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ABSTRACT

We present a description of cosmological phase
transitions, which differs from the one based on the effective
potential approach. 1In our scheme, the phase transition is driven
by the spontanecus generation of domain walls {solitons}, and below
the critical point, statistical mechanics prohibits the existen&e

of these walls,

~There “is today a widespread belief that the History
of the Universe can be told, by extending the unified (spontaneously
breken} gauge theories of electro-weak and strong interactions to

-6 5t 4s

high temperétures, and to the genesis of the Universe
also conjectured that field theory phase transitions play a crucial
role in delimitating the various evolutionary stages, which the
Universe went across ~°. _

Field theory phase tran;itians exist, because any
symmetry that, at abso]ute_zerg is spontahepqsly brokgn, comes to be
recovered at high temperatures. The critical point is just the onset
of the symmetric phase1_3. _ _ _

The standard way of studying these phenomena, is
analysing the effective potential dependence on temperature]'3.

This paper proposes ancther description of the phase
transition mechanism, which differs from the effective potential -
approach in many respects, and leads us to reinterpret the standard
picture. As we will show, this new scheme has far reaching consequences
on the study of cosmological evolution, and is free from some apparent
puzzles and contradictions imheremnt in the orthodox interpretgtion.

In order to compare the two pictures we shall analyze

the model describing a scalar boson self-interaction, whose potential

is
et g | | | Q)

It is argued1"3’63tﬁat tﬁe chéréétér o¥.phase ffansi—
tions is insensitive tb the ﬂetai]s of fhe theﬁry, aﬁd that all '
relevant physics is a1re$dy présenf ﬁﬁ:fhe éihplé mode? above. Let
us adept this ﬁhi1osbphy. . .__ ._ _ _._

’ " The model defined.by eipression (f) ha;'a critfcql

température TC . such that, <¢> #'0 b.e'low”TC , and <¢>¥ 9 above n



In the one loop approximation, effective potential

calculations givei’2

(2)

This cone Toop result is reltiable only if X << 1 , i.e., the semi-
classical regime.

As noticed by VenturaT, in a semiclassical analysis
of this ¢* theory, above a certain temperature TC(A) » macroscopic
solitons (sheets of infinite area and infinite'energ&)rcan be
generated spontaneousty, thanks to the fluctuationsT entropy;

Below Tc(l) s when there are no'sqlitons, one has

|<¢>] = M. On the other hand, above Tc(k) , one must have. <¢> =0,
because {Ee system is then a soup of soTitons, full of + . and
- domains randomly distributed in space. The-solitonl§s a Bloch
wal?, dividing the systém into 1dca31yfordehed'ddmainsY,

We interpret the calculations of Ref. (7) as an
alternative {and more realistic} approximation to computing TC(A) ,
that is, we view the phase transition of Ref. (7}, as being the same
transition disccvefed by means- of the effective potential metheod.

In fact, when X << 1 , our seliton scheme  Teads tog:

.y - /3 A< 163 (3)
This number results very close to the cne shown in £q. (2), and
givés.suﬁport to the interprefation propo§éd above.

It has. been observed® and stressed!® that topologically
non=-trivial field conffgurations, having divergent action (or enerqy }
can play an essential role in driving & phase transition. Our approach

to the cosmo]ogical phase transition is along this line of thought.

According to the modern description of phase transi-

tionsll

, the critical point is the Towest temperature which can
afford an infinite bubble. An infinite bubble in turn requires an
infinite Bloch wall, and therefore our proposal (that TC(A) should
be the lowest temperature which allows the spontanecus formation of
sotitons, or Bloch walls} is, in a sense, nothing more than a
rephrasing of that renormalization group statement.

. Above TC {or Tc) one has a condensate of solitons,
so that, introducing fluctuations around this sophisticated background
field is a much more appropriate procedure, to study the excitation
spectrum, than fluctuating arcund ¢ = 0 , as recommended by the
effective potential method,

Taking the results of ref. {7) for Targe values of

and % » one gets the following expression for the free energy a

v =

oliton carries per unit of area:
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showing explicitly that the critical temperature T _(A) is such

el
that f501(T) < 0 if T> Tc(l) ,» the situation where the fluctuations'
entropy overcomes the soliton internal energy, and solitons sprout
in the system.

To get an insight about what a multisoliton configuration
locks Tike, we will now consider paraliel solitons canfiguration.
We take our syﬁtem to be a cubic box of volume V¥ = L? , and define:
(1) The Nth <configuration has 3N solitons; {2) there exist N
solitons parallel to each face of the cube; {3) the average distance
between any soliton and its nearest parallel neighbor is A = % H

and (4) A is much larger than the soliton width, that is A >» é%,

so that we are thinking of a dilute condensate of solitons.



We think about parallel solitons configurations with
the purpose of simplifying the subsequent discussion. If we wished,
we could take into account non parallel solitons, as well. But that
would only make our argumentation duller, witfiout improving either,
its accuracy or rigor. .

The energy per unit Tength, stored in the intersection
of two perpendicular so1ifons,is o m2/h (o = 2.6831%, where o s
4 positive dimensienless number.

Hence, the solitons contributton to the Nth con-

figuration free energy will be?

VFy = 3V [fso](T) %+ ;‘A:‘?]._ .. ' (5)
Here, we are discarding contributions given by ekcitations of the
intersection lines. .

Eq. {5) also does not 1nc1ude tﬁe unbound.elementéry
particles contribution. In the high temperature region, elementary
particles givés a well known T3 term to the specific heat (the
TP law). |

Among all those par§11e1 configurations, statistical
mechanics chooses the one having the Towest free energy.

When T < TC . the minimum of FN is attained at
A=w {which means zero solitons} becaﬁse fs01(T} is positive.

Above TC » F1{T) is negative, and the average

sot
distance between next neighbor walls AO , which minimizes the free

energy, is aiven by
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where Tc is shown in Eg. (3), and do is a characteristic Yength

of the model,

d - Jao 8.7 (7

The solitons' contribution to the free energy density

is, therefore,

, L0, AF TeT - _
Fsor™ = : SR . (8)

3% grz_v2y? L e
—m(T TC) 3 'lf.T)Tc.

This part of the free energy ‘leads to a jump in the

specific heat at T = T_, and the jump discontinuity is

0f course, if the distance between next neighbor
. - - . : . ~ o1 :
walls is similar to the soliten width {(i.e., if L T } . one
can no longer use the solitom approximation to describe our system.
According to £q. (6), that happens at higher temperatures,
?

2
TP > T2+ 847 Sy = (1+32a)Tl= (35T (9)

and in this domain, fluctuations should meove around much more complex
background fie1d;, that would reflect the extreme chaos of high
entropy states.

One important quantity in the study of cosmological

1,2

phase transitions is the density of domains at a given temperature,

D(T}. In the present approach, one gets:



1 _ 1 T}?
D(T) = —3 = ——3— T_ -1 s for T > TC (93)
Ao dD [
and
B(T) = 0O , for T=< 7T (9b)

Result (9b) is a consequence of our discarding of anharmonic
fluctuations, which are corrections to the semiclassical methods,
énd would produce finite bubbles in the nonsymmetric phase. In
other words, shape preserving finite bubbles are not classical
solutions of theory (1}, sc that finite bubble effects (which could
modify Eq. (9b))} can only be generated by anmharmonic corrections
{third and fourth powers of fluctuations), that are beyond the scope
of a semiclassical treatment. The only kind of Bloch wall a semi-
classical scheme allows, is the infinite planar soliton considered
here.

In this regard, we also point out that the neglecting
of anharmonic corrections made our phase tramsition to be of first
order. We.believe, however, that a more complete treatment (envolving
higher powers o% fluctuations) might turn it to be of second order.

We now ]ist‘the main features of our approach, comparing

them with the effective potential method predictions:-

(1) Thermodynamics does not allow the existence of macroscopic
solitons below Tc‘ They do not haye encugh statistical weight to
survive in the nonsymmetrical phase:  Therefore, the Universe today
is not-expected to have macroscopic Bloch walis, contrariiy to the

1-3,5

usual interpretation based on the effective potential method.

{2) False vacuum is not an issue in our scheme, because elementary
excitations {particles) move through a realistic condensate of

solitons, when T » Tc . In the symmetfic phase, instead of formulating

perturbation theory around ¢ =0 , we understand that the basic
configuration must be a more sophisticated (though harder to treat)

background field.

(3) Above TC ,- there is an ammount of energy that cannot be
redyced or associated to elementary particles. It is the solitons'

energy:

v m2 (TZ - TZ)
2a ¢

This energy of macroscopic nature can be viewed as a Linde type

cosmological constant]’z',_at T >Tc . But no such a thing exists

betow TC

Our calculation thus indicate that the primordial
Universe had a finite cosmological constant, that disappeared after
the phase transition. Therefore, the rate of expansion of the early
Universe should be sTower than the standard picture prediction.

Although it was our interest in cosmology that
motivated this investigation, we think our results migh also be
useful in other areas, where dynamical systems phase transitions

play a role.
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