j is a mass parameter, and the constant is chosen in
such 2 way as to cancel the linear divergence (for § - 0) in
the first integrand on the rhs of (3.14).
Concerning conservation of this charge, we distinguish
two cases: .
(1) ﬁ is simple. {(As mentioned in the lntroductlon, thls :ié
understood to 1nclude the case where h is one«hnensuxwl

and abellan.)

L} .
apw - ¢.1, a\\z e\\‘, ‘h’ l\,(’c ‘,) 'h\t,\h)]

There is only one nonzero  summand in_the decarposition

(2.4), and (3.11) simplifies to

3.1 [beee) §, - 0] dute) lsm OHOIERTY

Following [4], one may then verify that the charge Q(l)
is indeed congerved. h o
{ii) ﬂ has nontr1v1a1 1deals. (As mentloned in Sec.2, we

are assuming the center ﬁ of ﬁ to be at most one-

—dlmensional.)

(£2¢0),
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There are at least twd héhéero summands in the
decomposition (2.4}, and the ‘last term on the rhs of (3.1L)
(1)

provides an ancmaly, so thét the charge Q will in

general no longer be conserved. This happens, for examble,
-in'the’CPNflimodel,qwhere the coefficienés'have been
calculated within thg l/N—ékpanéiOn and have been shown

to be nonzero to leading order in 1/N [5] and, more recently,

to all orders in 1/N {14}.

‘To conclude, we want to facilitate the comparison of
our result with earlier work [4], [5] by exhibiting the explicit
[FE').’-'. :.:'G(}‘f). - the basic building

blocks for the Wilson expansion (3.11) - in the case of the real

form of the fields jl* . ‘J].w and G

and complex Grassmannians.’

For the complex Grassmannians SU(N)/S(U(p) xU(q)),
where N = pt+q, g is the Lie algebra su{N)} of all traceless
antihérmitean complex (NxN)-matrices, for which we use the block

matrix notation:

F L N - (l...) l...})tv

- (W LV 5
. o o 4 LB
Then (2.1) holds with
R oy, R'=-R B -3
(4.2) | ‘l‘{(o 3)' R+ R =D }"

- 16 -

4.3) | u={(:"‘:+‘)},

and (2.4) holds with r = 2 and

(2.4) he * { n(‘\:lr ‘:h)llem}- ¥ R,
Y.

(4.5 b {\2 2 | n*“_‘:t }oesuyp,

(4.6) N {(2 g)] B:r-r;: x silq).

Furthermore, the field g is written in the form g = (X,Y¥),

where all matrices have N rows and g,X,Y have N,p,q columns,

respectively. In these terms, the constraints

%*‘ =_1N and ‘1* ] 1“
become
+
(4.7) ISR R I A SRR A AE
and
{(4.8) XX* v Y - iy,

respectively. Next, using covariant derjvatives

a - * 3 - ¥ V
RN SR T RENE N SRR B ES BT R

(4.9) 3 N +

etc., we get

% ) ¥ + o

.0 at .

{4.10} Rp * ( : “.,) with ¥ xﬁ?‘x_ ,
| AN RY = Y2,y
0 X*d v)
r

4.11) :
( _ : .kF .(Y‘-BFX LA



=17 - : - 18 -

oo FX0 XX - DX DX - - | o
(4.12) ‘F Y . K P\‘ Y) with L F v v I‘ . ¥ . y + ] Lo . . . . +
- f 0 T Fo ® DYDY - D\,‘I"'DI.Y ' {4.21) G = YR YT = T BITRY YA DYDY Y
' 5 TR S 1 G W ﬁ‘nff'
. 4 ¥+ -“' Yy which obviocusly satisfy
(4.13) : : v _
Dby (Y+ B, DX : ) ! 4.2 x Y W W )
{4.22) GI“.‘-GI‘“:QF"‘G\“*'GF"*-GI‘“J
while (2.10) and (2.14) hold with A N 0
we can rewrite the gauge invariant fields jl*’ J.P" .and-G(F,) ;
(1) (2] . .
w x “? o ) g [-Ap O GFJ ; G v purely in terms of the field X or purely in terms
(4.14) z .
Rl‘ e R»)( 0 -y WHP)L LI ) ' of the field ¥:
i + +
W T RO LU (4.23) ie xb‘,x _ h?XX
(4.15) P‘I‘ . ( ¥ ; ¢ 0) , = ‘I'h‘.v" T A
. | : ._*-_.. e s
(4-16) R‘;\ ) (eu & -Lyn! ) {4.24) ]!“' BF““X - X “PBVX *--('I‘“'
AR TIM RN AN A Gy
and . W ] ¥ . y
. s = N -
.25) G X \wﬂ:) LN -pdy)
b Ap o -p 0 ' L TR AN - q4)
(.17) AENCS MY S IS AT Y R ﬂ
) I 0 A/ (O]
| G = G - U EXY W
. 4 x (4.26) [ LA ¢ [ oy .
4 + +
(4.18) L Cr“ g*"rv °) ' R NARAEE SE RASE JUL M IVIASE W
v 0 ) .
- R MRS E MR
(4.19) 2 (n ¢ ) (4.27) - P i\ B . R
. £ . _ + + _ 4 *
P ) 'Ft:lv . i‘ik?;‘ s “PX 'ﬁv\fx - h,,x DPX “\'\T -ﬁ“ XY ""N)

‘Now introducing the antisymmetric tensors
i o . . : Thus we see that the true complex Grassmannian model, with
_ - * *
G\W = X‘frw X5 o= X ﬁPX XX - XDY “!“X X
. + +
= ‘D]AY vy - “vv hrv which can give rise to anomalies. If p=1 or g=1, we are
: : N-1

(1.20 p 2 2 and q 3 2, contains two linearly independent operators

dealing with the €P ~-model and have 114 = {0} or 4]1 = {0},



respectively, so that writing z instead of X or Y, respectively,

- +pt * 7 ¥
(4.28) Gpy = T ?P" +711‘,t-1\,.t B ‘h],z
. _ +_z + +
is the auarl of the current, but zz Fp (or D?z D,z - D,z DPZ )

for itself is a linearly independent operator which can give
rise to an anomaly. This does, however, not apply to the case

of the €p'-model, where p = g .= L and 4, =§,= {0} , so that

(4.29) Gyt e llmt-1) )
and so there can be.nd anomaly.

For the real Grassmannians SO(N)/SO(p) x SO(g), where
N = p + q, the previous analysis applies if we replace +
(hermitean adjoint) By T (transpose), discard all imaginary parts
and observe that now ﬁo = {0}. Thus we see that the true real
Grassmannian model, with p 2 2 and @ 2 2, contains one linearly
independent oﬁeréﬁor.@ﬁiéh:cah‘give_fise.to an anomaly. If
p=1orq=1, we are dealing with the S* ‘-model and have

ﬁ, = {0} or ﬁz = {0}, respectively, so that writing g instead

of X or ¥, resyectiveif;
4.30 . - AT T
(4.30) Fr’w LY '%va .'ﬁ\,ﬂ ?H

is the curl of the current;'and'so there can be no anomaly.
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