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ABSTRACT

The muitistep compound contribution to preegui -

librium reactions are discussed within the nested-doorway model.

Emphasis is placed on the generalized cross-section aunto—cor-
relation function. Several of the more widely used concepts
in the conventional, one-class, statistical analysis are dis-
cusged and generalized to the multiclass case. A summary of
the formal results of the nested-doorway model, obtained
within Feshbach's projection operator theory is given.
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I. Intreoduction

In the past few years several attempts have been
made to develop a workable theory of multistep compound
processes. These processes constitute an important, and
eventually the dominant contribution, to the preeguilibrium
emission cross section at lower energies. The majof aim of
all these approaches is to derive an expressicn for the
average fluctuation cross section. With this expression one
may then calculate both the continuum as well as the discrete
portions of the spectrum of the emitted particle. &t low
incident energies the discrete spectrum is usually dominated
by compound as well as multistep compound processes.

Recentlyl)

it was recogpized that in analysing

the discrete transitions dominated by compound processes, the
cross—section auto-correlation function C{e} is of a more
fundamental importance than the fluctuation cross-section,

Ufl, in so far as its being related directly to the average
life times that characterize the compound system. In the
nested doorway model proposed inz) these life times are related
to the average correlation widths of the different classes of
overlapping doorway resonances populated in the system. It is
therefore of importance to actually calculate both cfl and

C(e}.

In the model of Ref. (2) these are simply related

o_ﬂzza-n%ﬁ 5 CCE)-—IZ !+LE/

n refers to a given class of doorways with a corresponding

z

, where

correlation width ?;. Given the ?;, s one would therefore

- £1
require a knowledge of the cil, s so that both ¢

. : fi .
are calculated. In Ref. (3} a derivation of o was given

and C(e)

using Feshbach's projection operator theory.

The aim of the present paper is to present a more



thorough discussion of the results of Ref. (3) in so far as the
application to the analysis of experimental data is concerned.

In section II the S-matrix auto-correlaticn function CS(E), is
calculated within the nested doorway model. The condition of the
validity of the sum-over poles approximaticn to Cs(e) is then
discussed. Several of the methcds and concepts used in the analysis
of the conventicnal one-class Ericson fluctuations, are discussed
in connection with the nested doorway model. 1In section III a
summary of the formal results of Ref. (3) is presented, and finally,
in section IV, several comments are made with regards to the
comparison between the ND model and other medels of multistep
compound processes.

I, gtatistical Analysis of Multistep Compound Processes

II.1. Transitions to discrete states

For completeness as well as for the discussion to
follow, we provide in this section the full details of Ref. (3).
We calculate below the S-matrix auto-correlation function,

CS(E), for a given partial wave. The fluctuation cross section
ce'

is then easily obtained as CZi' = Cic.(O). The function
S . .
Ccc.(s) is defined as
#*
s 4 3!
C> <¢e) = S (E) S (e+&) (2.1)
cc/ ce’ cc’
1
In Egq. (2.1), SZi.(E) is the fluctuating component of the full

S-matrix and I denctes the energy interval inside which the

average is taken.

The fundamental assumption of the nested-doorway
model is that the intermediate (A; + &;) system through which
the reaction proceeds exhibits overlapping doorway levels, and
that these levels clearly separate themselves into distinet
"classes", each identified by the correlation width Pn of the

levels of class n with the widths arranged in the "well-nested"

sequence

CY»E»---—-DF e

where PN is the correlation width of the fine-structure levels

of the system. The states of class n contribute te the reaction
that portion of the pre-eguilibrium flux which appears with an
average time-delay of ~ ﬁ/Fn.It should be emphasized that by cor-
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relation widths we mean those widths extracted from a fit of
the cross-section auto-correlation function to the experimen-
tal data. The correlation widths, Tn’ are generally not egual
to the "true" total widths of the overlapping rescnances of
class n. They do, however, become equal when the number of
open channel is large compared to {Pn/Dn), where Dn is the

average level spacing of class n, (see below).

Because ¢f the condition of Eg. (2.2), we can
define a nested sequence of energy-averaging intervals Ih,by
interpolating the I 5 between the Tors

ﬁh—-l > 1> P: (2.3)

This permits us to define N different optical S-matrices,
gn = <8> , by averaging the total S-matrix swccessively over

n ‘
these ¥ intervals: Sn(E) will contain the poles describing

the dooxrways of class (n-1), §n_l(E),_those of class n-2, and
so on.

In all the discussion that follows, the assumption
of overlapping resonances in each class is made in the sense

Ty

(2.4)
D,

where fn is the average total width of the doorways in class
n. The above condition is necessary for the statistical
treatment to be applicable.

It has been demonstrated in Ref. (3}, a summary
of whose results is given in the next section of the present
paper, that the contribution of thé rescnances of elass n to
the fluctuating part of 8 may be written in the sum-over-poles
form

H - —1 Z Inise Iniyer (2.5)
i B~ '

h,eer —
’ Eni

in'obtaining Eq. (2.5) the Kawai, Kerman and McVoy {KEM)

prescription is employed in a successive way. Namely averaging

first over. the smallest energy interval IN defines an "optical™

$ matrix which we call §_ = <8» ’
N IN
—_ £1
= 8 s
§. ™ A N +M\.N (2.6)

with S§1 given by an expression analogucus to (2.5), and, via

the KKM manipulation

(SH - 0 (2.7
o N IH .

Since there are other doorway classes present in the system
with widths larger than Iy (see Eq. (2.5)}. The IN-optical'

S-matrix, SN’ must exhibit intermediate structure. Thus
averaging over and interval IN—l defines a second "optical”

S-matrix, S,_,, so that

= H :
= S, t Suq (2.8)

Fnt

N

Continuing in this way, namely extracting "absorption" due to
the coupling to the compound system, in a nested fashion, we

can decompose S into contributions from all distint classes

of overlapping doorways in addition to the really slowly



varying optical §1,

N H
g - §1+Z . {2.9)

n=|

with Silgiven by Eg. (2.5) and satisfging, conditions similar

to Bg. (2.7). This last feature of Sn permits a decompositon
of the S-matrix auto-correlation function, as well as the energy
averaged fluctuation cross-section into an incoherent seem of
contributions from the different classes of doorways.

Generalizing the KRM manipulations slightly we
obtain

s P :
C £y = SH LE) SQ LE+EJ>
ce’ T

[ [l 4
1
e 1 0¥
= Z ( Snyeet® SHJCC’(I:+E)>1
N 2 2
~Z< Z f‘jh‘hc l [j"%C’l >
~ - T - ——
LN g (E Eh?"i""__r_;'i)<E Epqt€ l:l:q,) :

N
~Z 2 < |3hq~c! lah%m’l >
2, g + v € I,

N

)5, ><’3"1,cf.zwm:c’lz>

h=|

+L£

(2.10)

n,cc

cr
N
s (E) :Z ” ,< ><< ) {2.11)
ce/ ,ce
n=| rL? *-L € “$ :
where o>t |, = <X_ _ X LR SUPURE S (2.12)

n,cc n,c'c’

In writing the final form of Eg. (2.11), we have
used the defining equation for the Xn - matrix, (Eq. (3.26)),

and the statistical properties of the form factors gnq c*
r

The energy-averaged fluctuation cross—-section
for the transition ¢ -» c¢' is easily obtained from Eg. (2.12)
by setting € = 0, vis

N
1 s
c-cu = Cccl :CC" (2.13)

Explicit expressicns for the individual Uilcé' in terms of
¥
generalized transmission matrices Pn’ is accomplished by

1 <
further reducing the average xn,cc Xn,c'c' * X aer Xn,c'c>1

into products of averages <Xn>1, and using the following re-

lation involving Pn and <Xn>I obtained in Ref. (2)

e

2
Ph - fnﬂ = <Z,..<n> F<§h> +<§n> (2.14)

el

In the limit of large number of openichannels, the
guadratic term in Bg. (2.15) may be dropped. This approximation
permits finding the explicit fexm of Xn(Pn], which, when

inserted into (2.14) results in the multi-class Hauser-Feshbach

expression for afl 2.3
P et



N .
0‘-‘ 'p‘? - Z (;E“ - g“ '?‘)CCC'Eh’:Eu-H) e +@ H,.'Eh+f)(c ’(-gh—;?h+f)c’(
=1

r
o T’(Eu—,?.._ﬂ) (2.15)

with PN+1 = 0 (2.16)

It is clear that in order to write Eq. (2.12) in
the sum-over-poles form and thus identify the correlation
widths of the different classes we have to specify the dis-
tribution of widths of the different classes of overlapping

5)

cussion of the one-class case is given, the assumption of

resonances. In the coriginal Ericson paper where the dis-
narxrow width distribution was invoked. This, if used in
connection with Eg. (2.,12), would result in the following
simple generalization of Ericson's formula

N —
s
C () = E 0‘““ M — (2.17)
ce! n)C—CI I"a + I'r
ne n
th

where Fn is the average width of the n class of overlapping

resonances.

It is, however, guite well-known that the assumption
of narrow width distribution for overlapping resonances is not
quite valids). In fact, one finds from Moldauer's numerical
studyﬁ)

the validity of Eq. (2.13) doubtful.

r quite a wide distribution. This would certainly make

-On the other hand, Agassi, Weidenmliller and
Mantzouranisj)
that the one pole form of Cic.(a) is quite adeguate in the limit

have shown, at least in the one-class case,

of large number of channels, as long as the average width,

. 10

.fn’ that appears in Eq. (2.13), is substituted by g“ TrP,

where P is the optical transmission matrix and D is the average

level distance. No explicit reference to the resonance

width distribution was made in their treatment. One would

therefore expect the general validity of Bg. (2.13) with T
! n

replaced by an appropriately defined correlation width F;

N .4-‘
cs oy =ZG-_H" " (2.18)
ce”s n,cc —~ .

—y [, +¢€

Recently, ¥McVoy, Mello and Tangg) have taken a fresh look at

. . 5
the derivation of Ccc.(e} in the one-class case. We expect

this discussion to be easily generalized to the multiclass case.
The principal result of McVoy et al. may be summarized as

follows.
Within the spirit behind the derivation of Cic,(e),

one should really consider Egq. {2.12), in the cne~class case,
as given in terms of the Stieltjes transform of the width
distribution P({r1),

£4 2
S (5) - O“CC’ P(I")

Ccc' - Lty M+ (&
9 9 o

(2.19}

With the use of a reasonable form of P{r} cbtained by imposing
several constraints that guarantee a) the finiteness of all
inverse moments of T, b} the validity of the Moldauer/Simonious

theorem®) , T = - —%— tn]det §|, and ¢) the relation
— <]"—'1 >
rm = ——3~—43, they evaluated the ¢ross section auto-correlation
-2
<r



.ok

function Ccc.(e) = fCic.(E)!z {ignoring direct reactions con-
tribution). The resulting Ccc.(e) was found to be very close

to the nore approkimate cne-pole form

o £
C ¢&y = Oee (2.20)
- I~
ce v+ &2 /00)
with T given as above i.e.
~ -1 -2 (2.21)

We mention in passing that Eg. (2.21) is the KKM equivélent
-~

Dp
of the more widely known, [ = ViR TrP

To make the above discussion more transparent,'we
use a simple form for P(r) which approximate reasonably well
the numerically generated P(r) worked out by Moldauers)
cussed by McVoy et al.s)

and dis-

P(T) = 2;' ]F (I'F’ )1 G’-XP(-'G %—-) (2.22)

With (2.22), the correlation width, given by Eg. (2.21), comes
out to be

Foo=
3 .(2.23)

and the S-matrix auto-correlation function obtained from Eq.
(2.12} becomeslq)

Coelt®) Jor() (48]

{(2.24)

et

where E; (X) is the exponential integrall

1)

In figure (1) we show the cross-section auto=-cor—

relation function normalized to unit at ¢ = ICcc.(e)/oflf2
plotted vs. the gquartity %5 (Bg. (2.24)).
The extracted value of the correlation width is about 2 3

slightly larger than that given in Eg. (2.23). This is
reasonable in view of the fact that, in contrast to McVoy et

—- l
’ ~
8), the condition r “_H__ﬁ was not imposed as a

<«r %,
q d4d

al.

constraint in the construction of P(l), Eq. {2.22). For

comparison, we also show the results obtained with the one-pole

approximation to [C , (g) /u 12, 1 e with
1+52/(P)

~

T obtained from the exact result above, Eg. (2.24). It

is clear that the one pole expressiocn approximates very well
the exact one in the small £ region. Of coursé this is the .
region accessible to unambigucous experimental studies. The
fact that the T above comes out to be wvery close to ?

of Eq. (2.23} indicates that the cne-pole approximation _
applied to the one-class auto-correlation function should be
gquite reasonable in general.

Certainly all of the above discussion may be scasily
extended to the multi-class case discussed here within the
nested-doorway model. We therefore consider Eg. {2.18) to

supply a reasonable approximation to Ccc,(e}. Notice that,

generally, ?n < Fn.

The more general form of C .(E), valid in the

presence of direct reaction, may be easily worked out3). The

result for the cross-section aute-correlation function is



: Z

S

(&) = <:: — ::>
CCC 0., (E)T,_(e+E) T (E) I) 4

cc’

S z s DiR
= | CCUCS), ..'.[,1 e C.. (E)J a;., (2.25)

DIR | . R .
where GCC' is the direct reaction partial cross-section {(we
remind the reader that in all our discussicn we refer to a

given partial wave contribution).

Equations (2.14), (2.16), (2.18) and (2.25)
constitute the principal results of the nested-doorway model
of the multistep compound components of the pre—equilibrium

emission cross section. Explicit expressiors for Uilcc' in
r

terms of generalized and model transmission matrices have

been derived and discussed in Refs. (2,3}. A summary of this

discussion is given in the next section.

It should be realized that in the actual analysis
of the data at lower energie, where well-defined transitions
to specific final states aredominated by compound nuclear
processes, one should use for the fluctuation cross-section
and the cross-section auto correlation function, the full
partial wave summed expression evaluated at a giveﬁ angle.
However the simple form of Ccc L)

N —
¢ ce) = E [ *
ce! ", O—P\,CC/ J 4
hx=i

Bq. (2.18),15 usually found to be adeguate.

R
4
o

In Figs (2) and (3) we show sample fits using
Egs. (2.25) and (2,18) of several transitions induced by light
and heavy ions respectively., More than ohe correlation width

was éxtracted indicating clearly the multistep nature of these
transitions. Further, the correlation widths extracted from
the 27Al(aﬁe,p)295i reaction, were compared with the cnes
calculated within the exciton model and the agreeﬁent was found
to be quite reasonable,

In view of the upsurge of interest in the multi-
step compound processes, we discuss below briefly the appli-
cability of some of more widely used concepts in the conven-
tional statistical analysisl4).

a) Counting of maxima methoal®) .

This method could be nicely incorporated into the
nested-doorway model. 1In its original formls), ‘the method
predicts for the average number of maxima per unit energy the

following

K = B ' {2.26)

X -

where o« and B are determined from knowledge of the variance,
C(S)(OJ as well as its higher derivatives. For the one-class
case Wworked out by Brink and Stephenls), the ratio 8/a comes

- ~
out to be v /T ,thus resulting in a K value of 0.5/F

Allowing for the presence of several correlation
widths would them result in a more complicated expression for K%6).
Thig renders the method less useful if used for the extraction
of the F ,5. However it does supply an important independent
check on the values of these T .5 extracted form auvto~cor-
relation studies, as was demonstrated recently in Ref.l6 for the

. i8
reaction 2°Mg(3He,p) investigated by Bonetti et.al. r,

It has been recently pointed out by Bonetti and Mello
Mello;7) that within the nested-doorway model described above,
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the appreoximate Ericson's formula for the varisnce of cross
section fluctuations, originally derived for the onerclass
resonance model, remains valid independentally of the number
of doorway classes present in the system.

This formula, in its original form4) ig given by

-4
Ceory =2 [@li-\-l) (21+1) 2i'+0) (21’,,_:)] (2.27)

where i{i') and I(I') are the intrinsic spins of projectile

and target respectively in the incident (final) channels. The

condition of validity of Eg. (2.27) is that the spins are not

all equal to zero. PFurther it is assumed the channel spinsS)

{e.g. 1 + I} should be small compound to the orbital angular
>

momenta and that L << li'lf where L = Ei + 2

£
Since in deriving Eg. (2.27) above no reference
is made with regard to the structure of oi y (J) , where

F=1+ s, it is therefore expected that Ericson's results

above are alsc applicable in the muiticlass case. This con-
clusion is guite useful as Eg. (2.27) may be used to estimate
the contribution of direct reaction (e.g. pick-up} to the
particular transition studied, vis, '

2 _
Cex;f» = Cﬂf o) [i - JD ] (2.28)

where y% represents the relation contribution of direct reactions.

Bonetti and Mello have applied the above results
to the reactions 25Mg(%He,p) and 25Mg(®He,n} studied recently
by Bonetti et al. ‘). They were able to reproduce reasonably
well the experimental values of C(0). The Sescrepancies found
in several cases were attributed to direct reaction contribution
(Egq. (2.28)).

c) Sum Rules

It is clear from the preceeding discussion that MSCP
may be characterized by several distinct coherence widths F .
One might then wonder whether there in any natural constralnlng
relation involving all these correlation widths.

Using as a guide the one-class unitarity sum rule

It

'WA.IE = LT (2.29)

B

where P is the optical transmission matrix, it was suggested in
Ref. (20) that the generalization to the multiclass case 1§
simply

—F[J‘?"!-va-!-l} = 2% ’fj;
h

{2.30)

f:; .
T P = AT 'n (2.31)
> N D
N
where the transmission matriceslfh_aredefined in Eq. {2.14).
The N sum rules Eq. (2.30} were recently Jjustified in
Ref. (21), using the theory of Agmssi et al., (Ref. {7)).
A more useful sum rule involving the trace of the
optical transmission matrix only TrP;» can be easily obtained
by summing Eq.(2.30) over all n,

Tr = a7 (2.32)
r E) j% .

It is quite possible that in actual application to
data analysis, Eq.(2.32) will supply ar upper bound for the ex-

i
!
1
:
i
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I o :
perimental L 2 —%— ¢ Since not all the ?; , 5 will likely

be extracted,

Corr

Another sum rule involving the T , may be easily

obtained for the Heidelberg formulation of MSCP. This second

sum rule, which was alsc derived in Ref. (20 ), has the form
N N '
r,(o)*[\ ’_,cv)dz —~—
2. ( W -+, ) = 2 f;’ , (2.33)
h= h=)
where P(O)+ and [‘(D)+ are, respectively, the bare escape and

dampinq widths of class n.

Although the RHS of Eg.{2.33) is not directly related to any optical
gquantity, as is the case in Eqg.{2.32),it does however, present
a possibility of relating Eﬁ‘ to simple global propertiegof

the nuclens.

d) The angular cross-—correlation function

In the presence of several distinct classes of

doorway resonances, the angular cross correlation function,

Gefined by,

Aahcc. d L JQC (9 AO’EC/ (9’
C (860 = Cas® =0, (T )>< In., }2

ce’
C! d C /
{ Tee ta)> {5 L9)>I

(2.34)

is expected to exhibit several coherence ancles. This can be

easily seen by restricting the calculation to pure compound

22)
processes and ignoring spin effects, ir which case one obtains

¢ ooon = | Z(F6m00 L cogaoat))|
« ( Z(ZIH)Z o Hem)*
J n o

(2.35)

N 2
2., cos(T,(0-9") E_ (a,0-0) )I

h=y

{2.36)

where Jn and An represent the position of center of gravity
and the width of the partial fluctuation cross section Ufl of
class n respectively. The function Fcc,{An(e—s')) attains a

unit value at 8=6' and drops gradually to zero at large values
of the difference g-8'. In the particular case of channels

c,c" couple strongly to a given class of doorways, n, then only
one term in the expression for C{8-8') (Eg. (2.35)) would
contribute. 1In this case the coherence angles may be determined
from

2
(F (A“(s-af)c-oh.) ) = _!2" (2-37)
leading to
(3_‘6’)% - _A (2.38)
-~
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with A being a constant determined by the details of the form
£f1
of 5 (J}.

In the more general case of several classes that
couple equally strongly to the channels, than the coherence
angle, which is defined as the angle at which the envelope of
C(8~8') becomes 0.5, is detexmined by J, and & of all the _

classes contributing. This would result in a more difficult
interpretation of the physical significance of the ccherence
angle.

IT.2. Analysis of the continuum region of the spectrum

8o far we have discussed the application of the )
nested-doorway model tc the analysis of the discrete portion
of the spectrum of emitted particles. At low incident eénergies
this portion is dominated by compound processes (for a given
transition the cross section is symmetric about 6=30%}. As
the incident energy is increased the transitions to well-
separated final states become predominantly direct in nature.
The compound and multistep compound processes will contribute
mostly to the continuum region of the spectrum, Under such
circumstances one must deal with partially inclusive cross
sections. This entails the use of an appropriately averaged

-cross section multiplied by the density of states of the

residual nucleus.

The construstion of this inclusive cross section
has been made by Feshbach, Xerman and Koonin23), However, their

ex¥pression for afl

n.oct 1S different form ours in that they impose
r

several restrictions related primarily %o the nature of the

coupling among the doorway classes (their "chaining hypothesis"),

on the one hand, and between the classes and the open-channels.
subspace on the other. Detailed discussion concerning the
differences between the FKK and the nested-doorway models may
be found in Refs. (2) and {3). For tﬁe caleulation of the in-
clusive cross-section in the nested doorway model ome may use

“the Ty that appears in Eg. (2.40)} to construct

,ec!

20 .

ae £l as fl
dé and deéﬂ given in Egs. (3.60) and (5.1) of FKK. 2n

important modification should be kept in mind: since the nes
nested-doorway model dees not make the chaining assumption,

the restriction of the v-sum in FEK to three, terms should be
relaxed. The number of terms to be included depends on the

detailed nature of the final channels to which the compound

system decays.
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III. 2 Summary of the Nested-Doorway Model

The cruclal input intec the nested-doorway model

and the rest of the discussion in the previous section is the

£2

sum-over-pole expression for § °7, Eq. (2.5). A complete der-

ivation of Eg. (2.5) was given in Ref. (3). In the present

paper we shall outline the major steps needed to be taken in

£

order to arrive at the sum-over-poles form for §n , with the

fl)

I
n

constraint S, = 0 built in clearly through KKM.

IIT.1 KRM-ing the Compound Nucleus

The derivation of Eg. (2.,4) can be most expediently
accomplished with the help of Fig. &. As a result of the
nested-doorway assumption, Eg. (2.2}, the decomposition of the
Hilbert space, as shown in Fig. 1, into a doorway subspace,

represented by the projection operator, d_, an "open channel®

nl’

subspace, Pn =z pt+td; + ...+ dn_ and a fine structure

1!’

subspace, Q = d + o d is unique. Within the

n+1 n+l
averaging interval, I

N7

with rn >» I Fn+1’ we may treat

n+1 n+1l

the subdpace spanned by Q on the average as a "sink" for the

n+1
flux that reaches it. This implies the introduction of an

effective complex Hamiltonian

H G

/
= + &
ﬂ(ﬁaﬂ) - /7/ /fgh,-;< £ -8 /—/Q > A
N Ht/ Ihﬂ,
that operates in the remaining subspace dn + ?n—z'

In order to obtain the fluctuation component of the

wave function, due to the doorway class dn’ we have to

<P ¥ and dn <pn ¥> ¢ , where ¥ in the

solye for P_ _
n-1 n+l n+1

22

total ware function of the system. This amounts to solving

the following set of coupled eguations

[E —gr--.r Wlézlf/) ﬂ_/‘]f;_.lcpf zfn-—/ %(6(:’1,_/)4; % (_3'2)

L]

[E - J,, W(C‘?,, )4/» J"{n 9%&: = “/n ';ZZ(—"?#-H )-z:__,CP_P” (3.3)

Fald

where we have introduced the definition

= (3.4)
gkh - <iji}§,>rh o

The set of eguations (3.2} and (3.3) is similar to
the set usually considered in the simpler (P,Q) theories. - The
only difference is the oppearance in Egs. (3.2} and {3.3} of the
non-Hermitian Hamiltonian operator 516 (Qn+1)‘ - This however
does not alter the KKM procedure, which furnishes the fluctua-

tion S-matrix 5§£ .

{1 e’ —1.
= —2rt - ( 4 )
S = -z <q)Pn-: IV, ,[e-4#E 4] oo

n,ce’
s fn_l ;

<
X \(L1E | qE}_. j>

n-i

where

0%;3 VB J (3.6)
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_ -1
Cf{l’ =[£ —£6_ Ak, ] (3.7)

. 2‘ I /2 y!.
= P % 4 [- < : (3.8)
\(P,,,_, c/,, h—1 qnﬂ ) 4 £E- 44: W(Q,,ﬂ) 44’ + I,,/z

L./ ~
V, Lonr2 ‘ ] 4, X@,,,)E_ (3.9)
Pt E-d, (G, d,+ L4 !
(t})e :
and P, is a solution of
n-1
= &e (3.10)
(- seon) g =c |
Having derived a formal expression for SnfE in

Eg. (3.5} we now cast it in the sum-over-poles form by expanding
=1
the dn-prOPagator, (E—dnstgtpn_l)dn) ; in terms of biortheogonal

basis states iwni) and |$ni> " which satisty the following

eigenvalue equations

(Em: "45.'7((4_,)4:) H’m-> =0 (3.11)

(En’: - dy M(En-t)f4n)l%L> =0 (3.12)

Using the fact

: _ + o |
6 VE 4 & f :(\thnpi) (3.13)

h-y7h

where @ is the time-reveral operator, we can then prove

24
(=}
3, =ET {7 |V, Yo
L f“—‘ f"_‘ dh l e ~
~ )
- \,.?.TZ <+ : v 3.14
MLI JHPn—I[q.DE,‘_,> { )
where we have used
6| 7S =17 > :
'Pu—l ‘Eh-l
Using Eq.(3.14), we finally obtain the desired
expression for Snf£
Sf.l i 3ni,c T ni.e’ (3.16)
[ "
~lee E - &,
Lefd,} c
with the KKM condition <8, jL>I = 0, satisfied by construction.
n

We should stress that the residue factors Ini,c still contain
modulations which would be "seen" if the averaging interval is
increased. This is clear from its definition, Eg. (3.14),with
the "optical" wave function containing all doocrway classes with

~
correlation widths larger than f;.

III.2 The Average Dgorway Width

Of interest is the average total width of doorways
of class n. One may obtain an idea concerning this by analysing

the Bell-Steinberger relation, which in our case is given by

s o 20l Im dp Z(Ra) A | Yad>
<"Vm“ "Ph.l.> T 20 ImdE d, #(E,_)ebulWn: >

-2< ‘PHL ' Im d'n W(fh—-l)dn] ‘Vni
r : . )

nt

1

{(3.17)



Due to the appearance 6f $ni in the definition of
the total width above, it becomes rather difficult to find a
simple expression for it.However, we may use the eguation azbove
to find the over all structure of Toie This may be accom-—
plished by the calculation of the numerator in Eq. (3.17). To
this end we use the defining equation for the operator
dn:;{ (Pn—z)dn + Eq. (3,6), and the following.identity for

the elements of the matrix propagator é%;
h

&) )
Fg{]‘?wf’ = cht
o) &) C'f‘}
V
* g"?t Pnh-,%_,\/p,‘__,r gzo'pr (3-18)

) ) o)
p%’ D, = ﬁ;t \/thﬂlﬁﬂ (3.19)

-1 Du—1

With Egs. (3.18) and (3.19) we find for <wniwni>

the following

(+?

¥ .
l{} B — GLT*”:; —2,<\ljnL,Ih1 v&h Dy %h-l %n-l dnlq;lé
< mWni) - r (3.20)
ni
where Dn_1 = Pn_1 -p , and v is a coupling potential given by

&)y '
o :V+\/£:ftv (3.21)

The propagators 7;§;;-1 and “éZ;Pt are the Dn—1 subspace

matrix propagator and the optical propagator, respectively.

The widths rn; and Pn; are defined by

Mt 22 b 1TV o, Vo, T > ©.22
nt =-Z 'y m dp P opt pd, e

r»:iJ/ =2 <‘H.L]1m d, ZE (G p ) I‘i”-;;} _ {3.23)

The last term in the numerator of Eq, (3.20) is a
genuine multi-class modification of the usual expression for
the average width of a doorway. Due to the pfesence of doorway
classes with correlation widths larger than that of class n, the
average width of doorway class n contains a piece that resembles
the escape width, however it involves the mixing with the
wider-widtk doorway classes. To emphasize this poiﬁt we call

this piece PnT(D

i n-1) - Note that the mixing of n with b _. is,

1
determined by the potential v which contains a direct mixing
{internal mixing) term, V, and an indirect one (external
“+)
mixing) given by v %ft V.
Owing to the fact that < niqwni> = 1, Eg. (3.20)

supplies us with an upper value for the average width <Thi%i ¢

of class—-n doorways,

f;z{r,"'bz _<_ R + (@) | (3.24)

The equality sign would hold in the weak coupling

(absorption) limit.
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ITI.3 The X, and 1, matrices

Having obtained the sun~over-pcles form for Snfl r

4., satisfied by
n
construction for each class of doorways, the calculation of
ofg becomes straightforward. The result is
cc!

Eq. (3.16), with the KXM condition <8

2
Toer = Z [Xh,cc xmc’c' . ch_f-’ Xh,cé] (3.25)

h

with.

Xh,Ccf

ek oy .<i'3 :i*

I i hy ne c’>, (3.26)
0D, re ’ ie I,

and

~ - ~1
L = (<]’1m t}; ) (3.27)

Using unitarity, Egs. (2,17} and (2,21} are then
easily obtained.

In this sub-section we discuss the formal structure
of the{&(n - matrix defined above is Egq. (3.26). This is necessary
in order to make contacts with the results obtained within other
models of MSCP.

In order to calculate theiin matrix, we neéd to

develop a theory for the form factors g This is easily

ni,c’

accomplished by using the KKM reduction procedure on the

"continuum" wave function GP . that appears in the definitien

n—|}

of gni,c' Eg. (3.14). The result is

opt £t
=9 + c 4D
nise Dise iy Cm (3.28)
=
where 94 COPt the optical form factor given by
r

+ ~ e
3:Pi,c = 2% <‘4’m-1 \/J,,p | %, P (3.29)

opt

£

and gni,c (dm) are the fluctunating parts of 9, , that

i,c
arise from the medulations due to the doorway classes above n

£ x

= ¥ . (3.30)
Gy (d) =87 LRIV, ) TV 5 D
with <¥/dndm given by the following expression.

Vz“"‘*'vgb v {3.31)

=i
and v defined in Eq. (3.21).

With the help of Egs. {(3.28) and (3.30), a recursion
) .

may be obtained3 ¢

equation for <xn>Ii

n-i
4
opt .
< X“=CC'>I| - X"’ICC’ TZ Xh,ccf'(m) {3.32)
o=

with

(3.33)
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and
2
! am D
7hm = ‘ﬁ‘?’): <kajl %Mul%i> >):| (3.34)

The downward branching ratio n;n dictates how class
n ig coupled to class m above it, This coupling is both direct
{internal mixing) and indirect (external mixing) as clear from
the definition of “/’dmdn' Eqgq. {3.31). The optical.
Xn-matrix, §n°Pt refers to the direct coupling of c¢lass n to the
open channels subspace p.

The X -matrices are of course not directly observable.
In order to derive an equation similar to {3.32) for observable
gquantities, we have to calculate the differences between the

generalized satchler transmission matrices, P Eg. {2.21) One

nl’
step before actually doing this is to introduce two more sets

/ /
of transmission matrices, Tn and L defined through

/ 2n i’
T L < )(n:“ >1 (3.35)

n,cce
) D '

/ rn [l opt (3.36)
’EHJCC - ) <: >< h,ce T>;r
h

with Egs. (3.35) and (3.36), we can now recast Eq. {(3.32) into

the more appealing fornm

Nl
/
- / —T— /
Th,cc = 'Tn,cc-f- z ,  m,cc azwm (337
m=I :

« 30 .

the transmission coefficient Tn ce specifies the way class.n
r

is populated from channel ¢ both directly and through the
doorways above n. The only reference in Eg.(3.37} to the
presence of doorway classes with width; smaller than that of
class n is through the complex potentials that should enter into
the calculation of 17 and n;n {see previous discussion). A
more explicit reference to the doorway ciasses "below" n

should be found in the differences <P, - P of Eg. (2.21).

>
n+1 I

In Ref. (3) a relation between <Pn - P and T; was

nt1’1

obtained after performing a subtle renormalization of Tgl > T ,

m

- and n’_ = This renormalization is necessar
T T .
n n “mn "mn ¥

in vwview the fact that in our discussion the ineguality, Eg.
{3.24), does not permit a simple identification of ?g with
Tr X, (see Ref. (3) for fuller discussion).

Using the renormalized transmission matrices

(T,t) and downward hranching ratios (nmn), one could show3)

- =T (z —-Z {3.38)
< Pn,cc’ n+|,cc’>:[ hed r,?'mm
|

my h
The interpretation of Eg. (3.38) is guite simple.
The first factor, Tn cc represents the “"probability" of reaching
r

class n, from channel ¢ (see discussion following Eq. (3.37). &

part of this flux will continue "downward" to other doorway

clagsses (m > n). This is exemplified by the second term on
the RHS of Eq. (3.38), Tn,cc mgn s, The difference,

T , therefore represents the net flux that

- T i
““n,cc n,cc m¥n k!

nn
has .reached class n and remained there.

With the help of Egs. (2.22),(3.35} and (3.38), we
may write several forms for the fluctuation cress section oii,

{in the absence of direct reactions)



cc’

N
(J"“ — ZG_H )
h=

N D / ’
hn
- Z ar 17 —r‘:':CC —[—”:C/C' (3.39)
h
h=i
N
:Z Tk,cc Tm sl (} _Z ’7 ) {3.40)
- (% }
he) T; :':n myn

N £ ¥
The expression for a 1 closest 'in structure to the

ca!
original one-class Hauser-Feshbach expfession is given in Eg. {2.16).
However for actual model calculation, Egs. (3.39) and (3.37)
should be more convenient}- For fuller details we refer the

reader to Ref. (3).

IV. Discussion

The results of the previous sections exhibited clearly
the general structure of the fluctuation cross section and the
S-matrix autocorrelation function for the multistep compound
process. Although these results were obtained within the
nested doorway model, we believe that structurally they should be
quite general. To clarify this point we discuss below another,
seemingly different,approach to the MSCP, namely the one developed
by Weidenmiiller and collaborators?)'lz). .

Summarizing the ND model results;we have cbtained
=]

the following expressions for cgi. and csc.(e) {we shall exclude

direct reactions from our consideration)

£ ' |
U-CC’ = Z X"L)CC thC’C’ (4.1

n

C S (E) _ Xn)r_¢ xh,.;/c/ (4 2)
) £ o~ .
co [+t /r:

opt

with Xn'c:glven by a linear conbination of the optical xn,c;

{or equivalently the T, being a linear combination of the.Tn;S)
In the Heidelberg approach, the fluctuation cross

section and the S-matrix correlation function are expressed as

: A =1 A ’
cor =<t M IRy (4.2

cec’

S A . e N
Ccuce) = <“1:G [ (_[\/I +21r1.€1). 1'(c,> _ (4.4)



where <1| = (?l, Tor vee ) is a row vector and %i = /D; =y
with T the optical penetration factor and Di the average spacing
for level class 1. The matrix M is given by the following

expression (ignorning external mixing for simplicity)

' ’ 7 (4.5)
M =&, —Jrvme

The widths f:f and ﬁ:,& aré model widths and
should not be confused with the average widths appearing in
Eq. (3.24).

Clearly in order to set Egs. {4.3) and ({4.4) into the
more transparent form of our Egs. (4.1} and (4.2), we have to
diagonalize both the matrix M~} and the matrix (M + 2rieI) L .
This is accomplished through an orthogonal transformation, O with

00-T =1 . Denoting the eigenvalue, of the matrix M by hpe we

immediately obtain®)

st W W (4.6)
Ceer = Z xh,cc Xh.,c’c/ _

h
) w
CS (£)= xh,cc Xh,c’c’ . {4.7)
n

where the Weidenmiiller X, - matrix, XE is sinply
W I W
X = OhkTh
n
por ax A, z;

|
> G T

|

. 34 .

a linear COmbination.of the Tyr Se

0f course we do not expect the above eguation for
Xg (in terms of Weidenmfiller's r,,s) to coincide with our
equation for X  (in terms of oux optical TS} since the basic
assunptions entering in the two models are guite different. In
the nested doorway model, the statistical assumptions are
invoked on the S-matrix (<S£E>I = 0}, which refers to the
physical states, whereas in Weidenmiiller's theory these
assumptions are invoked on the residual interaction that connects
model states. It is of interest to find appropriate limits
in which Weidenmfiller's results {(rewritten as Egs. (4.6), (4.7)
and (4.8))coincide with ours. To simplify the algebra we work out
below the two-class case discussed in Ref. {12) in connection-

with isospin mixing.

The matrix M is then given by

s

- [
M = ) e (4.9)

ey I

The eigenvalues A,r § are easily obtained

(4.10)
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the elements of the orthogonal matrix, O, can alsc be worked

out straightforwardly

dn e

O =2 - > - (2.11)
1 RV& [ R’__@T __Gf);]k
7 ’ ‘/Z-
0,, ==X —E-—-LEFE') + R {4.12)
iz {E- R}&
f@'ry¢, '
0, = V2 2 N YRS (-1
R™* [R+ (7=-11)
o = [(1?’-;(2!) + R ]‘f_ (4.14)
2.2.-_&'_2‘ R'/z

With the above expressions for O, one can then write
down immediately the explicit form of X? and X? of Eq. (4.8).

To discuss the appropriate limits mentioned above, we

introduce the following gquantities
TN
F
»= 07/
L
SEQ/E’

r = CD?_ /.’DI )VZ ‘_

il

(4.15)
) s
r
B If we now set 5 << 1 and r << 1 (but with both g—
Ta 1
and 5 larger than unity)we immediately obtain to zeroth order
2 o

in r and s, the following

W ' ‘
~ 1 NZ i [ 5 2
X I,ee - E “rr&l. [I-I-Z l—lﬂz)lz‘ ’rl,(_' ZCS "f"ZJ”/"'l )Z;,c]

(4.16)

and

W
X ~ 1 1 t [/u'r +T""‘J (4.17)
2,ce T o E‘ j-_"_”.?'ly" 1e 3
V : (1-w)

Which, with proper renormalizations, has exactly the

same form as our Xi’c and erc,Eq. {3.32}.

Similar considerations as above can be made with
regard to the MIT approachﬁ) to MSCP. In this section, we have
concentrated oux discussion on the Heidelberg model since the

MIT model seems to be close in spirit to the nested doorway

model. For further discussion of this point we refer the reader

to Ref. (3).
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FIGURE CAPTIONS

Figure 1.

Figure 2,

Figure-3.

Figure 4.

The cross—-section auto-correlation function, Eg. (2.24),
plotted vs. 3e/T (s0lid curve). The dashed curved re-
presents the one-pecle approximation to C(e).

Correlation function for the reaction 27al(3He,p)?29%si,
leading to the (a) second and (b) fifth excited state
of 298i. The continuous curves are Ericson's formula
Cle) = 5z, with a correlation width of 55 keV and

230 keV, respectively (from Ref. (12)).

Autocorrelation functions for four of the excitation
functions for '¥N(12C,a)?’Na by J. Gomez del Campo et

"al., Nucl.Phys. 2297 (1978) 125. The fits were

obtained with Eg. (2.18). a) Ground state transition.

Full line was obtained with (3). Dashed and dashed-dotted

lines were cbtained with Eg. (2) (one class). b) Summed
transitions to states in 23Na with excitation energies
in the range 7.180 - 7.272 MeV.  ¢) Same as b) for the
range 7.386 - 7.446 MeV. d) Same as b) for the summed

"transitions to the 8.555 MeV - §.602 MeV excited states

(form Ref. (13)).

Partition of Hilbert space. Left: usual Hauser-Feshbach
partition. Center: Nested-doorway partition. Right:

Generalized Hauser-Feshbach used in the evaluation of
£f1 : :

o .
cec'
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