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1. INTRODUCTION
INSTANTON CONTRIBUTIONS TO THE VALENCE BAND OF THE B

DOUBLE SINE-GORDON POTENTIAL
: : : Recently there has been great interest in the study

of potentials with degenerate minima in view of their application
R. M. Ricotta*
. - _ B in condensed matter physics, through the study of soliton statistical
Instituto de Fisica Tedrica, Sao Paulo, Brazil
g mechanics (Bishop, Krumhans! and Trullinger 19$80) as well.as toy
an )
models for non-perturbative phenomena in field-theory {Stone 1978,
C. 0. Escobar**
. .. ‘ . . B _ : . Neuberger 1978, Henyey and Patrascioiu 1978). In particular there
Instituto de Fisica, Universidade de $30 Paulo, S3o Paulo, Brazil
have been detailed analysis of the doub¥e-well anharmonic potential,

¥{x)=a{x*-a*)? (Krumhansl and Schrieffer 1975, Gildener and Patras-
cigil 1977) and the sine-Gordon periodic potential (Stone 1978, -

Neuberger 1978).
ABSTRACT: We calculate the energy dispersion relation for the
In this paper we consider the double sine-Gordon
valence band of the double. sine-Gordon potential, approximating
petential {De Leonardis and Trullinger 1979) which has the
the tunneling amplitude by a sum of contributions of multi-
) interesting feature of presenting two types of instantons, due to
instantons and anti-instantons trajectories. The-interesting .
) . ' the different barriers within one period (figure 1}. Our approach
feature of this potential is that -we now have to deal with two
consists in using the semi-classical approximation to the path .
types of instantons, as there are. two different potential barriers
integral, in order to compute the tunneling amplitude for large
within one period of the potentiat. We compare our results with : S :
Euclidean time interval. 1In this approximatign the path integral
the standard WKB approximation.
will be dominated by a ditute gas of instantons {Coleman 1977},

The new aspect of our calculation is that we have to take into
account the contributions of the two different types of instantons
present in this model, to the eﬁergy of the valence band., We

then compare the dilute gas approximation {DGA} with the standard
WKB approach in the tight-binding approximation, finding the well-
known discrepancy between the two methods, by a factor of (%)53=

= i d Pat ioiu 1977, Neuberger 1978}.
* Supported by Fapesp, - . 0.93 {Gildener and Patrascieiu » Neuberger }

** Sypported in part by CNPqg.




2. INSTANTONS IN THE DOUBLE SINE-GORDON POTENTIAL

The potential (figure 1) is given by

V(x}.="a(cos% - B}* (N
We will study the instanton contributions to the tunneling amplitude.
Due- to the tunnel effect, there will result a band structure for
the energy Tevels of such a periodic potential.
We start with the Euclidean tunneling amplitude

(Coteman 1977).
G(n,.n_,T) = <n+ie'HT/h[n_> . {2}

for the transition between two minima |n_> and |n+>, separated by
an integer multiple of the period (4n). Let Us remark that since
we are interested in .obtaining the energy band of this potential,
we must consider the transition between miﬁima separated by an
integer multiple of the period, so that. (2) is the correct starting
point. -

The two types of instantons in this model connect
sucessive minima separated by- the small or by the large barrier.
The instanton is the classical zero energy solution of. the
Euclidean equation of motion, which minimize the action in the large

time interval limit, T -+ =, We have instantons, named of type 1,

x, =4 tan"! '[(l’—g)l/a tanhwt] o ‘ , (2a).
1+8 ' ’

which connect minima separated by the small barriers and instantons

of type 2,

- _ 1
‘x, = & tan 1[ (l—é)'icotanhm{} (2b)

T+8

which connect minimasEPMﬁtEd by the large barriers and the respective
anti-instantons obtained by making t » -t. In the above equations,

w is the curvature of the potential at the minima,
L
w = [afl-8%)/2] 7 (3)

The Fuclidean action for each type of instanton is,

-1

§, = Bu - 8w, B cos B (4a)
and _
S; = S, + BmweB - (4b)

‘ In the DGA, the space between the two minima n,
and n_ is filled with non-interacting instantons and aﬁti—instantons,
separated by a large interval compared with the instanton size
w™' (Coleman 77).  The following condition has to be satisfied by

the number of imstantons and anti-instantons of the two types,
n-mn=m-m=n,_-n ) (5)

where n(n) is the number of (anti) instantons of type 1 and m{m)
is the number of (anti) instantons of type 2. Summing over all
such configurations, the Euclidean tunneling amplitude is written
as,

‘S[/'ﬁ)n+ﬁ

§ C(KiTe
=0 n' f!




(K, T e S2/ymed _ . _
' S, & S _m - ' (6}

K, and K; are the determinants o¢f the guantum fluctuations around

the instantons 1 and 2 respectively. and are given by,

Siz Y, |det(-3} +w?) |

- {7
2 det'(-3§+V"(XLz))|

KL,Z =

where det' is the determinant without the zero mode. The zero mode

Xm,z

0 . . . R
Xy, 2 is proportional to and is normalized as follows,

Ly d
X120 (8, V7% e - (8)

: b2 dt

It has the asymptotic behaviour

X — Al.'z e‘f-ﬂltl ‘ - (9)

1,2 |t|+¢‘

where
1/ .
by 27= EP(1"32) : (10)

T

1
72,
Following Coleman (1977},

det(-3} + w?)

[get' (-3} +V''(xy, 2]}

1
| 2 1
| = (2)7 Ay, 0

So that,

K o=k, =k - fut(1-6f)7 | . S (12)
' (wh)

We can rewrite equation (5) as,

L
b ewTy2 T vy~ /F
— e In+_n_(2KTe )

-S2/h . :
T oL, (2KTeT 72T (13)
. + - .

{(Henyey and Patrascioiu 1978), where I, is the modified Bessel
function of order n (Watson 1944).

The Bloch waves can be written as,
1

-2 ©
lo> = (" taywe 2

BNl

; ,
e in> (14)
and they diagonalize equation (13), giving for the energy gigen-
value E(8}, the following relation,

e E(O)T/._ -uT/2 1, (2kTe 31 (akreS2Mmined
+ _ LY —

Using a addition theorem for Bessel functions (Watson 1944}, (15}
can be written as, L

E(OITH _ muT/2 B (16)

where

-25, /% e-ZSZ/ﬁ -(S:+S5, ) /R

z = 2KT(e + + 2e

1 .
cose) T . (17}
from which we obtain, in the large T limit,

_ _ . ] Lo o
E(e) = %9 _ zﬁK{e‘ZS{/ﬁ 4+ o282/ +2?-(S[+S?)/ﬁ coso] | (18

Using K given in (}?),Vwe arrive at the energy dispersion relation
for the valence band of the double sine-Gordon model. MNotice that

our resutting expression for E(8} is not a simple sum over the

6.



contributioﬁs of each of the two types of ﬁnstantdns, as might be
naively thought defore doing an exblicit calculation. In the limit
B+0 we do obtain the band structure of the sine-Gordon model (Stone
1978, Neuberger 1978), as can be easily seen from equation (18)

putting §;=8,."°

3. COMPARISON WITH THE WKB APPROXIMATIDN

Following the standard approach to tunneling
procésses in the WKB approximation {Merzbacher 1970), it is straight.
forward to generalize the method to,tbe case of different barriers
within a feriod. The energy dispersion relation for thé band is

given by,

cosé = 2 cos? ge(e’! + %e’rl)(e12+%e'T2)- %(eTl’Tz+eT2'T1) (19}

with ~w<é<wr and

_] Xo ]/z

o = 3 yu[Z(E-V(x))] dx - (20a}

< ;% [_yﬂ[z(vm-e)] ? dx (20b)
i ly‘[ }54 ' S _

T, =~ 2(V{x)-E)} - dx {20c]
i Ix

1, and T, are the penetration factors for the small and large
barriers respectively (y,,%; and y; are consecutive classical
tufning points), o, is the integral of the mementum in the classi—
cally allowed region.

' Each of the integrals in equation (20) are’
combinations of elliptic integrals of the three kinds, furthermore,

T, and v, are related in the same way as 5, and S, before (see
' . '

equation (3b)),

T, =1, + 2o g ' (21)

i

Working in the tight-binding approximation (Neuberger 1978); where

<< ] (22)

f|m

and using tabulated asymptetic expansions for the elliptic

integrals of the three kinds (Byrd and Friedman 1954}, we find

that,
1 1 1 .
) % Y -pZy 2 - - )
E{8) = %ﬂ e el (T ) (e A, 232fﬁ+29—(51+52)fﬁc°59)4
k.
(23}
with 5, and §, given in equation (3} and related to T, and T,
(equatien {20)) as follows,
a2
vpo= 201 g, MI1-87) (24)
+ 2 /e

and similarly for Tt,.

Comparing equations (23) and (18) we see that the

1
two results differ by a factor (%)'6, that is,
AE, o Y
—HEKE _ &y - 0.93 , (25)
AEinst 7

The same factor had been noticed before (Gildener and Patrascieoiu

1977, Neuberger 1278, Deblezonardis and Tru]]fngér 1979}, for the
double-well anharmonic oscillator and the sine-Gordon potential,

Its origin 1ies in the linear interpolation formulae used in the



¥KB approximation. Had we used a gquadratic interpolation the
agreement between the two methods would be énmp]ete (Gildener and

Patrascioiu 1977, Deleonardis and Trullinger 1979).
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Fig.1

The double sine-Gordon patential, V(x) = a{cos % - 3)3
"With period 4w, here shown for a=4 and g=0.5.




