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ABSTRACT

The "counting of maxima"™ method of Brink and Stephen,
conventionally used for the extraction of the corrélation width
of statistical (compound nucleus) reactions, is generalized to
include precompound processes as well. It is found that this
method supplies an important independent check of the results
obtained from auto-correlation studies. An apvlicatlon is made to
the reaction 2°*Mg(°He,p).
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- At low incident pnergiesi” the discrete part of -
the spectrum of emitted particles.in a light-ion ‘induced nuclear
reaction is usuwally accounted: for: by the compound-nucleus -
picture. . As the .energy is increased, the probability .of particle
emission while the composite system ‘is' in- its way- towards the
formation of the compound nuclews,. beccmes 1nportant. o
Consequently, the strength of:.a given -transition. is interpreted
as arising from cnﬁpound as: well: as: “precompound” (multistep .::!:
compound in the language of Ref. 1} processes. At still higher
energies, the direct contribution becomes dominant.

Recently, several measurements of excitation
functions for discrete transitioms in the reactxonsz) 27A1(%4e,p},
TiMg('He,p) and *%Mg(‘He, a) have been perforamed and subsequently
analyzed and intéerpreted in terms of the precenpound model
referred to above. The main argument® behind this’ 1nterpretation
has been the well evidenced symmetry of the angular distribution
about 90° (which excludes direct contributions), as well -as the
discovery of more than one "correlation width" in the analysis of
the cross-section auto-correlation functiom. It would be greatly
advantageous if one could subject the above conclusions to further
independent checks.

Within the conventional theory of Ericsen
fluctuations™’, based on ‘the compound nucleus model, Brink and
Stéphen4)(B$) have shown that the correlation width can ba very simply
related to the average number of maxima exhibited by the statisti-
cally fluctuat1ng exc\tatwon functionin a certain energy- inteTval.

It is the purpose of this letter toc generalize
the BS result.to include-the possibility of-precompound processes,
thus provid1ng an 1ndependent check of the resuits based on the
auto-correlation function, as mentioned above.

We first summarize the method “used in Ref. &, -
It 1s first recognized that the average number of maxima, K, per
unit energy range c¢an be written ass
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where p(g‘',c") is the joint probability distribution of the
first and second derivatives of the cross section g with
respect to the energy. We now specifically consider the case in

which only one channel is open : we shall denote the corresponding
average number of maxima hy-xl;_The characteristic function {i.e. the

Pourier transform) <P (s,t): of plc',0") is then found from the
key assumption that the.real and imaginary parts, x,y, of the

& b, element of the.S-matrix,~Sab; are independent Gaussian
variables with.zero mean (in -the absente .of direct reactions,
which is assumed:throughout) and Hlth the same variance. This
result, which was assumed by Ericson’ and Brink and Stephen. has,
later on, been fully proven by Agassi: et, al.ﬁJ.

The result for qD(s t} is
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where a, B and Y can be expressed in terms of the auto—correlation
function C.(8) of the quantity x

C, e = <;_<_cs); x.<_s'+_e>>._ e (3
and 1ts'deriyatives, as:

> -4chc "r - (4a)
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The quant;ty Cy (E) can be expressed as lRe C(&), where C(E) is
2

the more famlllar 5= matrxx auto-correlat;on function.
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' The quantity K) is then found from Eq. (1) to be

Ky =

Ii( Xg/ﬂs) : - .: 7- :. k 7 . (6a)
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which can easily be sﬁﬁwn to be feal.
§.

For C(&), Brink and Stephen‘) adopted Ericson's
models)
() . T . : :
Ceer = r T ' )
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which is based on the assumption of a marrow distribution of
the resonance widths. This restriction has been removed in
Ref. 6. :

Iﬁserting Eq. (7) into Eq. (4) one finds

2
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from which we obtain [see Eq. (6))

Ky = .__.0'1_415 I (-o-37), | ()

The .average number of maxima in an energy
interval AE is then

—

n = K AF _  (10a)

The width of the distribution of the statistical
variable n is estimated to be

Tas. n = (Varn = (% . (10b)

The integral I,of Eq.(6) was estimated as =1 in
Ref. 4, since 1(0)=1; we, however, calculated it numerically, and
the results are presented in Table I : for the partfcular case
a==0,37, Ii=1.04. We note 1n passing that our results, summarized



in our Eq. 8, differ from those found in Ref. 4, where one finds,
instead

=1 F- 2wr—- 2 =
O.(l Fa- 3 ﬁ r“_ )K'—-_'—P—:-a-.'..l(tll)

'leadieé. in Eq. (8}, to the factur 0.55 instead of cur @. 65,
The different sign of ¥ is immaterial, since I (a) = I (-a)

The abeve analysis can be extended to the case
in which these are K (>1} indepandent channels. The result. fur
KN ceu he expressed Just as in Eq. {9}, with the integral I
replaced by Iu, which fn turn.cam be .shown numerically to have
the property 1< I < I1 N maklng l even closer to unity.

. We now examxne how the above method can be
general:zed to- 1nc1ude precompound processes. Eq. (1) is
certa:n}y.lndepehdent of the model. The key assumption that
%,y are. independent Gaussian variables with zero mean and
- equal variance,was shown to apply, even in‘this‘cese, in Ref. 6.
An azlternative way to. see this is within the '"nested-doorway
model™ of Ref, 8§, where § is written 4s a sum of contributions
af the va?idus doorway classes o

S = Zsh,m" . ( b_.o, ab),  an

If- each Sfl is assumed to be distributed just as in a one~-
class. problem, and. the various classes are assumed independent
"of one another, the resulting &, will have the. characteristics
méntioned in. the above paragraph. As a result) Egs. (2) to
{6} will stxll:hold. The £) to be used in these ‘equations
is, . however,, different from that given in Eq. (7). HWe take
- here: the result provided by the "nested-deorway'model" 3 where
(s)@)appears as a sum over the various doorway classes. i.e.

(s) B AR -
) = n -
(. En Tt a ., (13)

from which one'then finds
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We remark here that Eq. (13} for the multxclass
5(5%2) may also be obtained without the use of the nested-doorway
condition, Ty »> Fy >>-...,.- This more general consideration of”
C{s(e) has been discussed in Ref. 9, where:it 'was shown that
the AWM result6J 10) for the multi-class C(€)} may be reﬂritten'
4in exactly the same form as Eq. (13). A T

We give below the explicit result for the average
number of maxima. T, that would appear ‘in an energy interval
AE, in the spec1a1 case of two classes of overlayping resonances

'aﬂ_“ I~[b’/js ) aE€

E AE 2 &:J+xz(_?r_ (r) ();/j
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where x -is defined as X% -—:'. with @ = Enan_,'and IH was

set equal to unity. '7? ) : a

In contrast te Eq. (10a}, Eq. {15) does not:
supply a direct mean of extracting the T s’ and the an's H
it does pruv:de, though. a check uf the vaiues of these pars- )
meters extracted from other sources, e.g., cross-sect1on i

auto-correlation analysis.

In order to apply the. above discussion to analyze
experirental excitation functions, several corrections have to be
introduced, as has been discussed extensively in the 11¢erature11)
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in connection with the one-class problem. The first one deals with
the . finite size of the energy step e, used in the construction of
the experimental excitation function. We now have 2 maximim at &
certain energy £, when the cross section at that energy is larger
than the ones at the t@o neighbouring points E+go and E-gq 3

X of Eq.(1) has to be redefined accordingly, and for a large
rurber of open channels Ref, 11b gives for & , the following

Rz AE b Y], € - Ceaa_ (16)
TE, Ctoy - C.c;s,a ,

where C(g): is the cross-section autocorrelation function, related

to € ’)(5) of £q. (5} by

C(E.) lcc )| B a”n

1n the absence of direct reactions. Again just as in the zhove
generalization of the BS analysis, £q.{16) is also valid in the
multiclass case, provided we use the appropriate form for C(s)(s)
{see £q.(13}). Relation (16) clearly shows the dependence of the
average number of maxima on the value e; of the energy step, and,
as ¢o. + 0, one recovers the BS result

. In the one-class case it 1s customary ‘to write
Eq. (16) ‘ds the BS result of Eq:{10a) times a correction factor
b{K) which depends on the ratioc ¥ = e¢ / T.

The second correction, associazted with the possibi-
14ty of counting Talse maxima in the experimental excitation
function due to the finite error bar y, is also accounted for by
means of an extra factor b’ {x.y)!bhc)lle. This anatysis can again
be generalized to the multiclass case.,

The third correction is associated with the finite

energy “résolution of the incident beam. whtch is alse cons1dered L

in Ref. 1lc.

+8.

We have applied our formula for A, Eq.({15),- to
the reaction *5Hg(®He,p) mentioned ear'l'ler2 . The correction
factor b(K) was calculated exactly with the help of Eq.(16).
and E_L_:I) » which involves the numer1ca1 evaluation of a
compl1£§ted integral, was estimated with the help of the
tabulated one-class results of Ref.llb. This, however. requires
a knowledge of the value of an *effective” X eff for. the
multiclass case. The value of b{¥X ff) was calculated as the
ratic of A of Eq.{16} to that of Eq {15), and the extracted
value of )(eff was then Introduced into the one-class curves
for ‘(K’Y) of Ref.llb. Finally the: th1rd correct1on. was

b3 )
found to be gquite smal1lla)

The results for o are shown in Table II, togethar
with the number of maxima outside of the error bar extracted
from the experimental excitation functien of Ref.2b. We abserve
that the experimental results lie between the two. extremes '
associated with just one value of T {sece caption of Tab!e 1),
although they are closer to the value of n asscciated with the
smaller correlation width {50 kev)}. A similar behaviour is found
for the theoretical A, : a o

The fact that the theoretical result, Eq.(15),
ltes between the two extremes just mentioned and is not, for
{nstance, simply the algebraic sum of maxima.asseciated with each
class individually, may be seen gualitatively by analyzing the
superpesition of two sfnusoidal functions of different periods.

In conclusion, we have generalfzed the one-class
BS result to precompound reactions. In contrast to the one-class
case, Eq.{15) does not supply a direct mean of extra:fing the -
r)ts and the o 's : It does provide, though, a check on the
values of the parameters extracted from other sources, e.g.,
cross-section auto- correlation analysis,
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Transition Rexp (n t LY
Po 15 19 + 4
a 1, :
Py 16 21 + 5
0.0 1.000 P; 22 22+ 5
G.1 1.00726
0.2 1.0199 P3 21 20 = 4
0.3 1.0344 Py 21 20 & 4
0.4 1.0494
0.5 1.0646
0.6 1.0795
0.7 1.09425 _ )
0.8 1.1086 Table II: HNumber of maxiima extracted from the-e.xcitation
0.9 .1226 functions of 2%Kg(*He,p) of Ref., 2b, in the
1.0 1.1363 energy range E’He=3 to 16 Mev (Co'!umn 2),
compared with the theoretical predictions
{Column 3)}. The values of TysTy,09,0, used in
Eq.(15) are those indicated in Ref. 2. If only
Table I: The function I(a) of Eq. (6b) tabulated the larger T {200 kev) would be present, h
for several values of a = y3/83 would be 6 ; on the other hand, for T = 50 keV

one would obtain n = 25.




