UNIVERSIDADE DE SAO PAULO

" INSTITUTO DE FISICA
.GAIXA POSTAL 20516
01000 - SAO PAULO - SP
BRASIL

IFUSE/P 331
f_%%EMQSP

publicacoes

IFUSP/P-331

1

ON THE NON-LOCAL CHARGE OF THE CPn-
MODEL AND ITS SUPERSYMMETRIC

EXTENSION TO ALB ORDERS.

by

M.Gomes, E.Abdalla and M.C.B.Abdalla

Instituto de Fisica - Universidade de S.Paulo




' ON_THE NON-LOCAL CHARGE oF THE cp 1

" MODEL AND ITS SUPERSYMMETRIC

EXTENSTON- 70 AlLL ORDERS.

M. Gomes, E. Abdalla and M. C. B. Abdalla
Instituto de Fisica, Universidade de Sao Paulo, C.P.20516,

S3ap Paulo, Brasil

ABSTRACT

We prove that the conservation of quantum non-
local charge of the CP™ ! model is spoiled by an anomaly
calculable to all orders in the 1/n expansion while for its

supersymmetric extension it is restored.
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.ON ' THE NON-LOCAL CHARGE FOR THE cp® 1

© " MODEL AND ITS SUPERSYMMETRIC.

EXTENSTION TO ALL ORDERS.

I - INTRODUCTION

Two dimensional non-linear sigma-modéls:(Chiral models,

~for short), defined on symmetric spaces, have 'in ‘recent years

aroused considerable interest among field theoretical physicists.

This interest is partly justified by the numerous analcgieés of

the chiral models with four-dimensional Yangrﬁills'théories(l),

analogies which include "gauge" content, non-trivial ‘topological
structure, instantons and so on.  They become even more striking

if we go to loop space: there is impfeséive evidencde “that Wilson

loops can be interpreted as chiral fields ‘in loop'spade(z)_
One of the most important properties of these models is

their classical integrability, which leads ‘to an infinite number

(3}

of non lecal conservation laws (there are also local conserva-

tion laws, but they will not concern us “in this paper) . -These

conservation laws were first discovered in the 0O(n} non-litiear

(4) (5)

o=model , and subsequently generalized to varicus other models

They can also be described as Noether currents associated with a

non~local field transformation leaving the action unchanged(s).

At the quantum level, the conservation of the non-local -
charges also imposes severe Testrictions on the“dynamics of the
models. This is exemplified by the O(n) o-model; ‘for which it has
been shown that they imply the absernce of pair production -and-the

N

factorization eguation . As is well known, these ‘are fundamental

blocks for the construction ¢f the exact $-matrix.-



For all these.reasons we think it to be very important
to study "in extenso" the properties of two-dimensional o-models.

In this sense, we have in.two recent papers discussed the construc-

tion of the quantum non-local charges in the cpl model(s)

supersymmetric extention(g)'

and its

The results obtained can be summarized as follows:
a} The would be guantum non-local charge of the CPn_l

model is not,conse;yed(s?. Therefore, the.exact S—-matrix program

can not be completed following this . tread.. Of course,. the absence

of ani S-matrix, for. the quanta of .the basic CPnf; field, is

intuitively expected from the confining properties of the.model(lO).

An examination of the local charges. shows a,similar_result(ll).

b} In contrast.to (a), guantum non-local conserved charges

seem . to exist if fermions are coupled.to the.CPn-l.field in a
minimal or.supersymmetric_way(g). The mechanism by which this
happens is the same as the.one which is reéponsible for mass
generation in.the_séhwinger quel(lz?:,vacuum polarization from the
coupling .to fermions, .This gives mass to . the topological gauge
field . {(thus liberating the basic CPnf; quanta) and .also provides
an additional, Adler type anqmaly(l3) which cancels the one
coming from the pure CBE’¥ model. .- 8imilary to the O(n) o-model,
the existence.of_the_quantum.conservapiqn laws justifies the
construction:of_exact S-matrices fo; these models(l4).

~.. 8@ far, the above results were obtained only in the
dominant order of the.l/n expansion whereas we would expect them
to hold in all.orders. . In this communication we will show this
to be .indeed the-case._ Our result follows-from a conjuction_of
general arguments with a detailed graphical analysis.

The content of the paper is organized as follows: in

section II we show.the absence of radiative corrections to the

anomaly of the pure CPn_1 model. In section III we prove the

conservation of the quéntum non-local charge in the supersymmetric
case to all orders. In section IV we present some conclusions.

Various technical details are delegated to two Appendices.

ITI - ABSENCE OF RADIATIVE CORRECTIONS TO THE ANOMALY OF THE PURE

cp™ 1 mopEL
We begin by listing some basic properties of the CP" ©
model (all calculations will be done in Euclidean space). This

is the theory of an n-component complex field zi,described by the

Lagrangian density:

{11-1})
B T
where -
Dz= 3 2 -AZ%2, {I1~-1a)
M u ui -
with the constraint
Zz = % B z=—12 {II-1b)

i“i  2f

The Feynman rules for the 1/n expansion are found in ref. (15).

They are:
P P, 1 -1
A, -propagator +- (5 bty [(p2+4m2)A(p)- - ] {II-2a)
jTRY pz T
% - propagator <«-+ (pz+m2)_] (II-2b)
a - propagator <- [Z-\(p)]_1 {II-2c)
with
%
- VB2 AT s

Alp) = ;5— {pz(p2+4m2)} &n pit fm® */p (I1-24)

o

/pl+¥ 4n? - /pZ



=

where « is the Lagrange multiplier field which enforces the cons=-.
— n ) . . i . . .
traint zz = 3E" The mass m is dynamically generated and is given
. —n/37 .
“by m?=uZe n/ f, where 1 is the renormalization point. Remember
that on the quantum level the topological gauge field has acquired
the status of an independent field.

The simplest non-local charge is classically given by:

ij : ik k3 .
ol = | ay1 aysetyi-y2) 30 (¥ 350 (t,y2) - 5¢ | 317 (t,y)dy (11-3)
where

ij _ _des =3 i—j

Ji z au z° + ZAuz z . (I1-3a)

is the classical (traceleés) Noether current generating isospin
rotations in the plane ij.

In the quantum case, to give a proper definition of
“{IT-3) we need to consider the singular short distance behavior of
the product of the traceless part of the two currents. To leading

order of 1/n we showed in ref.B8 that the following expansion holds:

iy _ e L1iJ po ij po —
Lo, tzre), 3,017 = ¢ (0570 + DET(e)a 3000 + EXC(e)zy2 7 ()

{I1-4a)
where
§ ef &fe Pe e e e”
CD = %_ [_ uv T L R L. (I1-4b}
uv T Ez 52 £ £
1 . m-e o o.p GE g ngv i
PP - L [(1 + = 2n ) (8%6P - 878F) 4 2 E
By .2w 2 4 v 2e2 2¢2
8 EDgU % &” sPe e° € & € €
__uv RS _ v + —E ) . (ZI~4c)

. g p
EPO = D 4P =5 - 357 Eu® _
A 2n L v o2 . (11-44)

This result can be used to verify that the guantum charge

o =1im Q7 - - o  (1I-5a)
§-0
where
13 214 {a & o Lk k3 T SR L
0 =% y, 4y, ey -y DI Tty )T T (6, )= Zg{dy I (L)
- >
ly, yzl_s__ (1I-5b)
¥-1
z, =  ¢n & us {1I-5c)
27 2

is well-defined. However, instead of being conserved it satisfies:

ag*?

- % 2.2, F_dy B : R B (11-8)
at

13 710

-

Thereafore Liischer's cbnstruction(7)'can not ‘be applied. . -
Although-derived in thé ldwest order of the 1/n expan-
sion, (II-6) is nevertheless valid to all orders. This result can
be stated more érecisely as follows:
. Let Jij(x) be the current generating.isospip rotations

in the plane ij, so that the following Ward identity holds:

af <0|T[Ju(x),Ju(y)]lj x]0 > = -2ns(x~y) <07 I (yrx|o> -

J Jk '
£ £ (y)zk(x)x [o> +
AN
£

o 3 a
- i 6(x-x1)<0§T(Jv (y)z (x)—Jv



7.
ig_ %5 KB 41
+or Slxym<0{T(s B FEd liyi-s T otz x |0
v B
myk b
(I1-7)
Here X = | z, (xz)zB (ym) and
2,m 2 m

T S | means that z, (x )(z (y }} is to be deleted.

Furthermore, the current normalization is given by:

- ’ (x—y} .
olr Pty xjos = S — <0 (s7%z -% stz (1 x10>
“ (x-y) 2+i0
+ 0{2n x-y) {(11~-8)

in accordance with (II-7).

With these assumptions, it follows that (II-4a-d} hold
in a weak sense (i.e., for time-ordered products and discarding
convergent surface terms) in all orders of the l1/n expansion.

We would like to remark that the Green~functions.of the
basic ™} field are infrared divergent. Thus in (II-8) and in
equations fontaining . non-gauge-invariant operators, we implicitly

assume -that an- infrared regulator for the propagator -of the 1-\]_l

field is used.

The ahove result is proved in two steps. First, we employ
methods completely analogous to those of ref.(7), namely, we use
arguments such as covariance (under Lorenz transformation, charge
conjugation, parity, time reversal} and current conservation, to
determine the coefficients sz and Dz:. This-is done in Appendix A.
Next, to find the remaining coefficients Ei:, we argue with more
detailed graphical methods:

p

From (II-4a) and using that sz=cvu (see Appendix A) we

have:

~iep 3 - - = " Prop
akpe . <0iT{J (p),J (0})zy @)z, (xR, (k) |0> -

g=r=k=0
- (qu)} =
? AT P
= (nizte)-nf,ﬁ(e))sk—;OIT 8 T, (0)z, ()7, (x)a, (k) [0> TFOF i}
| q=r=k=0
2 - == P
%(EE)E 0lrz,Z, F, 1(0Z,Z,8, &) [0> rop! (I1-9)
g=r=k=0

where the tildes indicate Fourier transform and Prop means proper..
Assuming that our normal products are normalized at zero external

momenta, the right hand side (r.h.s.) of (II-9) turns into

-2 (@* - ¥y - 2in(ed) (878 - §%5H) {11-10)
uv vu TN v ou
A L@ R _ aX ) .
Note that 5 Bet w 5352 = e £ and therefore
v v uv
8”9 = a(x?) e 7
HY BV

Because of current conservation, A({x?2) is a constant, which remains
to be determined:

only the graphs in fig.2 contribute to the left harnd side
{l.h.s.} of (¥II-4a). To verify this notice that the graphs contri-
buting to <O§T[Ju(€),JV(D)]zEEkA}10> have the general structure
shown in fig.l. WNow if the derivative gi; does not act directly on
the momentum factors associated with the current vertex, we obtain
a result symmetric under the exchange u+-v, Therefore this cype

of term (fig. la) will not contribute to the 1,h.s. of (II 9).



on the other hand, if the derivative acts on the momentum
factors at the current wvertex, the only graphs which contribute are
those of fig,2. For the graphs of fig.lb-c this happens becéuse
the insertion of a zero momentum external wavy line will produce a
result proporticnal to the derivative with respect to the loop mo-
mentum p. (The graph of fig.ld is trivially zero). Thus after
integration we will get zero except for the graphs of fig.2, in
which case there will be non-vanishing surface lterms. But these
terms have already been computed in ref. (8), SL that the result

(II-4a) holds in every finite order of the 1/n expansion.

IIT - CONSERVATION OF THE SUPERSYMMETRIC QUANTUM NON-LOCAL CHARGE

TO ALL ORDERS

The formal Lagrangian density that couples the cp™ 1 -

model supersymmetrically to fermions is

—— p— _ f —_— —_— _
& - D, zD .z + ¥ (3""\"“23“2)41 + E[(W)?— + (msw)z-(wumz] {ITI-1)

where
2f -

: =2z ~-2% (35 -
Duz 2 o (z uz)z (111-1la)
— n B
zz = 5% {(II1-1b}
Jz =zYy =0 (ITI~1c)

The 1/n expansion as well as the Feynman rules were
derived in ref. (10). We follow the graphical notation of ref.9
to which the reader is also refered for details. To enforce the

constraints (III-lb-¢), one introduceds the « and ¢ fields,

10.

reséectivelly. The quadrilinear interactions are reduced to bi-
linear ones by intreducing the auxiliary fields: =, ¢, xﬁ.

Our strategy will be the same as for the pure CPn_l case
but the technical details are more complicated.

The model has a classical non-local charge specified by:

ot =jayldyzs(yl—yz)aik(t,yl)aléj(t.yz) -jdy(j1+ 28 ) e,y +

+ i{dy[zizj Ty, 1)] (£,3) ' (TTI-2)
where
Jij = ziB;zj + ijvuwi' =, + i, y13 - (111-2a)
Duz = Buz - Auz : : . - {ITI-2b)

To give a correct guantum definition of (IX1i-2) we have,

as before, to examine the short-distance behaviour of the produact

of two_currents.

A priori there will be a huge number of local operators,
of dimension equal or less than two*, which appear in this Wilson
expansion. However, as shown in Appendix B, P.T., dharge conjugation,
charge congervation and general graphical arguments strongiy restrict the

number of allowed candidates and we are Teft with:

= o P op 3 +.2 P -3
LJu(x+E), Jv(X)] = Cuvjp + 2Cuv 1p +_Duvad jp Duu G .1p
0o =
2 + ITI-3)
+ E2ZF N[Ju,Jv] 5 .(

* Ag in Luscher's case we argue that assymptotic freedom, restricts the dimen-
sion of the local operators to be <2. ‘ :
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where jD -is..the pure CPB_l current and ipﬁﬁjvp¢i is the fermionic
current as specified-in (III-2a). .

-Now using the same arguments as in the pure CPn-l case
we see that only the: lowest order graphs contribute. The coeffi-
cients sz and-Dzz are thé same as those of section IT, while for
C;S and D;gp we have the result in ref.9, Ezz being zeroc in all

orders, Explicitely,

& =P §°¢ Gze 2e ¢ e” ]
] (e} = rzl_ [— _uv__ + P " + Y. M + .__]'L._"._._J (IIT-4a)
uy N Ez 22 52 Ez
o n y 1 nle U Te ¢f a“evep
p°2(e) = 5= [ (£ += sn y(896° ~ 5%P) + 2 u - 1
ny T 2 4 4 v v 2¢2 2e2
Epsd 695 e? 6pe e £ £ eagp
- v . v vou + v (1TT-4b)
2¢2 2e2 2e2 (e2)2
n 5§ € pev &ge
ciote) = 5= [ i e e ] (III-4¢)
Hyv T g2 e2 e2
1P0 _ 1 P .'p o _ 4] . O o G
Duv (e).— 3 Cuve + D'e” (¢ v € Eu ) + Pze. (Euﬁv + st )]
(II1I-44)
where
-x2D' 4 B' = 2 z; u2x2 .. S _ {III-4e)
1 3 An :
It follows that the quantum—non-iocal charge.
i3 1 ik Kk z .
Q7 = = | avidy,c(y,my,) Ty (£y1) 300 (e y,) - —- |y [ty +
- >4
ly v, l2
r2iy e, s o ey (ziEthw) (y,t) (IT1-5)

is conserved to all orders of 1/n.

- 12.
IV - CONCLUSIONS

We have proved that to all orders in the 1/n expansion,
congservation of the non-local charge in the pure CPn—l model is
spoiled by an anomaly with a calculable coefficient while for its
supersymmeﬁric extension it is restored. In this last case,
this means that the guantum S-matrix can be calculated, using
standard procedures such as factorization equations, justified by
the non-local charge conservation.

The case of the pure CPn-1 model is more involved. Here,
the existence of the anomaly is in accord with the confining(ls)
properties of the model. The next gquestion concerns the scattering
of bound states. We conjecture that the anomaly will not contribute
(with the same implicationﬁ as above) if the relevant asymptofic
states are constructed from the vacuum by application of operators
which commute with the ancmaly.

We remark also that our results are valid to all orders
of the 1/n expansion but neglect non-perturbative aspects such as
8-vacua and pseudo-particles. The existence of an anomaly in the
pure Canl model and its absence in the 0(n} ¢-model puts forward
the following question: what are the fundamental properties deter- -
mining the possibilities of anomalies in quantum non-local charges?

As will be shown elsewhere(ls), the absence of an anomaly
in the purely bosonic non-linear o-models, defined on symmeﬁric
spaces G/H, can be traced back to the fact that H is simple .

Finally, we would like to remark that CP1 is anomaly free:
the would be anomaly is a total derivative which can be absorved

into a redefinition of the charge.
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' APPENDIX A

In this Appendix we determine the coefficients C) = and
ng of equation (II-4a) using general properties such as parity,
time reversal and current conservation. This will give us non-per-
turbative information alsoc about the coefficient Ezg 6f the Wilson

expansion.

The results obtained in this way are listed below.

, i} P.T.:
Chotme) = ~Cb (o) (a-la)
Dz:(—s) = DfS (e) (A~1b)
Eﬁ:(-S) = B} (e} | {A-1c)
ii} Charge conjugation:
cﬁv(e) = “Cﬁu(—s) {a-2a)
DPO(e) = Dl (-e) = [0 (~e)ef - i RGN CO TN (A-2b}
Egg(€)7= asgﬁ(—e) . : {a-2c)

iii) Current conservation:
Using (II-48) we have

ij ij
az [ <0|T[Ju(x+e),Jv(x)] I xlo>] = e sz<0|TJp (x) % |0> +

. (A-3)
U _po 13 U poc iz3
+ 3 Dp“(z ) <0|TBGJD (x) x Jo> + 3 Euv(e)<o§Tz ZF (X)X o>

14,

As a consequence of (II-7), the term containing 6(c)

on the l.h.s. is given by
—2n6(e)<0|J;j(x) X lo» (n-4)
Thus we reguire that

a¥cP (x) = 2né(x)s° (A~5a}
Hv v

a'pP%x) = a¥EP® = ¢ {a~5b)
uv uv

Now, we use that the above coefficients have the

follwing tensorial deécﬁpositibn.

0 _ 2 o " S TR pi i e
Cuv(x) C,(x )guvx + Cyix )(xyav + xvsu Y +cgix )xuxvx {(A-6a)

po - a p_ - PR S Lot L0 1 po
Dpv(x) = D.x (xuav xvsp )+ Dox (xuli‘J xvﬁu ) E(Cuvx 9 Cuvxl)
(A~6b)
EP%(x) = a(x®)e eP° " (a-6c)
uv uv
We obtain, for x#0
c, + 2x%C' +3C, =0 _ " ' O aeTa)
2
c' +C' + %' +2C =0 {A~7h}
1 2 3 3 . E . - N
2x2D] + 2D; + % c, =10 R : ) " (a-T7c)
\ 1 - -7d
~2p} - 20§ + 5 €, =0 {a-74d)
c 1 1 :
-p. - - 22 - = -z z = (a-7e)
PimPm g T3 TSN 20 o
2x D2 + 2D2 + 2C2 1]

Af =0 e o (a=Tg)
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The above. equations are not envugh to fix the C's and Having found C,, C; is evaluated with the help of (a-7a)

D's. To get more information we proceed as follows:

_ . B n 1
From {I¥X-4a) we havg. ci{x%) = - T Rz {A-12)
i3 La
a;<0|T[Ju(y),Jv(x)] Tz x'y x |0> = a;cﬁv(x—y)<0|TJz3(x)z’“(x',)x {0 + and from (A-7b) we find
p v ij 3 v.pd ij 2
+ Cuv(y—x)ax<0|TJpj(x)z (x') X |0> + axDuu(y-x)<0|TaonJz (x")x |0> Cy(x2) = —2 (A-13)
: {x2)2
Vopo - 2
+ axEuv(y-x}<0[T{ZiZjFp°}(X)z {x") X 0> + 0(n{x-y)?) {a-8) _ The value of X above is fixed by imposing (A-5a), which
gives
In computing the 1l.h.s. of (A-8) we will retain only
terms involving delta functions of (y=-x} or (x-x"). . C3{x?) = n lq__ . (A-14)
e . : T P
Using (A-5a~b) we.get (at x9= y0): )
Using the eguations (A-7c.d,f) we find D; and D,
-ins (x-x") <0 | P[32¥ (y) 8*32F (x 1) - st k1) KT (m) ] [ 0> =
D, = in p2x2 (A-15)
- e .V g ij 2.1 v, 00 ij I3 8ux?
= {Cl 2 = |'z'.]p x)z”(xl) X fo> + 2 nw_ac«:u|'r.1ﬂ (x)z" (x}X [O>
0y 0
=x -
[N b, = 2 Lnp?x?- = LZ‘ (A-16)
x=e 8r x2 an x
= gy (x%)eq0" <01TJ$3(x)zl(x1) X |o> _ (n-9)
So that
F0|T[J}k{y)2k(x)623 - ij(y)zl(x)]x los = )
= Cp(x?1 e 870 <ofresit2t - L6732 (xyx o> (3-10)

n

From (A-~10) and (II-8) we obtain, finally

Cr(x%) = 2 % (a-11)
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APPENDIX B

In this Appendix we show that the short distance ex-
pansion for the product of two currents of the cp™ supersymmetric
model is given by (ITIXI-3). To prove this we note that the local
operators contributing to the commutator D}Jx+8),Jv(X)]ij hawve
at most dimension two. “Therefore the allowed candidates are those
listed in table I which shows also the behavior of the coefficients
under P.T. and charge conjugation.

Using tab;e I we analyse whether each of the coefficients
contribute to the Wilson expansion or not. Since the first five

will survive we begin the discussion with the coefficient number 6.
"1 - Coefficient number 6 (EL“(e)).

By P.T. and charge conjugation {(C.C.) we conclude that

E;v(s} = —E;u(e) (B-1)
so that

] = 2 -
Euv(s) = Euvf(g 1 (B-2)

Because of current conservation f(e?) is a constant f.
The normalization condition gives (our normal products are always

normalized at zero external momenta).

£, = <o[Tzi(,p)‘z”j(q)w(r)_[Ju(e),.rv(,o;] jo> * (B-3)
p=q=rﬁ0

18,

The graphs cohtributing to the r.h.s. of (B-3) have: the
structure shown in fig. 3. Thus we have
~d%k ike

fig 3 = f—u——— e (fk+2p)‘|.l A(k,p,r)(k+p+r+q)‘J {E-4)

. > .
{27) p=q=1=0

where the A{k,p,r} factor can be explicited using the Feynman rules.
The equation (B-4) is symmetric under the interchange uy <-» v, and
we conclugde, therefore, that E;v(e)=0. The same arguments can be

applied to show that the coefficients number 8,12,14,20,44,47,48,

52,55,56,59,62 also vanish.
2 - Coefficient number 7 (F (o))

Taking the adjoint of the Wilson expansion one readily

sees that Fuv(s) must .be purely imagiﬁary. On the other hand

&2k ike
€ g (K}, (B-5)
2m) 2 uv

Fuyle} = <0]T2;25¢ [Ju(e),Jv(O)] o> = S
where by inspection guv(k) is real, (Although the fermion propa-
gators have both imaginary and real parts, only products of an

even number of imaginary parts contribute). It follows that:

F (=) = F¥ (&) = - (e} e e

uv
By P.T.

F (e} =F (=€), _ _ (B=-7)
and we conclude that Fuv(e) = 0. An jidentical -argument can be used

for the coefficients numbers 10,11.
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3 - Coefficients number 9,18 (Gi“(E), KéiU(E)).

First of all, due o P.F., c.c. and

Ry p
g . & e g + e g € € €
+ gy et 4 gy B . (B-8)
e2 e (e2)2 )

-0 = g
GuV(S) = g3
where g,+ 9,r 9, are constants.

Using that {up to legarithmically divergent terms)

k
v -
M <0} T ﬁL(y),Jv(X)]ij vo(x") X fo> =

é;gﬁv(y—x)<0IT(ziEjEYp¢)(x)Wt(x') x lo> +

+

G5y (y=x) 3<0 |12, Z T ¥) (1) vg(x1X {05 +

+

VPO = = k
gk (y=x) <0 T3 (2,2, 9y ¥) (¥} ¥ (x") X {0> +
+ other terms (B-9)

we see that the l.h.s. provides térms linear in the Jy, ¥ and X
fields (X dencotes a products of the z's, ¥'s and their adjoints),

but no term proportional to ziijﬁva. These linear contributions
cancel those coming from C;S on the r.h.s., but no contributions
arise which are able to cancel sz(s). It follows that g,=0,
inplying by current conservation that 9z=0' To see that g; is

also zero, we reconsider equation (A-3), with the r.h.é. supplemented

by the term:

aef, (o) <0lTizgzivon (x) x fo> : 310

20.
and the analogue to {(A-5a) is
3¥6® (&) = 0 (B-11)
v

Note that no &8(e} term appears, and as a consequence,
gy=0. It is straightforward to see that this implies KL55(5)=0.
4 - Coefficients number 13,19 (Iuv(e), Luu(e)}'

Taking the symmetric and antisymmetric parts of the
coefficients (which have definite transformation properties under
charge conjugation), we see that both parts are zero, using the
arguments of the cases number 1 and 2.

P
5 - Coefficient number 15 (Jyv(EI)'

By P.T., c.c. and P. we get for this coefficient

J (e} = jl(ez)euvep + jz(az)(ezeu - szeu) (B-12)

However current conservation implies:

P _ - p _ P [+
Juv(s) = 3j (euve Eufy toEyEy ) (B-13)
which tends to zero as e¢ + 0. Analogously for the coefficients -

number 16, 22, 25, 26, 43, 46, 51, 60.
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22.
§ - Coefficient number 17 (8" (e}). . _ : - 4%k k (k4ptqtr+ P B _ 3 3 oike | L puEy
;! uv . . : . (_2'"')2 u( phgtr S)\; Yus(-ar a_s"") fO‘.B (P_rklslr)e : - (E'('"‘?)
o o T
P.T. and c.c. enforce:
azx p,_4 3 ike_ © ~ike - S
p . 2 o & T (2 2k“kv G -3 M ek, rs) (e - e ) (B-15)
Kuv(e] = kie )(Eugv - eugp) (B-14) m} Lo Sq

and this is consistent with current conservation only if R® =g, . : Co i .
v which is antisymmetric under the intercharge ¢ <»e- . But this is

The same argument holds for coefficients number 21, 29, 36, 40,
forbidden by P.T. The same holds for the coefficient number 37.

10 - Coefficient number 33 (sﬁgte)).
7 - Coefficients number 23, 24 (sz(s),'ﬂgs(s)).

By P.T., c.c. and current conservation

First we take the symmetric and antisymmetric parts

which have definite transformation properties under charge conju- sP%e) = se eP% ' {B=16)
) HV Hv

gation. Combining the arguments used in the last two cases we
get that these parts are zero. For the pair (27,28) one can use " on the other hand

the same argument.

2
sz(e) = try” (53— - 31*) 4k
H r s (2%)2

8 - Coefficients number 30, 31 (Q;S(e), Rﬁv(E))‘ 4 P

€ By

ik
k!-l (k+r+s+p+q) v fip,%,r,s) el = (E:"-"'-S]

) In view of the eguation {B-16), only the antisymmetric part survives
For this pair we use a combination of the arguments of

o and the derivatives act only on the k (k+r+s+p+q)v factor. After
the second (Fuv(e)l and the sixth case (Ku“(e)). “

maltiplying by a““apc . we get
9 - Coefficient number 32 {R'P7{(e)). , ) )
" s=tr | LK (x gp ek |y o oTikey wv L ey (B-17)
(Zw)z u’v vip P L

The graphical contribution is shown in fig. 4. We have
which is antisymmetric under e<+e- , violating P.T.

2 3

(..-....__

3 2
r, s

109e) = vog 1OITZ, Bz 1Ty (Dwy (@13, (1,3,0]] >

o |pegrr=s=0 11 - Coefficients number 34, 35 (S;Sa(e), Ti:(e)).

For the symmetric part of this pair we use the same ar-
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gument as in the case of Rﬁzoﬁs) {numper 32). For the aﬁtisymmetric Mp,q) = bip,q} + c (p,g)ys + an(P!q)Yﬂr i (B~21)
part the argument is the same as in the case of Szg(e) (number 33).

7 giving us 3 terms:
12 - Coefficients number 38, 39 (U;f,_( d, va ()} .

ike

n, ike _ n. —ike
1) tr[YuY ¥,8 Y,Y Yﬁe Jf(k)

Taking the antisymmetric part of this pair we use the

sixth argument. For the symmetric part we see that: This is zero because trquan = 0.
o cer -2 a0y o (epers ske| _(F ike _ -ike
[%uv} (e) tx (aq ap )j?2w)2(k p)u(k ptr s+q)v fe (e«+e) 2} trYs[Tque Y,Y,8 ] fik)
e e pegr=s=0

This is proportional to Eav ’ which is forbidden by P,

a2k 3 ) ike " dzk ike o, —ike ike -ike
=t kk (= === £ ~e 0 +] T 2(’k e gk e T E 3) trlv.v.emf - vy v e £(k)
J (2m2 ¥V Pq  Pp PETE VU AN vTu ]

e e (B-18)
This has the tensor structure.

The first integral is convergent, whereas the second one

Furnishes: e = Z e ~-22
rnishes Xu“(e) x{e?) 9.4E (B~22)

Uiiv} (e) = u(€2)(gzsv + gssu ) {B-19) and again current conservation requires sz(e) = 0.

This argument can be used for the coefficient number

At this point current conservation is enough to imply U'P  (e)=0. 54, 57, 5B.
; uv}
13 - Coefficient number 41 (sz(E)). i4 - Coefficient number 42 (xéz(e)).
We have ' By P.T., P. and charge conjugation.
p _ 3 _ 3 d2k ike ey : P 2 e D
X e tr(—ap Y ) Y v, Tipealy, e e X\, (£} = xle?) (e e 4e e ) (B-23)
p p p:q:z[)
(B-20) and current conservation implies x;i (£)=0.

where in general.
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15 = Coefficient number 45 (Wuv(s)).
P.T. and c.c. imply
wuv(s) = u, (%) g, * mztez)eusv . (B-24)
Oon the other hand,
WHQ‘Ei = l'?Zf)z k k gaelts - (MY ) (B-25}

which is antisymmetric under e<+e— , viclating P. The same argument

holds for coefficients number 50, 64, 65, 66, 68.
16 - Coefficient number 49 (aﬁv(e)).

We have

Py _ | a%k k k £iK) (eike _ gike

Bach of the terms above is logarithmically divergent
" go that their dif erence is finite. This argument can also be applied
to coefficient number 53.

17 - Coefficient number 61 (hz“(s)).

We have

ke —ike] (B-27)

2
p _ d k i
hu“(e) = tr ] Y [Yuf(k)yve - va(k)Yu e

and using the cyclicity of the trace:

26.

P _ td% ik -ik
W, el = S@”Z by, & - vy, e7°1 £ (B~28)
But vy v =9, *e s ' - (B=29)

pv uv

where the last term does not contribute due to ., and for thé
first term we use the same'argument'as for coefficient number 49

(azu{e)). The same holds for coefficient number 63.

18 - Coefficient number 67 (xh5(e)}.

Here we have a prbdubt'of two traces but the procedure

is similar to the preceding cases.
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TABLE- 1
OPERATOR COEFFICIENT P.T. CHARGE CO&JUGATION
1 3, ch, e -cb (=) -ch (-
2 i c;g(e) —c;g(—e) —c;ﬂ(—e)
3 33, D;f,(e) +D:S(-€) —D:ﬁ(—e)—csu(—e)eﬁ '
4 N n;jp(s) +D;SD(—E) -n;ﬁ”(—e)—c;z(-e)eﬂ
5 | 25244, E0(e) +Ezz(—£) —Ej 0 (=€)
[ zi_3" E;v(e} +E;“(—e) —E'u(-E)
7 ziEj¢ Fole) +F | (-e) +F“u(—€)
8 zlgjm}Sw F;v(e) +F;v(-e) —FGH(—E)
9 [egZ ¥ v Giv(e) ‘Gﬁu(‘e" -G (=€)
10 |zlij3@ G, () G} (=€) 6] (-¢)
11 $j¢1 Hu“(e) +ﬂu\’(-e) +}1"11 (-%)
12 $j15¢i ' (€) +H] | (=<) -8}, (~¢)
13 zich I““(e) +Iuv(—e) Ivu(‘e)=Luv(E)
S AR I, (e) +I0 | (—e) I3, {e1=-1! (e}
15 B (229759 Jivtal ~3), (=€) -3% (=)
16 b (z;70) J;:(E) =310 (=2} -330 (=)
17 b, (2,7.9) Kﬁv(e) —sz(-el. Kﬁp(-e)
18 ap(ziijﬁvdw) K;So(e) +x;§“(-e) -K;z“(-e)
19 EﬁEwl L,,{€) (=) L, (-e)=T (&)
20 EJCYSwi L, +L (=€) L, (-e)}=1 ()

OPERATOR COEFFICIENT P.T. CHARGE CONJUGATION
21 ] (zlij$¢) sz{e) —sz(—s) +Mf”;(—.8)
22 | zjzam M (e) M8 (=) ““éi(fe?
23 ziapEJw Nﬁv(a) —sz{—e) Nzu(-e)=-N;2(e)
24 | 2z Zsm EMEEY N0 (=e) N3P (=e)=-NE(e)
25 ziEja;(Ivsw) o, (e) +08 | (-e) —Ozu(—s?
26 {2,Z0v,3 0 015 te) -0!% (~¢) +0!P (=<}
27 12,2, 2, 0v ¥ PP te) -e? (<) pf (e)=-P!" (s)
29 | 2,253 ¢ of, (e @}, (=) +0f | (-e)
30 | 233,74 0!f (e) Q10 -e) Q;:(-e)=Rgv(F)
31 |2 2,754 R, (€) R, (=€) R, (~e)=01f (&)
3z ziEjEyp‘?ow Rﬁf}”(e} +R;ic(~e) “+r1P7 (o)
33 27,0, Fron | S0 | etn ~88% (-c)
34 [0z, 7 wv ¥ sio’te) +s;§°(—e) S;zu(-e)=-?23(é)
35 zlapzjiyoq, Tzz(e) +TSS(—€) Ti: (-e}= -s;f,“:(e)
36 [ 2472, (F9) ~Taf te) -5 (—e) +TL0 ()
37 ziEjE?gw o, (e —Uiv(—s) “Uzu(;e)
38 [ 250 Z00 vl (e) ~ut? (e} U;zFfS)fVi§(e)
39 |a 2,200 v, e v, (me) Vﬁui'€f=?;£(ef
CRENTRRY VIO te) =V (=¢) %v;i(f;)




(b) BT ._

k
(o)
FIG. A
(a) . (b) (c)
FIG. 2




31.

32.

COEFFICIENT P.T. CHARGE CONJUGATION
4 | v ey X),{e) X0 (=e) -X}, (=)
a2 la (ﬁjy5¢i) x;g(e) -X15 (=€) X5 (=€)
83 v e, 25, (e) +25,(-¢) +2  (-¢)
4 | zyzm0 zl,(e) +23 (=e) -z}, (-e)
45 zlzsn—Y5¢ va(E) +Wuv(-s) +W““(-€)
RN W (e) W1 g (-e) WY ()
47 ziEjﬂ_¢ Y (e +Y, , (-e) Y, (=€)
L EFER A Y, () +¥! . (=e) -Yy (-e)
49 zlgjfyp'b aﬁv(e) -—azv(-—e) -a,, (-}
50 1z,2, 4% al, (e} +ar, (-) +al (-€)
51 |22 0y viv v b (2 % (-e) Y (¢
52 z;;j$k5¢$$ b, (e) 0! (~¢) by (=¢)
53 A e o) -c? (=) —ef, (=)
54 w¢;+5wi' SNE ro! (=e) rel (=e)
55 “Ej?i¢ dpv(E) -+duu(-e) 'dvu(-e)
56 @$jvg¢i dl, e +a) (e -ay {=e)
57 ¢Ej¢i £, +E (=€) +E, (-e)
58 $75w$jv5¢1 £, +E, (=ed +£), (=)
59 .Evswﬁjw; g, (€) +g,,(-e) g, (=)
60 Eypw$jv5¢l gs (e -g), (=% +gl, (—e)

OPERATOR COEFFICIENT P.T. CHARGE CONJUGATION
61 | Ty i v, b, (e) -h (-¢€) -h, (=€}
62 | oyY by bt (e) +hi (=¢) bl (-e)
63 | w¥ydy i, (e) +, (=e) +i,, (e
64 zi_jnw iy e i), (el +i, (=€)
65 | 232 04 3y (e i, (-e) +3,, ()
66 | zgZ v vy v 31, (e) +3 5, (-e) +3yy (me}
67 | Ty whr ¥ kS (&) +k5 5 (~e) %7 (=)
68 | 2,299y k16% () +t0° (=) ey o (=€)




