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ﬁNuclear reactions, one dimensional Faddeev-Lovelace equaticns,

scattering theory, Peierls-Brayshaw mechanism].

The connection between bound states and/or resonances

of a three-particle system and bound states and/or resonances of a

two-particle subsystem is investigated for. three identical bosons

in one-dimension. It is found that, in.general, if the two-particle
subsystem has a bound state of energy vy - then the three-particle

system will have .a bound -state-at- the energy :4u0_..




I. INTRODUCTION

In a previous work D.D. Brayshaw and R.F. Peierls(l)

considered the connection between bound states and/or rescnances of
a three-particle system and the hound states and/or rescnances of a
two-particle system.

This was done in the three-particle case by considering
the one-dimensional Faddeev egquation for the scattering of one of
the paiﬁicles b§ a.Béund.étate:of'the'tﬁé remaining pafticles. The

(2 separable approximation was used. Their result was:

Lovelace
"if the scattering of two identical spinless particles moving in one
dimensicn can be described by a single separable term corresponding
to a resonance of energy Vo * with a slowly varying form factor,
then the corresponding three-particle scatfering amplitude will
develop a denominator pole at an energy 4vo on the second physical
sheet. 'For a’narrow two-body resonance this suggests the occurence
of a three-body réschnance’ near 4v0'. The corresponding statement
in the case of a two-particle bond state’ is not true". .
We shall réfer’to’ this result as the Peierls—Brayshaﬁ"
mechanism’ and’ the pole at'—4vo as: the Peierls singularity.

This result was considered by Simonov mﬁlBamﬂyan(B)

(4)

and $Simonov using a different approach, They considered the

three-body scattering by defining a "physical" on-shell particle-
resonance amplitude and described its analytical properties. By
solving exactly the resulting N/D equations they found a result at
variance with the above mentioned Peierls-Brayshaw mechanism, namely,
they found no Peierl’'s singularity.

The "existence" of the Peierls singularity has not

(5,6}

been settled however. A number of papers by Brayshaw and

{7}

Brayshaw and cocllaborators , related experimental findings with

the Peierls~Brayshaw mechanism or a variant of it, called Brayshaw

(5) (8)

Mechanism Also some authors refer to the Simonov work as

2.

"numerical invegtigation" which apparently is unable to disprove the
validity of the Peieris-Brayshaw mechanism.
Part of the difficulty in settling the issue comes

from the fact that the original Brayshaw-Peierls paper(l) uses a

method invented by Brayshaw(g)

, to handle the Faddeev-Lovelace
equations'which is little known. Also their paper in its crucial
part is difficult to follow.

The purpose af this paper is to present the results
of a reinvestigation of the Peierls-Brayshaw ﬁechanism.

We have used Brayshaw's method of handling integral
eguations for the same one-dimensional problem. We found an error
in one analytical continuation so that our results differ from theirs.
Our results show that in general, if a system of three-identical
spinless particles moving in one dimension possesses a bound-state
of energy Vo in the two-particle subsystem, then there is a bound-
state in the three-particle system with energy 4v° . This result

is in agreement with a number of investigations(lo'llrlz)

carried
out for particular one—-dimensional systems using different methods.
On the other hand if there is a rescnance in.the two—pérticle sub-
system we show that it is not possible to guarantee that a reseonance
is present in the three-particle system. This is in agreement with

(3} 4y

Simonov and Badalyan and Simonov

In the next section we outline the Brayshaw(g)

method
of handling integral equations.  We have presented it in a way that
facilitates the reproduction of all the steps inveolved. In section
ITI we show that a bound-state in the two body systém with energy

Vg strongly suggests a three-particle bound state at 4vo . in
section IV we show that a two-particle resbnance dpes not necessarily
produce a resconance in the three-particle subsystem and certainly

not at the value 4v0 . Finally we show in section VvV, for completness,

that the Brayshaw method can be used to reduce the resclution of a



i

integral equation to a much more rapidily converging integral

equation.

II. THE BRAYSHAW METHOD

We consider a system of three-identical spinless
particles of unit mass moving in one dimension. The Faddeov equation
for the amplitude +1(x,x';W) of scattering of a particle by a bound

state (binding energy vo) of the remaihing two-particles is(l)

w 2(X,x";W)T(x",x" ;W)

=
T{x,x";W) = Z(x,x";W) - J ax

= DO(W - % x"z) (1)
where
26x,xX" ;W) = ‘3 g(-léZx—x')gw(x+1/2x.)
o'+ xx! - W - e
and Do(v) vanishes ;inearly at v =v_ that is, Do(v) - (“'vQ)Dé(VD)

near v, . W is the total energy of the thgee-particle system.
The on-the-energy shell condition for this amplitude is obtained by
putting x = x' = /E where E =3 (W-v ) '

In obtaining eguation (1) the two-particle off-the-
energy. shell t-matrix
g (- : %' -x)g¥(x + 3 %"

<-%xﬂﬂtwﬂx+%f>=f

n

D, (v}

+<~%— x- %' |E(vy 1x +%X'> (2)

[ S 1.
gl FE-X Tgk(x +3 X )

was approximated by 51T . This approximation is
5 .

of course very poor but is acceptable if one.wéﬂts to investigate
the connection betweeﬁ bound stétes and/or fesonances in the threé-
particle system with bound states and/or resonances in the two—
particle subsystem. This will be demonstrated iﬁ section I¥I by
showing that the neglected terms of equation (2) do not alter our
results. We also assume for the purpose of the subsequent discussions
that g({- %-x—x') is a constant. Again it will be shown in section
IIT that this assumption can be removed without altering our results

and is done only for expediency. Defining

x,xt W = [,z W 1 (-x,x" ;W) ]

and Zi(x,x';W) = % [th,x';w)tz(-x,x';w)]
we find
oo
" + * L I
r#(x,x';w) - Zi(x,x';W) _ { Z(x,x ,W)T3(x éx W) ax” (3)
fullpy DO (W -'4' xz" )

We assume to begin with, that vo is real and
negative (that is, a bound state) and that the real and imaginary

parts of (W) 172

are >0 . Equation (3) defines =<*{x,x';W) for

all real values of =x. We now extend it for complex values of x

and find that this can be done until x reaches the lines ¢+(x')=

r/2
= - % x'tlw -% X'ZI / at which point the kernel blows up. This

is =0 because
1 . . 1

X 4 x'7 & xx' =W (x - ¢, (x")) {x - ¢_(x"})




However, by allowing x to approach each of the lipes ¢+
and ¢— frém above and below, one oﬁtains the difference of these
limits for each line and thus may account for the singularities and
continue, rt(x,x';w).

The result is

w

, ¥ " .
Fi(z,xf;w) = Zi(z.x':w) - [ dx" Blx,x ,W)T3(x éx'rw) -
i - = arn
- D oW -Fx )
. +
: 6,(z) T (g (=) ,x' ;W)
- {27i) (Zgg*) . 3 2 17? 3 2
: |_2(W -3z D_{W-7 ¢ (z})
8_(z) <y, (2) ,x" W]
{2z - SX
* ey “
2(w—% 22) /2 p W=7 & (2)
where
B+(z) = 1 above ¢+(x)
= 0 otherwiée
and
etz = 1 " below ¢_(x)
=0 " otherwise

Now that Tt(z,x';W) has been extended to the whole

complex 2z plane we can write a new representation for it. Observe

that Tt(z,x';W) - Z(z,x';W)  has two branch point at 1(4/3.W)1/2

and two .poles at ' ¢+(iEl/2) .

If we cut the plane from =#(4/3 WﬂJz "to t iw as

shown in figure 1 we can write using Cauchy theorem

* ot 1,
Ti{t,X':W) = Zi(t,x';W) - [ é%% 293 Z(Ea(Z)'X gng
Fl(w) 2{W -5 27) DO(W -1 $-(2))

(271i) (299%) T (6B 2) 2 5w)

[»c4¢+(El/2)] z[w -3 ¢f_(El/2)]l/2 D, [w -2 ¢»i(E1/2)]E1/2 D (v, )

[ dz (2gg%) T (4, (2) X" ;W)
(t-z) 3 2172 32 )
I, ) 2w -3 247 b W -3 9i(2))

(211) (2g9%) ¥ (9, (-E2),x " w)

{5}
(£ - o_®Y%) 2w -3 02@™%)) 52 b1 v

where the contours of integration Tl(W) and PZ(W) are as show in
figure 1., For example Pl , runs from + i« to (4/3 ‘W)l/2 on
the right hand side of the upper cut and from (4/3 WFJZ back to
+ i= on the left hand side of the upper cut.

Using ¢+(—z) = -¢_{z) and Ti(—X,X';W) = tti(x,x';w)
= +

equation (5) can be rewritten as

+ +
T {t,x";W) = 27 {t,x";W) +

1 1 (2g99*) T (¢_(2) ,x';W) i
+ dz [ + ]
t-z t+z i 3 2172 _3 .2
H(W) W -7 2 ) DO(W 7 - (2}
(2gg*) (218) tF @2 { 1 N 1 } )
12 N 7%
2{w -3 ¢i(El/2)} P2 pr) B ETIE e BT v



7.

The result (6) is valid if both the real and imaginary part of wt/?
is positive and Vo is real_and negative., If we try to extend this
result to an arbitrary value of W we find that when we cross the
curve (Im means imaginary part)

Im(3/2 E¥Z - vi/z) =0 ' (7)

where E = % (W;Vo), the pole of DO(W —% ¢3(z)) reaches the branch
point (4/3 W)lfz . Thus the integral in equation (6) develops an end
point singularity. The discontimmity acrdss the curve {7} can be
calculated as sketched in the book by Eden et al.(13). The dis-

continuity is

(2gg*) (2mi) ©* (¢_(El/ %) % 1) N . ]
t (8)
ER v : 72 172
20 -3 2EN EP Dy 0,6 Fc o, @Y e

i

To continue Tt(x,x‘;W) one must be very careful about the choice
of the correct sign. We find, using the book by Goursat{l4) that

the sign should be such that the correct analytic continuation is

Ti(t,x';W) = Z (£,x':W) +
(2gg*%) T (¢_(z) ,x' ;W)
+ I az {_l_ " _l_] -
t-z 7 t+z 3 212
Ty (W 20 -3 2% b w-242 (2))

(2g9%) (2r1) T (p_(E2) %' ;) (
(E1/2)) /2 s

1 . 1 ]

= (48(E,v )} b
° o, m) -t o, &Y% +¢

2MW-5 Dé. (vo)

(9}

where B(E,vo) is 0 for W inside the curve defined by eguation

{7) and 1 for W outside it. Note that this continuation differs

from the one given by Peierls-Brayshaw in that they chose the oppo-

gite sign.

III. CONNECTICN BETWEEN BOUND STATES

Equation (9) is a new representatlon for equatlon
{3) . The advantage of this new representation is that we can infer
some results for the half—on-shell amplitude withouf having to

solve the integral equation.

In fact if we set t = E1/2 in equation (9} we get

. . ) - " .. - - . : i .
T E2 = 2t &2 2w + J dz.{ l/% + El/é _}__ ‘?99*) Tlﬁg-{z)rx W)
E' -z +z 3.2 N oy o3 .2
nw 20-3 29 D 0 ~3 ¢2(2))
(Zgg*) 2 gDl 1

¢ 1/2

ST
N oy Y, @V 82 o @) 53)

{10)

This can now be written, algebralcally for T{El/zﬁa;WL

The result is

12,
r

THEC,x';W) = N+ D : B (1L
where
0@ xt (209 ) ¢ 1 1 ]
D = 4
w- j ¢2 (El/z)) El/2 D'{v ) l¢ (El/z) -El/z ¢ (EI/Z) +EL/%
o o -7+ +
(12)
Ti(¢(E1/2)pU,W) can be obtained by setting t =¢ (El/z)'in equation (9).
AN -



9.

Note that when W = 4\:; D is infinite independently of

the value of x' . In this case if t+(¢_(El/2) ,X";W) does mot vanish

at 4vo this corresponds to a bound state of the three-particle
system.

Note that this resulf is independent of the remaining
terms of the expansion (2} and also of possible contributions of
singularitiéédfrom g(-l1/2x —k‘)_ éﬁd g*{x +1/2 x;). This is so
because further terms and éingularities of the form factors g will
just add further terms to N. They can therefore alter this conclu-
sion only if they make Tf(¢_(El/2),x';W) vanishes at -4“0 .

Tt is of -cowrse difficult to ascertain if T (¢ (EY?) x';W) vanishes
or not for W = 4yo . It is however possible to test this by doing
a calculation with a specific model.  Fortunately at least thxee(le’ll'lz)
such calcuiations have already been made and although the two-particle
potentials were different ecach presented a two-particle bound state
and exhibited a pole at W = éyo:,.:rhis resglt cqmbined-with those in
equation (11} and (12}, suégests that the polé at W = 4v0 is a

general feature.

IV. CONNECTION BETWEEN RESONANCES

Up to this point we have assumed Vg real and
negative associating it with a two—particle bound state. We would
like to investigate the case when the two—particle amplitude has a
pole for a complex Vo whose real part is >0 and imaginary part
<0, i.e., a resonance., We might think that this result could be
obtained from equation (10} by gnalyticglly continuing vo_ from the
negative real value down to the second sheet. This however would
violate two-bady unitarity and consequentely three-body wnitarity

as well, In fact; as shown very carefully in the classical paper by

- +{L+o (E,\JO) }

.10,

Lovelacecz), if the two-bady subsystem has a rescnance, the off-shell

two body t-matrix should be approximated by

2gg*

tix,x";W) = (13)
vy - v - 2r01 W2 g% |2

If Do(v) ={v-v) Dé(vOT is replaced by a mere realistic
expression such as the one given by equation (13} the procedure
described in section II has %o be completely redone. A complicated expres-
sion results which does not present a pole in W = 4uo due to the
1/2lg(vl/2u2

extra factor 2ﬂ2i v in eguation (13) above. We thus

conclude in agreement with Simonov and Badalyan(3) (4

and Simonov
that a resonance in a two-particle subsystem does not produce a

resonance in the three-particle system at this energy.

V. A NEW INTEGRAL EQUATION

In this section we show how to obtain from the
representation {9) a new integral equation.

We first note that if t 1is replaced by ¢_(x) ﬁé
have a new integral equation for Ti(¢_(x),x';w) . '

If this equation is iterated an infinite number of
times then it is easy to see that the resulting series can bé

resummed to give

D, (¢_(2) %', W)

T (b, x";W = Zt(t,x';w) + fdz B, (t,2} (2997 +

3 2
r, W 2{W - % 22)1/2 D (W.- ¢ {2))

(2g9%) (2mi) T EY2,x W E, (4,0 +(E1/2). W)

3 ,2.,1/2,)82 12
z[w F ¢Jlr..(E )]_ BT Dy (v




N

where E and D cbey the following new integral eguations

D, (0_(2) ,x";W) = 2" (¢_(2),x"sW) +

: I B9 (2),2") (2g9g*} D, (¢ (2'),x" ;W)
+ dz' — = (14)
3,2, 172 3.2,
nw  ®-7E97 pgm-g el @)

and
g l/2 : 1/2
E (2.0, Y ) m =6, (2,0, %) +
L .
v] @ oy U e, D
Fl(W) (W—EZ 3 DO(W‘E $-(z")
(15)
and
B xy) = g - (16)

These eguations should be numerically easier to solve
than the original equation (3) as can be seen from inspection of

the kernel. We have shown here that the Brayshaw(g)

method results
in appreciable simplification of the sclution of an integral equation.
We hope that the detailed presentation made in this paper will
stimulate an interest in this method so that it will receive the

proper attention we feel it deserves.
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