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1. INTRODUCTIGN

In the usual manner of building dynamical models of
Nature one always begins by postulating a certain space-time and
from there proceeds to develop a certain physics in that arena, which.
is then considered as a subtratum to the physical world. That 1is,
one always starts from a given, preestablished geometry, upon which
a consequential dynamics is established, and it is well known that
the choice of the geometry (of the postulated space-time) uniquely
determines the physics that can be constructed in that postulatéd
space-time. Thus, just as the only dynamics compatible with the
absolute space-time of Newton is precisely.Newtonian dynamics,
correspondingly, in Minkowski space-time, only the dynamics of
Special Relativity can be naturally built.

In the present work we intend to show how the introduction
from the onset, in a general differentiable space-time ﬁanifbid, of
a certain well defined minimal set of fundamental dynamical quantities
allows the specific geometric structure of that manifold-to be fixed.
This view is basically contrary to the usual one and will de detailed
below. _

Before turning over to the point of view tone
developped here, let us present the Special Relativistic mulNew;mﬁan
cases, as they are usually stated. . The four-dimensional space-time
manifold of Minkowski consists of a three-dimensional spatial hyper-
cone with time pointing along its symmetry axis. The geometry of
this manifold has as its invariance group the full Lorentz group

{or group of Poincaré):
x Moo= LM Ve et e (1.1)

with greek indices running from 1 to 4. Here, (Lﬁ) is a (4 x 4)



orthogonal matrix and a¥ is an arbitrary (comstant) 4-vector.

Since it is perhaps somewhat less familiar than its
Minkowski counterpart, let us dwell - although still in a cursory
fashion - with the Newtonian case in a little more detail. In the
Newtonian case, the-4-dimensional space-time manifold was first
introduced by E. cartan(®) as an affine manifold E, , consisting
of a 3~-dimensional space-like hypersurface, orthogonal to the
absolute time axis. This geometry fixes the group of symmetry
x® = 6} PLEPRSR ‘ (1.2)
Here, the matrix (Gg) has the (3+1) x (3+1) block

form:

=y

G
o =
C(Gg) . = [ o ]_. S o _ (1.3)

where G 1is a {3x3)} orthogonal matrix and the (3x1) column vector
v is arbitrary. This geometry (and its related symmetry group) -
determines both the absolute Xynematical and dynamical entities,
that is, those entities which are léeft invariant by the transfor-
mations (1.2).

The matrix (Gg) can be diagonalized and put in the

form

<4

G G

From this, it is seen that the metric (or fundamental) tensor

(n) = (n) of the affine Newtonian space-time E is
Eag "ap . ¢
singularcz)’(s). This fact immedialety distinguishes Newtonian

space-time from its special-relativistic counterpart. In fact, while

in this latter case one can introduce dual metric tensors (r)g

(T)gaB

aB
one being the inverse of the other, this cannot be

and
dene in E4 , since there the inverse does not exist. Therefore,

it is precisely in E4 where the distinction between covariant and
contravariant 4-vectors will be expected to be more fundamental

than in the special relativistic case, where ;here exists a complete
transpesition between contravariant and covariant quantities. This,
of course, should not to be taken as meaning that in the 3-dimensional
space-like hpersurface E; of 8, this raising or lowering of
indices is not fully justified? since that submanifold E3 is
Euclidean. This last fact leads to the consideration made a long
time ago by E. Cartancz) that E, 1is not an Euclidean manifold,

but its affine connection, (n)V4 is Euclidean, which is just another

way of seeing that the metric tensor of E, is singular.

2. CONTRAVARIANT AND COVARIANT VECTORS

When examining the interconnection between physics
and geometry it is of paramount importance to establish the essential
distinction that exists between contravariant and covariant
entities. - A very striking aspect of this distinction was pointed
out by Schﬁnberg(4) who observed that while the contravariant vectors
are the ones which are more intimately related with geometry, the
covariant vectors are the ones which are more closely connected
with physics. In this regard, two instances come up immediafely to
mind: the position vector X , which is éssentially contravariént,
and the momentum ﬁ , which is essentially coﬁariant. In this

section, we discuss some aspects which manifest this distinction.

.Given the vector affine space En , the linear mapping
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m4En+R of E over R defines a linear form over E The vectors

: . . > s R . .
of E_ ' are the contravariant vecters x , which, in a given basis

> . . .
{ei} are written as
-
X o= X e, ’ ) So(2.1)

The linear forms over 'En belong to another vector
R . _ -

affine space E; , dual of En . The vectors x* & E; are the
covariant vectors w(x):
. X EY +3 >1 .
x¥ = w(x) = m(ei) Xt = ay = (2.2)
where we can consider the a; S (gi) as the components of the
covariant vector ® in the dual basis {x'} = {&'} , i.e., we may

. . . -
write a covariant vector Xx* € E; as

¥ = x. et (2.3)
1
with x; Foay . (While the x' are considered as vectors components
in En in the dual spdce' E; they are linearly independent one-
- forms) .

The'geometrical'meéning'of the contravariant and

covariant vectors is obtained through the introduction of an affine

space fU,En)”: €y ,'which is a space of points having a structure
of a vector space depending of ‘the point .0 ., taken as ‘the orighﬁs).
Tt should be hotiéed'that'neither.a-mefric'waS'defined in En , TOT -

a distaice in"sﬁ'.

i

o . . . . '__). . N N .- .
“ The contravatriant vector x = X e, '€ E is represented

i n
gecmétficélly by an oriented line, whereas the covariant vector

X = xi'Ei E'E; is réﬁresanted by two parallel hyperplanes; since

we Héﬁe'a‘family XFo= xi'31‘='w(§j =-ai xt =% -of parallel hyper-

planes, deépending on the parameter - k . Since the coordinate .axis
are intercepted at xi =-k/ai , the components of a contravariant
vector have dimensions of length - an extensive qhantity - while the
covariant vector components have dimensions of the inverse of a
length---an intensive-quaﬁtity.

As appropriate examples, we notice that the position
vector X is essentially contravariant, while the gradient 3¢/3;
of a scalar function ¢(§) of position is essentially covariant.
Recaliling that in ph&sics the aynamical quantity momentum 5 is
defined as o °%/3% , this definition makes momentum a covariant
vector, and hence it is much mofe'approﬁriaté'to write down tﬁe
fundamental equation of Newténian dvynamics as f--4d E/df-, than
in the form £ = m d2 §/dt2 -

With contravariant and'covariant'ﬁéctoré1mm&}ﬁjfeﬁym
kinds of aigebras can be built{ﬁ}.. Thus; let the cohtrgvafiant-
vector V = vJ Tj and the covariant vector U = Uj T3 be written
in the reciprocal basis Tj aﬁd ¥ of a certain n-dimensional
affine space. The invariant Uj—Vj is denoted'ﬁefe'by5.<ﬁ;§$ .
Introducing the symbols (V) and (3f) associated to the vectors V

and U by the anticommutation rules

(W ., @], = o R s (2.4)
[ . @], = <V .0 14
. . . n

we obtain the Grassmann albegra G, (1 is the unit of Gn]. This

G
n .
algebra is generated by the elements.(?j) and {?J)_ through the

anticommutation rules:



[ty . dply = o
(ah L dh3, - o
. {2.5)
k R
[ . A9, = 55 16
sk_ _ .k
<ij : f > = Sj

Equations (2.5) show that, although Gn is an algebra

of a n-dimensional space, it has the structure of a Clifford algebra

Cyp of a2 Zn-dimensional space. The theory of G is, essentially,
that of the spinors of E, . The Grassmann algebra G, taken
over the complex numbers, is equivalent to a n-dimensional Jordan-
Wigner algebra. Taking the adjoint (Tj) = {Tj)+ , the anticommutation
rules (2.5) become the n-dimensional equivalént to eﬁission and
absorption operators of the second quantization for fermions(7).
~ Similarly, one can define an associative algebra
L, » with elements denoted by (¥} and (U} , satisfyine the

commutation rules:

LI}
(=

[V , (V'1)

RURLARY,

3
(=

(z.6)

(¥ . 0 = <, 01

n

(lL being the unit element of Ln) , and the generators of Ln
n :

satisfying the commutation rules:

[{TJ.} AT = 0 |

rtiy , (%1 - o (2.7)
. > +k _ k

E{Ij} , {I%] 551,

Equations {2.7) provide the Heisenberg commutation rules for the
coordinate 5 = QJ aj-.and momentum operators B = Pj EJ , the

generators of which are given by aj = {14} and pl =1 PSS CA
where 4 is Plank’s constant. Thus, L, over the complex numbers

- >
is equivalent to Heisenberg algebra for the operators @ and P

of a2 quantum system with n degrees of freedom. It can also be

shown that quantum kynematics is related to the symplectic geometry

of the phase space of Hamiltonian classical mechanics through its
symplectic algebra Ln(g). Besides, the algebra Ln over the
complex numbers provides the n-dimensional equivalent to the Dirac-
Jordan-Klein algebra for the emission and absorption operators of
the second quantization for bosons. In 4-dimensional space, the
action algebra, obtained from dV = Pi dxi , i=1,2,3,4 , provides
a quadratic form in 8 variables. This is the only instance im which
there is a triality: one vector and two half-spinors, all with 8§

components and all with similar properties(g)’(4).

3. BASIC POSTULATES

Having presented the above considerations upon the
different algebraic structures generated by covariant and contra-
variant vectors, we may begin to assign a dynamical meaning to some
of these vectors.

As we already said, the usual way of building physical
models and/or theories consists in postulating a given space-time -
manifold, which is almost always metric (it can be shown that a .
differentiable manifold always.admits a Riemannian metric(lo)’(ll),
and where that metric is always fixed ab initio. This is the fixed
space-time framework upon which a certain. theory is built.

Our starting point here is just the opposite: we try




to detefmine the geometry by means of the introduction of a certain
minimal number of fundamental dynamical objects. This point of view
opposes the usual epistemological stand, which begins with the notion
of space (of Aristotle, Newton, Minkowski, Riemann, Weyl, etc.} as
the basic entity in Nature.

With this aim in mind, of trying to determine a certain
geometry (i.e., a certain metric) startiﬂg from a minimal anumber of
dynam1cal objects, we begln by postulating the existence of a space-
time manlfold the most general possible, with the least number of
predetermined geometrical'properties;_ Next, we shall populate the
naked manifold with certain dynamical objects, taken as fundamental,
trying then to determine what kind of manifold is compatibie with'
these dynamical objects.

The only way a physicist has of interacting with
Nature is by means of measuring processes (observations transmitted
first to his senses and from those to the brain). The only way of
an interaction reaching the senses (and thence the brain) is by means
of a signal which transfers information from the system to the
observer. For this, a physical field is needed, to which a certain
energy and momentum densities may be ascribed, and which are the
physical agents for the transmission of -the signal. Therefore, it
is only through the transfer of energy and momentum that a certain
knowledge of the World, that is, of natural phenomena, may be obtained;
in particular, a certain knowledpe of its space-time features. In
other words, the very notion of space-time is strictly dependent of
the notion of energy-momentum. - In the very cosmological mpdel most
widely accepted nowadays ‘- the big-bang model - the creation
(exﬁanéion) of space=time is inextricably associated to the total
initial energy-momentum density of the universe. That. is, the
initial dynamical coatent is the only determinant on how the geometric

structure unfolds.

-Thus, let us consider the antisymmetrical bilinear
form dv = dpu ax” , built up with the covariant momentum four-vector
pu and the‘contravariant position four—vector x”._ The hypervoiume
dV (physically, the action} 1s constant w1th respect to a varlatlon
of a parameter i (which may be 1dent1fled w1th the casmologlcal -
time}. The universe's initial conditions are such that for A=0
the momentum content was extremely high, whereas the space t1me
content was extremely low. We haverﬁere the rmst ba51c and ﬁﬂkkmmnral
observation refered above that the covariant vectors characterize
the dynamical aspects whereas the contravariant ones characterize
the geometrical aspecfé. . ' SR o

7 We begin by considering a fundamental field chardacterized
by the 4-momentum Py o -and with the ald of thls dynamlcal quant1ty
we try to construct a space-time geometry. For this purpose, we
insert in the given field z material particle endowed with a certéih
dynamics which will determine the space-time geometry. The physical
characteristics of which this particle will be revestéd willldeﬁend,
essentially, on the kind of dynamics initially admltted as being
associated with the postulated fundamental field. We shall take,

then, as basic postulates of all our future considerations the two

following ones.

1. FUNDAMENTAL DYNAMICAL POSTULATE. The covariant 4-vector momentim

p, is the fundamental dynamical object.

IT. FUNDAMENTAL GEOMETRICAL ‘POSTULATE. The contravariant 4-vector

position x" i5 the fundamental geometrical object.

Based on this last one, we further postulate:

TTT. EXISTENCE OF A DIFFERENTIABLE MANTFOLD: There ‘is a.4-dimensional
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differentiable manifold, ~V4(xu) . homogeneous in the (contra-

variant) space-time coordinates o, w =l .., 4

Following our plan, let us start trying to determine
tﬂelspecific nature of the maﬁifold V4 by means of the incorporation
of specific dynamical entities. We shall analyse separately the
cases of relativistic mechanics‘(Both of the general and of the

special theories) and of Newtonian mechanics.

4. RELATIVISTIC MECHANICS AND RELATED GEOMETRIES

Let us introduce into our "naked"{*} four-dimensional
difféieﬁtiébie mahifold (T)V4(xu) a particle of four-momentum P, -
describing a world-line I characterized by x" .

If we now associate to this particle an auxiliary -
as yet unsﬁecified - scalar function H(pp.xp) this allows the

n

definition of a contravariant vector p"~ , tangent to the particle's

worid-line T
(TR 3 p :
P = (1/2) %, H(p,.x") (4.1)

to which no dynamical meaning is assigned. a priori. - Let us next

identify H with the particle's Hamiltonian state .function of

General Relativity and define a free particle as the one for which
this state function is its kynetic energy. [Imposing that this kynetic
energy is given by the usual square of the four-momentum, this auto-

matically endows the manifold (r)v4 with an inner product

(*) The manifold (r)v is "naked", ab initioc, due to the absence of

dynamical quantities besides the momentum p, (Postulate I}, and
to the absence of any geometrial structure besides the existence
of coordinates (Peostulate II). ’

.11,

p, ¥ = P, = ZHE ™Y (4.2)
This attribution of an immer product to [r)V4 is

of course equivalent to this manifold being both:
(a) metric

p* - "M, BT
where guv(xl)' is the cont?avariant metric teﬁsor Qf {r)v4
satisfying the orthogonality conditions g"P gp; = 63 , an§
{(b) Riemannian

2 H = gﬁ“ P, Py . (4.4)

Moreover, since we imposed that the inner product (4.2) or (4.4)
must represent an invariant (the energy s;alar function) of the
general relativistic dynamical group, the metric has to be indefinite,
with signature of absolute value Z; in other words, the metric of
(r)V4 has to be pseudo Riemannian.

We conclude, therefore, that resorting to the dynamical

momentum P, (Dynamical Postulate I), and ascribing to the dynamical

function H(pp,xp) the meaning of the particle's Hamiltonian state

.function of general relativity, it is possible to endow the manifold

(ry, (12)

with a pseudo Riemannian metric
Next, we observe that in (4.1) H was differentiated

with respect to its covariant variables pu , defining thus a contra-

variant vector pu . Obviously, the energy function may also be

differentiated with respect to its c:o_ui:rr:nrariemt_va.riab}u:-zs_,2_("1

defining thenr a covariant vector ¢u

, BH{pp,xp) . : . o

4, T —o— _ (4.5)
X o . L




Taking (4.4} into :(4,5)

_ 3 (1 ew Yoo (3gPY) .
P, - [zg P, Pgj = Lax“}p-" Py (4.6)

Since our particle is free, we can take the potential
function ¢u as equal to zero over all the particle's world-line
r . This corresponds to having H = constant = E over pt*), Then,
from-éq. (4.6), ﬁé must have 8g"¥/sx” - 0 ., that is, g is constant
over T . Since this world-line is arbitrary, this means that g”v
must be constant over the manifold (r}v4 . In summary,-imposing
the condition that our particle is free we conclude that the geometry
of (r)V4 is flat with signature of absolute value 2. On the other
hand, if we had admitted in our flat manifold that 2 H = g”v pu P,

had a positive definite metric, it can be easily shownis)’(ls)’(14)

that this is equivalent to admit that there is no upper bound to the
velocity: an infinite value for.the speed of particles would be
physically realizable. This, in turn, is equivalent to admit that
the space-like and time-like coﬁponénts of the four-momentum are
entirely_interchangéable, a possibility which is completely foreign
to our experience. We must, therefore, impose the dynamical
principle that there is a.limiting velacity for the propagation of
physical signals.

All these conclusions can be reached in a slightly
different manner. although entirely equivalent to whﬁt we have just

done. We repeat our arguments up to the point where we established

that the manifoid (T)V4 is pseudo-Riemannian with signature of
absolute value 2. Next, we impose that our Hamiltonian state

function H , given by Eq. (4.2), satisfies the equations of moticn

*) this implies that we can define the energy E over all the
manifold, which, in turn is equivalent to st?ting cthat we can
build & global imertial frame over all of ‘flv .

L1300
Hxs“ Z 3p. : : AU  (4.7a)
dp' . .
u --_ . 3H : o . co- . . :
' = - — . . A S . (4.7b)
= |

where .ds is an‘elémeﬁt aloﬁg the.pértiéié's.worid;liﬁé'uf.a éinéé

our particle is free, T 1is a geodesic of (I)V4 . Now.“tﬁé-ﬁas§- 
of this particle is the constant value of its Hamiltonian on one of

its world-lines: m° = 2 Hep, X" = 2% p, B, such that = d(m)/ds =
= 0 . From this fact and from the first set of Egs. (4.7a) we see

that d% x"/ds® = 0 . Then. from the geodesic equation

dzxu . rf oax® oax’® H;
ds

AN . ol R S G2y

: 3g 8g 9g
where TH = (1/2) ghth *{f + _SAg S
P ax” axP ax”

is the usual Christoffel symbol, we conclude once again that

ag““/ax° = 0 , and the rest of our arguments follow once more.

5., NEWTONTAN MECHANICS AND RELATED GEOMETRY

Here, in the Newtonian case,'ﬁe shall také as our
differentiable manifold {“Jv4 a four—dimensional'space—time(lj.
According to Postulate I, let us introduce again into this manifold
a particle of three-momentum R i"21,2,3 , which will once more’
determine the geometrical features 6f the manifold.

Let our particle be moving with three-velocity defined
by %1 = dxi/ax® . where x' are the space variables and s

the time variable. We next asscciate to this moving particle what
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(15)

Poincaré called its mass of Maupertuis , m . Hence, here in

Newtonian-physics, we take as one of the particle's accessory

essential dynamical characteristics (besides the basic property of
possessing three-momentum pi), not its imertial mass, but the mass
associated to its stdte of motion. With these definitions of mass
(of Maupertuis) and th;ee—velocity,we can define ;he_contravariant

three-vector

pt = omxt -- (5.1)

which, as befgre in the felativistic case, cannot, a priori, be
related with the covariant fundaméntal dynamical three-momentum p;-
This identification of pi =m iiu with P (which, for iastance,
enables us the identification of the time derivarive of (5.1) - as
it is usually doae - with the Newtonian concept of force) is
possible if the three-dimensional spatial hypersurface (n)VS of
the entire space-time manifold (n)V4 is metric. That is, if

ot o= g R, . (5.2)

where gij (xk,x4) is the contravariant metric temnsor of (n)VS
satisfying the orthogonality relation gij gjk = Si . That is, the_
identificatien of the three—moﬁentum p; with the.three contra-
variant vector pi Im ii obviously does not make the entire four-
dimenSional spéce—time. (“)v4 a metric manifold(z}, but only its
three-space hypersurface (n}VS - In this three-space metric manifold

we' can then define. an inner product and hence. the bilinear symmetric

form

J

™t ptp; = 2wy p; bt = (2wt g o, g (5.3)

.15,

This implies that the metric of (n)V3 is symmetric, gij = gji

Introducing then the energy concept into our three-
dimensional spatial manifold (3)V3 imposing that the particle’s
kynetic energy T be given by:

2 1

T= w7t p? = Tt gt b, o (5.4)

We define again a free particle as one having for

state function H(pi,xl,x4) its kynetic energy, which obeys the

dynamical equations of motion

"By T L1 - (5.5a)
X

i _ 8T :

X = Fﬁ: (5-5]3)

From (5.4) and (5.5a) we see that ﬁi = 0 , that is,

the three-momentum of our free particle is a constant of motion.

Hence

. 8T 1 2 ik '

-p; = — = 5= —= (g’ p: p,} =
i axt 2m 3xL j Fk7
1 jk i
“am X By = 0,
that is,
agdfaxt = o . . | (5.6)

Moreover, since 1in Newtonian physics, m %' is

identified_as the force felt by the particle, we must have ii =

= constant. Therefore, from (5.5b)
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. ik . \
R N R N, T i,
* ® m o, & PP T S Gymtpy &)
1
_ 1 ik ij
= am (g py glt Pj} = % gl p; = const.

and since pj is 2 constant of motion, glj must be time independent:
—7 £ = 0 (5.7

From (5.6) and (5.7) we conclude that the metric of
the three-dimensional spatial hypersurface (n)V3 is flat:
g = nlJ = const. (5.8)
We see therefore that endowing our particle with the
concept of mass {of Maupertuis) we are able to introduce the three
contravariant vector p1 = m %' , which can be associated to the

dynamical covariant three-momentum . only if the three-spatial
Py ¥ P

(™)y, is metric. Bq. (5.2). We can then build the
1

manifold

i - -1 ij
P pi (Zm) g Py pj

Imposing that this dynamical function is the free particle's Hamiltonian

symmetric bilinear form T = (Zm)

state function, we were able to reach the conclusion that the spatial
part of our four-dimensional manifold is flat.

. On the other hand, in the basic dynamical equations
which we considered - Hamilton equation of motion {5.5) - the time
coordinate x4 plays the role of an independent parameter with

respect to the space coordinates x' . This means that the time

axis has to be orthogonal to the three dimensional syatiallmuufold(z)
Contrary to the relativistic case, in which for the

determination of the related geometry we resorted tc only one.

auxiliary dynamical function - the Hamiltonian state funétion
H(pu,xu) - here in the Newtonian case. we needed to introduce

separately the two conceets of mass and energy.' With the aid of the
. \ . i L1 -

former we defined the contravariant quantity p = m %' . while with

the help of the latter we wrote down'thenparticle's kynetic'energy

(its Hamiltonian state function}.

6. CONCLUSIONS

Contrary to the costumary way ofrdoihg phySité, we
were presently able to show that starting from a few given ‘dynamical -
quantities we can uniquely determine a certain geometry."ﬁns.'éeneral
relativistic physics implies'general Riemannian'geometry,3whilé fhe
physics of the special theory of relativity is tied up with a flat
Riemann manifold (Minkowski space—timej. Finally, Newtonian @ﬁumdés
is unambiguously bounded to Newtonian space-time.

What this clearly seems to indicate is that the
connection between phyéics and geometry is even more profound than
is commonly considered. By'tﬁis we mean that nét only a certain
dynamics and a certain space-time are inektricably and uniqﬁély
bounded together, as state ébove. but, also more important, that
naybe the poinf of view taken here is perhaps the most fundamental.
Namely, that instead of departing from a given postulated spice-time
and then infer the associated dynamics, we should start by postulating
a certain physics and then try to determine its related geometry.:
In other words: gebmetry should be considered as an aépect of
dynamics. Instead of thinking, as in geometrodynamics, that géometry

(18)

is everything here, in dynamicgeometry, we take the conjugate

point of view: dynamics is everything. This point of view reminds

us of Leibniz conception of dynamics(lT).
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