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ABSTRACY .

The effect of external electromagnetic fields on non
relativistic solitons is studied. Although the solitons are distorted
by external fields, they still exhibit a Newtonian behavior. We
give explicit examples of such 2 phenomenon, presenting solutions
yhich.exhibit Hewtonian behavior for simple external fields.
Furthermore, general results Tike charge and flux quantization are

shown,
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1. INTRODUCTION

‘ There are solut1ons to non I1near f1eld theoret1cal
equat1ons (herew1th des1gned by sol1tons) wh1ch exh1b1t propert1es

s1m11ar to extended part1c1es For 1nstance, these so!ut1ons move

w1th constant veloc1ty, when they are not under the act1on of

externa] fue]ds, so they look very much 11ke extended ﬁee parhcles”)
He shall show that for some s1mple examp]es 1t is not 1nappropr1ate
to assaciate such solut1ons to part1c1es

Since Newton s 1aw has to be obeyed by class1cal non-rela-
tivistic particles under the actlon of externa] f1elds one has to check 1f ‘
solitons exhibit such a behavior under the actaon of external f1e}ds - that:
is, if so}itonsgare newgpnian pertioles. this is the question that
we address.ourseXVes tn thie paper,(rPrEVtous works on this subject
can be found in refs., (2) and (Sj.I-Ih ret. (3);-it wes ehown that
the sine-Gordon solitons do not exhibit a newtonian behavior.

We intend to show in this paper that a class of non-
relativistic solitons do exhibit a newtonian behevxor.

In sect1on II we set the ba31c equat1ons wh1ch

descr1be the 1nteract1on of a soliton w1th externai f1e1ds t and B

This set of equat1ons is then shown to be equ1valent tn that
of the motaon of a charged fluid under the action of external fields
E and B We propose also an alternative way of obta1n1ng Barac s
charge quant1zat1on cond1t1on on c1ass1ca1 grounds _ N
We show in sect1on III that if one is able to f!nd
solutions to therequatronslof motion descr1h1ng the part1cle at
rest, then'it‘is poesio1e to ffnd so]ut1ors wh1ch descr1bes a
particle exhibiting a newtonian behavior. Th1s is made exp11c1t1y
for the simple examples of time dependent;e!eqtric field, constant
[4 ahd B fields and for harmonic’osoiiletohéithe ootentie]s. o

:In-section-IV-we: get:- a:-better picture of the



classical motion of these solitons by looking explie%tlj'et'

exact]y scluh]e examp1e5 in 3 d1mens1ons. The external fields do
dIStort the so11ton that is dr1ven from a spher1cal sol1ton to a
'Clgar 1Tke so]tton (for B constant} or to a th1nner sol1ton for
other f1e1d conf1gurat10ns. Other possable “exc1ted modes" so]1tons,
j1n wh1ch the part1cle has an osc11]at0ry shape, are exp11c1tly 7
exh1b1ted - Ne also show that it is poss1b1e to blow up the so11t0n
" under the action of externa1 f1e!ds in certain c1rcunstances

Conclus1ons are draun 1n sect1on V
1. .BASIC FRAMEWORK AND GENERAL RESULTS

Let qh( X,t } represent a 5ollton I!ke solution to ‘a
non re1at1v15t1c non linear equat1on. ‘

S -

. 3 PEE SRR R : kD -
i35 ¢l ift b+ f?ﬁlfg{.;?F.) = -_G.E¢0| = 4 F(¢Q¢ﬁ) (2.1}

having zero momentum
T The 1nteract1on of the sollton w1th external etectro-
magnet1c f1e1ds w111 proceed via the m1n1mal suhst1tut1on scheme ”

Where g in (2 2) is the charge of the part1c1e, for d1mens1ona]

TE&SOHS(4)

In th1s way ‘we w111 be 1nterested in the so1ut10n to

the equat1on of mot1on
.,a c . . .
toge ~avVse + _E_%EEL 6= ¢ F(¢¢*l (2.3)

‘The  chrarge, -linear momentum and energy associated

with solution of (2.3) are given respectively by

3.
Q= sd¥E 4%y . . : (2.4)
B o= 7d3% e*(-i7)e ' o {2.5)
E = a3 for(iagle = Flo.o¥lae* + G(¢*,¢ﬂ (2.6)

' L et? '
where G(¢*,¢) ='-IO F{s)ds.

Before continuing we let us a comment on the system
of unit which we employ. The interpretation of solitons as
classical particles requires the introduction of a fundamental
constant with dimension of action (this fact has nothing to do
with external fields applied to solitons, it appears at the level_
of free solitons). We will chosose a system of units in which this
fundamental constant and the velocity of 1ight are taken equal to 1
and dimensionless.

First of all one notes that the eqation of motiofi of
a soliton under the action of external fields E and B is analogous

to the mot1on of a charged fluid under the action of the same f1e1ds

E and B In order to see this, let us write- ¢ under the form:

st) = Vo (Bt ets(ht) (2.7)

where o and s are real functions. By substituting (2.7} into (2.3)

we will get for the real and imaginary parts the equations:

3 + [ ds-qh,1 _ e .
Lo [ (__E__)] o - es
3% S *E_“’S ah)z - gV +H(p) = O R (2.9

where H{p} 1s given by:



o) = (o2 | %26 | g,

Bmg 2 P (2.10)

. W . .- -+ -
By taking the gradient of (2.9} and defining V as

v.9s-af L S e

‘we-‘obtain for (2.9).and (2.8)

s
g
<

” ¥ (¥ =0 (2.12)
LAY ¥'% F+9 yas - Yo (2.13)
3t . - m m . L

which are the equat1ons de5cr1b1ng the motion of a charged f1u1d
whose 1nterna1 energy is H(p), under the action of external f1e1ds

£ and’ B

Equation (2.11) imposes an extra condition on V that

rot' ¥ = = (2.14}

: slo
© oy

An interesting feature of equation of the equatioh
(2.3) is that by assuming only Ifial’l= to be even we can der1ve a'

"non- 11near Ehrenfest Theorem“, that is, by def1n1ng

X> E'Jd3£¢*§¢ IR S {2.15)
3
N I 4% ¢ (7-gk)e o (2.16)

the meamr value of the Lorentz force

-+ + i >
<qf +qVaAB> = J dix ¢* (q (2.17)

mi
+
=la
1
-
<3
i
L
po
>
o
b

5.
then it follows that
-+ B -+ S )
d<x> - <p> (2.18)
dt o m : Lo
d<+> 5 - o A o ' o ) o - o
P = <qk + q¥xB> o (219

Vw Equat1ons (2 18) and (2 19) allows us to Tnterpret
these so]ut1ons to (z 3) as descr1b1ng deformable newton1an partr-
cles, : ' o o '

By studying the.{ﬁférééii;n-bf.a-éoiifbn';iih:é i
Dirac monopole we shall be abie to get D1rac s quant1zat1on of the
charge within a c13551ca1 framework Ne w111 3ust fol]ow Dirac's
aréument. Under a gauge transformat1on
>

- - : ' ' :
A+ A+ Voo and Vo V- Bta ) ) {2.20)

b + 4 exp-iaqoa - (z.21)
It is possible to move the Di?écétring T to another

str1ng ' by mak1ng a gauge transformat1on for wh1ch .we have just

to requ1re that « in (2.20) and (2.21} be expressed by

4n

Where g is the monopole intensity and ﬂ(;) in (2l22)'i§ the solid
angle that an observer in the pbint ;L5395 the twe strings T and
r‘. The requirement that é be single valued under cthange in the

so0lid angle by an interger n times 4r is equivalente to

g =27 n (2.23)

wh1ch is Dirac's quant1zat1on cond1t1on It is not so unexpected that



(M

we can derive the quantization condition without using any guantum mechanics

III. GENERAL RESULTS FOR SIMPLE EXTERRAL FIELDS

We will study the motion of cIassicé] solitons undér
the action.of time dependent electric fields, constant Eand B
fi§1d§.aﬁd ffnalty-unqér'ﬁhe.qcfion of harmonic oséi]jatgr Tike
potéﬁtia]. .fﬁese are the sim§1e§t exampieé ¢f soluble problems in

non relativistic classical mechanics.

ITI.a - T1me dependent e1ectr1c f1e1d

In this case the potenC1a! V(x t} in. (2 3} is given

as
Vf(x,t} = -B(t)-x ' (3.1)

If we assume that a solution of (2.3) in the absence of external

fields is of the form:
so(fotl = ™t o&) | (3.2)
with w ~a real constant and p(;) a real functioﬁ, then it

can be ‘easily checked that for V given by (3.1} there is a solution

of (2.3} nder the form.

ft (t )dtl
. Ty S c1as {t)-X
- : t -
sty = et o L NS ALt
(3.3)
where_E

clas
action of the electric field

-

“and ¥

(t) 1is the classical momentum of the particle under the.

e
(t} = q E(t')at! (3.4)

Jo

is a solution to Newton's equation for-a particle under

clas

clas-
the action of this electric field. As we can see from (2.4) the-

solution (3.3) describes, in this way, an extended particie whose -
"distribution of charge" follows the classical trajectory and .
whose linear momentum is given by (3.4) if 2 is even. This sq]itqn
behaves 1ike a classical particle without deformations.

This feature {the particle moving wjthout defor-.
mation) is a peculiarity of the constant space electric field here
proposed. If the external field depends on X then one can expect
deformations of the soliton. Even in the presence of a uniform
magnetic field, the soliton is expected to deform as it will be
shown by using explicit examples in the next section.

. The question that we will address ourselyes 1s;
admitting that a so]ution' of equation (2.3) 1{s known, describing
a particle, yet deformed, does it move like a newtonian particle?
We will show in the case of simple fields that the answer fs yes.
We postpone to the mext section the explicit solutions descr1b1ng
a particle at rest(s)

let us analyse the case in which E and B are
constant. We know from our previous analysis that the electric
field does not change the shape of the solution. Let us then
search for a solution describing the soliton at rest under thé
action of the magnetic field. We call such a solution ﬁo(E,tI=.

(ﬁs-1qA(€ t))?
Pydg (B8] + —S— ey (£,8) = g (E21) FLay(5,t)) (3.5)

-
where R = - E A g.

1
2



: It is simple to check that an ;un'distorted _free particle
1ike solution is no longer a solution to (3!5) and consequently one
.expects that_the magnetic field will deform the soliton. However,
this déformed soliton will move in:a accordance with Newton's .law.
For a eOTiton.qndér the action of constant electric and magnetic
ffere thezequatiun"(é.B):pecomes '

(t+ THxAB) .
i 5 o%,t) - a¥(E et ¢ —m o(%,t) - ¢F(|¢|2 (3.6)
whére v is g1ven by (3.1).

A sotution to {3.6) can be written as:

B(F, )= axp(i B.F ~F(t) o (F -Reaalt):t) (3.7)

where E =m ic1a(t) - % §c1a{t)A B ' . o ' '(3.8)
. _ .

re) = Joe{BRaraten] + S S0 8}

0

;cia(t) is the classicle trajectory of a particle under the action

of these fie1ds, and ¢y (£,t) 1is a solution to {3. 5)

The ohys1ca1 mean1ng of the solution (3. 7) is simple:

the deformed part1cles moves in accordance w1th Newton's Taw - that
is, the momentum of the part1c1e is gaven by_Newton s law (provided
that _eo
classical path as a whole.

js at rest (4)) and its charge dietrtoution follows the

The Yast example that we w111 cons fder is the motion
of a soliton under the action of an harmonic oscillator - like

potential, that is given by:

V(%) = K;Z and £ =o0 ' _ (3.9)

let wo(g,t} ‘be .a-selution describing the soliton

at rest under the action of such a external field:

o, by v 52 Boery (E.t) =y SUNSE T Ea0)

If wé have a solution of {3.10), it is possible to f1nd a2 so!ut1on

which obeys Newton'® s ]aw Th1s so1ut1on is:

(Ft) = expli(Bey, -F-F(£))} ¥ (F-keya (1),1) - (3.11)

where Ec1a in (3.11) is theimomentum'of'the'soliton,obexing

Newton's law:

K3

Paqa = = k X q,(t) ' I :: T (3.12.a)
t
and f(t} e %J (';C]Za(tl'))z_ 'dt-r N e aa (3.]2.b)
‘0. N S wie s :

In th1s examp]e aga1n,.the part1c1e, yet deformed
moves in accordance with Newton's law. o o

He have been ab1e, 1n th1s way., to f1nd a set of
transformations [(3 3) {3 7),.(3. 11)] which separates the mot1on of
the center of charge from the internal motion for some simple
emamo1es of external fields. For more;compjex examoies ﬁe—have
been unable, as yet,to find such transformations.

. Explicit examples -of--nontopological solitons in -
three dimensions are very rare. Fortunately inlthe only example
wh1ch we know in three dimensions we are able to find explicit
so1ut1ons for so]1t0ns under the act1on of the external f!eIds

d1scussed in th1s sect1on



IV. EXPLICIT EXAMPLES WITHIN THE 1.B. BIRULA-J.MYCIELSKI MODEL

Motivated by the formulation.of a Non Linear Quantum
Mechanics preserving some basic properties of the linear theory I.
B. Birula and J. Mycielski(7) were led to a model whose tagrangian

is given by:

+*o[2n(%¢a®) -1] (4.1)

s ¥ o * $2¢: | 1
Lig,d, V¢l = i¢ 2. ¢ + ¢ —— +
{ I t 2m omi?

The Euler-Lagrange equation for ¢ which result

from (4.1) 9s:

o £n (¢67a%) = 0 (4.2)

The solutions to equation (4. 2) 1n ref {7) have a
probab1!1st1c interpretation which we abandon in th1s paper and
instead we interpret, in the language of Field Theory, as a classical
pafficﬁé - that is, a soliton. This viewﬁoﬁnt has been taken and
persued in ref. (8). . '

e A solut1on of (4 2) describing a so11ton at rest is

of the form

o(r, t) - A(m) it exp{- —lf ¥ .F}: ) o ‘ '(4.;).

where A (w)]? = —%-—exp(S:-Zmzzm)
i

The coup]1ng of the so]1tons to c1a551ca1 externa1
fie]ds is 1mp1emented via the m1n1mal substitution (2.2} which for

this part1cu1ar model teads to the fo11ow1ng equat1on of motion:

> 2 .
- av(X,t)e ¢ (V"gj) ¢+ —2 en(e*6a’) = 0 (4.4)

as
k=

embt

Qr
o+

First of all, let us search for a solution to (4.4)
describing a particle at rest under the action of a constant
magnetic field. In this situation we have that - —a%f:gfﬁ?b(gz),
and V=0 . Searching such a solution will be possible by making

use of the ansatz solution

bo(F8) = Alw) exp 2] vy (v, ) | (4.5)
where
|a(w)|? = a~' exp(l -2me? )} - _ (4.6)
and
VI(x,y,t) = Cldet A(t)] V"exp[i¢(t) - § % X (A(t)+1B(t) xj]-
0 202 k=1 j=1 SRS
(4.7)

with A and B (2x2)_ real symmetr{c matrices.

Substituting (4.5)-{4.7) into (4.4) we are led to

the following set of equations(7),

- 1 a
2metg +trA - £nfC?a?(det A)7] = 0. - , (4.8)

A . 7 . -
trB- _?_ - [ﬂn detA] = o R (4.9)

mez A = AB + BA - qb£ [A.0] ' S S (4.10)



2.
’ 2 4202 - ’ o
me2B = BZ-A%4p -.S%E_ i8,2] -_E_ﬂHEh 2 - o 4.11)
; 2 ‘ .
o010
where q = (_1 o)

We have reproduced this ‘system of equat1ons in order
'.to call the attentlon to ‘the fact that the c}ass1ca1 motion of
solitons might be richer than its classical point like countqrpakt.

This is due to the fact that in the case of extended particle

the system exhibits "excitation modes”. Let us—See how this happens.

One can find a sotution'?) to (4.8)-(4.11) in which
the only effect on the particle wilt{he_to deform tt. This

solution is characterized by:

Fj_—__z.zhh PR S ‘ -
A=T + +qEﬂ (1 0) (4‘}21
2 01
B=0 and ¢{t) = Bt, where B is constant and determined fronm

(4.8}. More explicitly one yets:

_ o . o oy , L
T T o252y
vol x,t) = (] L ; q’b% ) Alwlexp itg exp[- —l—-.
222
L /12+ 92B%e* rya, y2y - _3_]' . : _ TR
. L 22 . . Lo

As can be seen fnom (4.13): the soliton has changed: its shape in
-+
the orthogonal directions to the external field B. From a spheri-

cally symmetric soliten, it tends , for very strong fields, to a

~..thin cigar. From {3.7) one can see that this cigar moves as a

..¢lassical particle.
There is, however, ancther solution to (4.8)-(4.11)

in which the cigar size oscillates. "This kind of solution is described

by the ansatz:

is constant,

A(t) = alt)

‘ NCRES
3(t) 1 {4

B(t)

By substituting (4.14) into (4.70) we get: ...

me2a = 248

© Using that the energy -of this selutien is constant

- we get that

- ZR2,4 -
€ % - ANa + o + 32_a %.,+:3f3f£+ uli B L .o (8.18)

‘From (4.16) it follows that a . < a < ‘g

min max”

By getting g in terms of & and o from {4 161 and substTtut1ng 1n
(4. 15) we get S '

L RO F ORI /) STy
mi23 = 22 (e a + o Lna -uz'-g'—-tl"z&—) (4.17)
The solutions to the equation (4.1?) are periodic with other
periods given by: :

®max 2 - :
T - me_da o . (4.18)

) _Q°b-it 9@
L afcatatnag-al 5—4—)

In other words, there are_sd1itqn,so1ut%ons whose

shapes change in a periodic way. Their periods are given in (4.18).

These periodic cigars will, from (3.7), move like a newtonian

particle.

Besides these periodic solutions, we can find others

excition modas in which the 5011t0n5 rotate around an axes that

goes through by the center of charge and 15 parale! to the

,externa1 magnetic f1e1d. If we choose a new coordinate system



BTN

rotating with frequency w _éround the field direction we can

" write that:

MV = (M ¢ *o [2.M] - - : ' - (4.19)
. gwhere M is the derivative in our original coordinate system and
(ﬁ)rdt'is thie derivative in the rotating frame.

~ Using (4.19)"we have that (4.10) and (4,11} are

transformed to
. : . be?
mzZ(A)rot = AB + BA - (m22y - 5—3~) [2,A] : (4.20]
. R ,
me? (B) . = BZ-AZ+A - (m2lo - ﬂké__) [a ,8] - &2 9%b2 o, (4.21)
rev o S B s
Let us look for time independent solutions in the

in the frame. OQur search for such a solutions is easter if

we parametrize A and B in the following manner;

ata) L3
ae T y , (4.22)
L3 a=-ay . : . - : R T
B+31 Bo
B= (g aup, ) (4.23)
where & = (aj0;) and B = (g;,8,) aré two dimenstonal vectors and

« and g are scalar parameters.

" Substituting (4.22) - (4.23) into (4.20}-(4.21) we

4

get that: '
2 .
of + g3 + (me2w - 9%3—)- &, a3 =0 (4.24)
T 5 . + P quZ‘, - ; R . .
(5 - ale 4+ 88+ (me2e- S5le, A E =0 (4.25)
' 2p2 k4 '
B2 4+ B2- o2 - 32 4 4 4 RIRL 4 S (4.26)

5.
@8 + a.8 =40 . . (4.27)

A solution to the above set of equatiaons is given

by(7): e
. S 2D T T 7 o
a = % { Y1 + 16 {me2u- q2£_75+ 1) . [(4-28)
B =0
_ 2
B = - o (me2- EE%“)EZ AE
al=g

and the direction of a is arbitrary.
If we want the solution (4.28) to have finite -

energy charge and momentum, we have restriction on w:

(mz2y-
: 4

)2 > (4.29)
Making use of (3.7) we cén.get'from (4.28) a
solution that moves like an extended newtonian particle that {s
spinning around its center of'charge. '
One might wonder if this is not an artifact
of the external field we are considering., We shall see now that'

for a harmenic escillater Tike potential the same type of behavior

happens.
' For this kind of potential the equation .of motiom
is:
. 2y o2 .
Togb + SR, vy mp e d) =0 » S {4.30)
Zm

We shall look for a solution of (4. 30} describing the

soliton at rest. : The ansatz for this solution is:



LT L, : 1 3 3 i | :

"9, (xX,t] = ¢ [detA] ™ - - i .

¥, (%t [deta] ™ expiig(t) T Kby aARHBLE)) X
(4.31)

where now A and B are 3x3 - "Syemetﬁic matrices.

By app]y1ng the ansatz solution (4. 31) to (4.30)

wé' shal1 get the fo110w1ng set of coup1ed equatTGns.

-2me23 - trA '+ en[ c2a®(detA)”2)= 0 o 14.32)
1 ., d - ‘ a
-trB + — mg2 — [endetA] = 0 (4.33)
-G dt
meAh = AB + BA ' ) L (4.38)
me28 = B2 - A2 4+ A + metk 1 ' " {4.35)

In this case one can also find a solution in which

the particle is squeezed by the external fie1d.- The solution is

B

A

9 o _ _ ” o o
B = 0 ' ' B T O (4.36)
243
_¢(t) 3“oi££_£_ﬂe)
C 2m?
- S
Where ag - T + Y1 + dme?k (4.37)
. : ,
Explicitly one has
. 3 3ag+en c2a3 T2
Uolr ,t}=C g% exp i t {(———— ) exp - (4.38)
0 _ ! a P 2me2 P 2g2

From {4.38) one.can see that the . soliton has been

deformed due to the action of the external field. The rate of

the ~radius” of the soliton W1thout axtend f1e1d (R ) and w1th the

external field (R) is

. J 5 'LE . . i -
- 1 g .

In th1s examp]e the part1c]e ma1nta1ns its spher1ca]
shape but becomes sma]?er 1f K > 0 . For K < 0 the radias of
the part1c1e w111 1ncrease 1ts s1ze unt11 R ,assumes. the cr1t1ca1

size:
Repi = 72 Ry . (8.0)

This critical value is associated to a critical value

of K given by:

K = : o R (0.3

These resuIts are 51mp1e to understand on phys1ca]

grounds. K pos1t1ve means that the charge is positive (negative)

and the field points 1nwards (outwards] and consequentTy one does

not expect implosion of the particle as a result of the interaction
re5pon51b]e for holding the matter w1th1n the part1cle, but rather
a sma!] decrease of the radius of the part1c1e due to the attraction
of the field. K negative means.repulsion (since it_eprrequndsltqa
the opposite situation described abete) aed if_the.eaternaT field -
is too strong (K<K .) the particle does,npt stand this external
field and it wi]] exp]ode".— that 15, there 1s no, so¥1ton ) 11ke
so]ut1on for too intense rEpu1s1ve f1eld, as expected also on physical
grounds.

Using (3.11) and (4. 38) one: can find a sol1ton Tike

solution that behaves like a newtenian part1c1e.
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> _ Y, . % u o 2 ; P
¢ (rftl:f Ca* exp{1g(t2_- E;; (PiXC1a(t)) P, r-1f(t)}

(4.42)

*where Poq aNd F(t) are given by (3.12a) and (3.12b) respectively.
We wou]d 1ike to stress that when K<K i the
extended part1c1e“ g1ven by (4 41} 1ooses 1ts newton1an features.
T ) this example aga1n one can exhxh1t exc1tat1on
modes - that 15,'the part1cle moves w1th & radius osc111at1ng in

time. We just look for solutions such that

A(t)
B(t)

al(t) 1
B(t) 1 ' ‘ N (4.43)

From {4.33) it follows that
‘me24 = 268 S [4.44)
‘Tﬁé.édnééfﬁat{dh”df.énergy im§1ies that

e is constant = a + 82a" 1" +'Emi“g;rlF'znaru . {4.45)

Using (4.44) and (4.45) one gets that;
mzz.& =2a (ea» _".u2 ,+-, akna .-. kmiq) yz-_‘:— e s . . (4 .46)

Equatxon {4 46) exh1b1ts solut1ons in wh1ch the so-
Titon can be vrsua1lzed as haV1ng an osc1l1at1ng rad1us whose period
“ts atven by: . '

(!ma.x

T= I L matde
Amin

1 o (4.47)
u(eu-a2+a2na—kmz*)/2

-1
¢ = @ + kma® @ - %n . 4.4
where ¢ max - max “max ( .-8)
min min - min

From this and using the result (3.11), one can
see that this oscillating soliton will move_again_as_a-newtqnian
particle, o o . ‘ )

Gne can also find solutions to (4.31)-(4.34) which
describe a soliton méving along the <classical path and spinning
around its center of charge. Lets f1nd some -of these "excitation
modes“ spinning around de z axis.

First of all we make the ansatz that:

Al o)
A= . (4.49)
- (o %y _ '
_(a- o) L o
B = ’ 4.50
o Fo _ (4.50]
where oy = L ;1 + 4maik S {4.51})

and A" and B' are 2 x 2 real symmetric matrices the substitutidn

of (4.49)-(4.51) into (4.33)-{4.34) lead us to find that:

mLZA!

A'B' + B'A’ - o (4.52)
mL2B' = B'2 - A'2 4+ A' 4 meb k 1 ' - (4.53)

Now we choose an coordinate system that rotates

arourd the z axis with frequency w. We censider now the relatign:
(M) oy + o (o.M} ’ (4.54)

‘We parametrize A' and B' in the following any:
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_ ot 3 - o . '
Ae (C! u-2> . co (4.55)
2 aq
. [e+e; 8 ' |
Bai® plg N . .

where .o =(ay,03) and f ='(B1,Bz}r are two dimensional vectors
and @ and-f we scalar parameters. |

If we took for time independent solutions in the
rofating frame and substitute (4.54)-(4.56) into (4.52)-(4.53) we
shall get that: .

-

af 4+ 83 + mele 8,403 =0 (4.57)

13 -+ - +“ -+ ' . C
(E - a) & + BB + maly e, A g =0 {4.58)
B2 + B2 - 42 - 32 4 4 4 metk = 0 (4.53)
af ¥ = B =0 T ) ’ (4.60)

The selution to the system of equations (4.57)-(4.60)

is given by:

a = % (1 + /1 + 16(wme?}?) : i = T (ale1)
8 =0 (4.62)
x U}mflz AT

B e (4.63)

-+ - . .
and « is an arbitrary vector whose modulus is

a? = g2 - 2g [m21“m2 - '\r] (4.64)

.

In qrder,to'have & solution with- finite. charge energy

and momentum, the following relation has.to be verified:

If we.apply. the transfcrmat1on (3 11) to the solution
given above, the.new. solution that: we get moves like a.Newtonian
particle which is.spinning around.its center of.charge..

. The next‘questign;WQE‘@,bé“todnve%ﬁsatgsme stability
of the solution we have. Thié would be rélevantjjn_orderhto see if
all "excitation modes" are. stab]e or if they will . decay after _some
time. .This is a very 1nterPst1ng and difficult question.. In the ..
appendix we show that the solution in which the particle.is rigid.

(solution,(4.42)),is stable,_.

V. CONCLUSIONS

We have tried to unveal ‘some aspects uf tne class1ca1
motions of solitons. Some features of the motion are real!y
intriguing. Since so]1t0ns under -the action of external fields have
a great similarity with,the;motion;of«é_ﬂuid, the.-fact that such.a ..
fluid-exhibits "excitation:-modes® is net surprising.: Neuhaqg-=
exhibited some ¢of these "excited modes" explicity here.

One does not know if all these modes_are_stabTe.

We have shown, however, that the hquasi-rigid" mode is stable. In
this mode, the particle i3 distorted by external fields without
exhibiting any internai motion,

The fact that the seoliton, not being rigid, should
be deformed by external fields varying in épace is expected an
physical grounds. We have shown, however, thaf no matter ﬁow

complex these deformations are the soliton still moves as a Newtonian
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particle - that is, the distribution (or center) of charge follows
the classical path'ahd-the'ﬁbméﬁtum:of'tﬁé'éolftbh is given clas-
Qically. This was shown explicitly for simple configurations of
external fields, and all the solutions which we have shown have
finite charge, energy and momentum.

" Another featuré exhibited heré in a simple 3-dif
mensional éxample is that thé” soliton might be deformed in an-
irreversible way by strong and fast changing fields. We have showh
explicitly that theré is no Tonger 'soliton 1ike soTution for fields
under these’ ¢ircunstances ' '

~“We beligve that our results are in contradiction with
those of ref. (2), and this is somewhat puzz1ing in view of the fact
that® the non-relativistic Timit of sine-Gorden model ‘is a non-linear
Schrodinger model which, as we have shown hWere, exhitiits a Newtonian

behavior.
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APPENDIX

In this appendix we shall proof that the solution
(4.42) i3 stable., First.of all we add a small fiuctuation n to .

the solutiaon (4.42){¢)+
P(X,t) s d(X,t) +n(X,t) ' o C (AT

Substituting ¥ into (4.30) and keeping only the

linear terms in n we get that:

. 29 1,2 n*¢ : * '
‘?t”_+ - 3 kx2n + SFE NN en{¢*9a’) = 0o | - (A.2)
We define:
-+ = + > L ) !
n(r.t) = expfi(Pcy, r -f(t)} h{x -x .9, :t) _ . (AL3)

where By, .and f(t) are given.by (3.12.a}) and (3.12.b).
Using (A.3} and (4.41) and defining E = X ';c1a we

get that
iah +véh -5_21_h+ﬂl_+y_) - . hr ' E . (.A 4)
thrIm T T gt ome? '

Zao

t ,» and

v = &n C? a3

The solutions of {A.4) are:
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Ton (e, K S
R N (A.5)

j K. 222

h (T,t) = f (t)
Tk} (k) ;

‘where {ki} "is a set of 3 N fion negative integers and hk is the

k—Eﬂ eigenfunction of Y-dimensional harmonic osch]ator, and

idt e-16t : (A.6)

o = A e + B
{k;} Tk} 1LY

with A{ki} and B{Ki} constants and & s real and given by

3
(T +y -} (2k,+1) a2£2)? -1
i= ] J 0.
8% = 4 : . (A.7)
4m2e"

From (A.5) we can see that (4.14) is stable in the

infinitesimal sense.
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