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ABSTRACT

In this paper we discuss some properties of the
two-dimensioral SU(n) non-linear sigma models, i.e., the
CP“"I ﬁode]g. ;The;_are T1/n  expandable énd ultravielet
renormalizabte. Our main resﬁit is a proof that the infrared
divergences associated with the topological gauge field are cancelled

in the case of Green functions of gauge invariant operators.

RESUMO

-Neste trabalho, apresentamos algumas propriedé-
des dos modelos sigma ndo Tineares bidimensienais com simetria
SU(n), ou seja, os modelos CP"" 1. ETés 550 expansiveis em s&
rie de poténcias de 1/n e renormaliziveis na regido ultravio
leta. 0 aspecto mais importante estid, porém, na demonstragao
de que as divergéncias infravermelhas associadas. ao campo dé'
gauge topologico se cancelam no caso de fungdes de Green de ope

radores invariantes de gauge.
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I. INTRODUCTION

“For more-than two decades, non linear sigma
models have played an important role in our understanding of
strong interactions. Initially, they were proposed by Gelj=
Mann. and Lévy(;) in order to have at one's ‘disposal models
incorporating the ideas of PCAC - and current-algebras;‘Aiﬂmugh
non renormalizable,; the four-dimensioﬁa] versions'Wefé very- -
useful for the derivation ofllow energy theorems:in the so-

called phenomenological Lagrangian era(z);'-ln-thE'seventies:the'two-

dimensional models have gained 3 very jmportant status for -

-yarious reasunsi3?4).u They are:.1/n ‘expandable, exhibit:-

dimensional transmutation and asymptotic freedem. ' Moreover,
while manfaining renormalizability, it is possible generalize
these models to encompass Yocal gahge*invéfiance(s’ﬁJl-“Af*thé
ctlassical level such models are integrable having an-infinite
number of conserved currentgstbﬁth-JOCEYandfnon']uca](3’¢’7).

:The:simplest“extensibnr'i's'th'e':C=P"'I médel(s)

~which is the theory of an: n-component complex field 27, ¢

described by the Lagrangianldehsity(s) (our cateulations Will

be done in the Euclidian region):
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The invariance of JZ under the field transfor-
mation. 2 = eiaz is trivially verified. Due:to this fact, =z
itse]f.is.not-an-observ;ble field, ~The latter must be a-gauge
inyarian; object..

Quantically, - the dummy field Aﬁ'rbeéomes an
‘independent field. .Within the 1/n- expansion, its propagator
develops -a.pole at zero momentum and consequently, 'the quanta
of the .z, fields are confined!8) . This -fact, on the other

hand,_raisesasume-suspicioué about the existence of the 1/n

expansion, - Truly, as mentioned in reference (8), infrared

divergences are :cancelled in the Green functions of gauge invariant

operators,- A proof of this-statemenf,-va!id to every order of
1/n, is..the subject of this communication. - This result will be
probably useful .in the formulation: of the bound-state problem
for this model. .

' The. paper is organised as-follows:

. " In section Il: we .present’ the Feynman rules -
adequated: to- the. l/n  expansion:-and discuss. the ultraviolet
structure. of. the theory. : Section-IILL isﬁdedicated_tp the proof
of the infrared finiteness of éhe.Green functions of gauge
invariant operators. Some remarks about possible extensions of
our result are made in the Conc]usions. We-have also added an
appendix with a brief derivation of the Feynman rules used in

the text.

II. FEYNMAN RULES AND ULTRAVIOLET DIVERGENCES

The Feynman rules adequated to the 1/n expansion

were given in reference (8). For completeness, we present an

alternative derivation in Appendix A. The momentum-space rules

are given in figure (1), where

Alp - _m___§£k-~—— is the =z propagator;
P-? +‘W\'2

. -.1 ]

-D(P) - [ HLF)] is the o propagator

with
Alpy . L ! tm JpZrdmE 1 P2
_-?.TF [PQ(P@. ,,4,“4)]'/.2 \/f'z+4m4' _‘/F,.z.'.
and
A v ’\
a (g : (SM, : J’_;E__..)b (p)
with
M) - [(F%‘lwz) Alp) _ﬁ{_) B
I .
: A
is the A = ;% pr?pagator.

{I1.1)

(11.2)

(11.3)

(11.4}

(I1.5)

The o field is a Lagrange multiplier introduced

in order to enforce the constraint Tz = f%.
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FIGURE 1

The graphs are to be constructed using the
above rules, but omm1t1ng diggrdms containing the graphs of

figiuré 2 as subgraphs
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FIGURE 2

“Note the po1e af the A - propagator at zero
moﬁenﬁuﬁ. Therefore, in the non re1af1v15t1c approx1mat1on,
the quanta of the 'zi‘ frelds (caIled partons i referﬁnce(B)j
interact via a CouTomb 11ke pctent1a1 In two dlmens1ons th1s
means conf1nement. ' o _ ' _

The o f1efd on the other hand does not have
any‘sanguiar1t1es for reaT momentum. Thus, there is no part1c1e.
11ke'1nterpretation for this ffe1d. 7 _

Angther consequence of the pole of the A
prapagator is that the Green funct1ons are, in genera1,1nfrared
divergsnt. However, in the spctor of gauge invariant objects,
these d1vergences are cancé??ed; 35 We dxscuss in the next
section. At present (assum1ng some kjnd.af infrared reguiator),
we want to arg&e that the model is renormalizable. This s done
as follows.. - . _

The deégree - of sunerf1c1a1 d1vergence assoc1ated
wauh a proper graph v can be obta1ned by power_count1ng and

is given by:
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where

F
1]

# of external wavy lines of

=
[«]
[}

# of external dotted lines of vy ...

Observe that 4&{y) does not depend on the number.

of external lines of the z; fields. However, as
shown by Aref'eva(g), if Nz > 2 , these divergences will be
cancelled. This result follows from the graphical ideéntity of

figure (3) which cpr%equnds to the classical constraint

zz ¥.c0nstant. Figure {4) provides an snecific example of how

this cancellation works. In that figure. graph (b) has a sub-
araph with the same divergence as the graph {a). If we contract
this subgraph to a point and use the identity_of figure {3) we

obtain_tﬁe.canceliation of these diyetgechs.
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FIGURE 3
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FIGURE 4

From the above discussion, we conclude that we
can restrict our ana1yéis to graphs with Nz € 2 . We have

then to consider the following cases:

=0, N =1. As the o field is not physical,

1. N
this kind of divergence will occur only in 1PI subgraphs of
Green functions with at least four z, fields {more precisely:

at least two 2's and two Z's). As argued before, these

‘divergences are cancelled.

2.0 =0, =0, N =2, §{vy) = 2. Convergence can
be achieved by adding a second degree po]ynomiaf on the external
momenta of the graph y . The corresponding counterterm has

the 3 b 3 Zd
e form a zz + auz uz

3.8 =1, 8% 20,8 =2 . &§(y) =1 . The necessary
counterterm has the form -%;}uig;z . Because of gauge invariance,
= .

the coefficient of the counterterm is the same as.in the previous
case. This can be readty verified by noting the following
facts:

{i) the countertems can be simulated.by application of Taylor

operators of degree &§{y) in the external momenta of ¥y.



{11} at zero momentum, the insertion of a wavy line in a
continuous one has the same effect of .a derivation with

respect to the momentum going through the latter.

4. N -2, N7 2 g , N = 0. Although each graph of this
type is lTogarithmically diverggnt, the sum of them is finite.
This is proved by the s;meﬁjrgument used in the previous case.
For example, the sum of the‘graphs of figure (5) calculated

for-zero external momentum is proportional to:
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FIGURE §

Thus, the sum of the -graphs of figure 5 is

finite.

5. N = 2 . N =0, N =2, The hecessary counterterm
is of the form hizluhu and, agaih, the coefficient turns out
n .

to be the same as in the cases 2 and 3 because of gauge invariance.

We conclude that the theory can be made uitra-

violet finite by adding to the original Lagrangian the counterterm

10,

azZz + b Duz Duz' with the-coefficients "a+ and ‘b fixed by

mass and wave function renormalization.

PIT. INFRARED DIVERGENCES

As mentioned before, the fact that the AU
propagator has a pole at zero'momentum implies the existehce
of severe 1nfrareﬁ divergences. These appeariéireédy in the
towest non trivia]_order as"exemplified_by the /graph of

figure 6.

FIGURE &

- Nonetheless, the physics is ‘in thé-sectoriﬁf-
gauge invariant objects and there we can prove the .cancellation
of the divergences.

To attain th1s goal we note that in the1nfrared
reg1on any graph is at most logarrthmtca¥1y divergent. Then
we prove infrared finiteness by ver1fy1ng the canceTIatibn of
the residues of the pole associated with any 1nferna1 wavy

tine. To be more precise we state our result in the form of a

theorem.

Theorem :  The . CP™"! Green functions of local
gauge imvarfant operators are"infrared finite“in any order of

the 1/n-expansion.
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By linearity, we need to prove the theorem only
for the case of Green functions containing operators of the

type:

{iy) {4} BRI Y{ w1 '} l,..i .
2 fun™? s, -{(-9 : % ){ P.) (‘Dt £ z))

Pr % f’, (A f,.. Ry
{111.1)
ey, Fex
?u = _j‘? (I11.4)

The objects (I11.1) constitute a basis in the
sector of formally localfgaugewinvariént,operatorsq To prove

the convergence, we observe that:

A
{i} As Au = ;%'" couples to the gauge invariant current
- N
ju =-ibuz-,.it"is sufficient to: prove the convergence for

operators ﬂithout-factarsunf Env -

(i) It is always possible to choose the loop momentz so
that the set of‘]iﬁes be]onging-tﬂ a given loop contains, at
most, two lines Joxnlng at a gaven vertex. one of the lines 15

assoc1ated wiht a z f1eid and the other ong wath a ?'.

It is useful to decompose the operators in {III.1)

into a sum of terms of the type

A CRREEEREUN B

where each Ia {and also each is a product of factors,

I
i By
each one being either a derivative au or a field lu
After these considerations, let us examine the
possible divergences asscociated with a given internal wavy

line. There are two cases which must be analysed:

19} At least one of the twe ends of the line beleng teo a
loop which does not contain external vertices. This means that
one of the ends of the line belongs to a lToop, € Jet us say.
which only contains vertices of the type Eﬂuz

As rem#rked before, in the infrared region, the
insertion of a wavy line is équfvaient to the derivative -
operation. Therefore, the Qraphs that differ from each other
oni} by _the internal vertex of . C in which tﬁe wavy line ends,.
summed up will give a total derivative with respect to the Teop

momentum through C . After integration this:gives zero.

As the infrared divergence is, at most, logarithmical,

we conclude that the graphs of the type considered add up te

an infrared finite result.

29} Nuné of the ends of the wavy line belongs to a Toop
containing only internal vertices. The reasoning is the same
as before. Here we also have to consider the pessibility that
one of the ends of the wavy line is attached to an special
vertex of type (IIL.1}. However, it is easily verified that
this case gives contributions to the derivative of the momemrtum
factors that, without the wavy line, would appear in the méntioned
vertex. We conclude that the sum of the graphs resutt§ finite
in the infrared region. This completes the proof of the

theorem.
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IV. CONCLUSIONS

We have'shown that tﬁe Green functions of local,
gauge invariant operators aré free af'inffared divergences.
Although our discussion can not in genera]\be applied to non
Tocal objects, there are some instances where the véTidity of
such extension is easily verified. Feor example, if the non
local operators are.functions of %, Audx” » where € s some
smooth Edntourn.(wilson loops, the 2nstantonrtopo]ogical charge,
etc.), one uses Stoke's theorem obtaining an expression ubvious}y
infrared finite. .

_ Another case is tﬁat of the open string
Z{x) expifyAudtz(y) . Although c]assica]]y this object can
be writtenxin terms of the operators (II1.1)} {by expanding
around the point x = y), it seems that quantically thére is
no simple argqument. '

We have considered just the case of 6 = 0 vacuum.
The tréatment-for the case 8 # 0 is.similar, because the
Feynman rules for_tﬁe latter possihility(g) differ from those
given in section II only by the addition of a new vertex
proportional to the topological charge J equu“dzx . It s
easily verified that these contributions do not produce new
infrared divergences. .

Due to the mass transmutation, the 1/n-expansion
is less singular than the perturbative one. In this context,
it is interesting to compare our result with that obtained by a
perturbative expansion of the O{n) non linear sigma modet(]ot
In that case it was found that the infrared finjite physical

objects are those globally gauge invariant.

.14,

APPENDIX

In this appendix we want to g'i;ré a brief‘ ﬁerivation
of the Feynman rules of fhe 1/n expansion for the cp]
model. Usinj functioaal.techniqﬁes_this wéé done in referenﬁe
(8).' Here we proceed.és fo]ioﬁs. First 6f.a1i, in ofder to
implement the c]assicai congtraint. Zz = nf2f ,.wé iﬁtroduce a
Lagrange multiplier field o(x), so that the Lagrangian for

the model becomes:
.2z pe "cr'(éz'_ o (A.1)
# = ,

A

The field equations are then:
(p = 2 2% . A.2
D (o, ) - ( 2, Il.lin%k q;__a- =0 __ (A.2)
Quantically, the o field can develop a non
zero vacuum expectaf{on'va1de'_<c> =m? #£0 . Making a shift
g+ g+ m? where the new o Hés zero.vaéuum expectation yalué,

we get (discarding a constant term):

— 2= _ _ o o
i,__ :Dp- —Dpa s E_'&"‘,.;—- G'(aE - n) : - o (A.3)

2]

~ The conditiua <g> = 0 gives

N
??k?
o= |t
g
o
-
)

_ _ m -0 (R4
sz-m‘g ',2} o

. -As the “integrat in-{A.4):7s Tdgarithmically
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divergent, we replace it by the reqularized expression

£p [ L 4 (a.5)
| en? (Prem®) o (PP a®)

where: the Pau11 V11]ars reguiator {A) shall tend to infinite
at the end of the caiculataon_ Before that, we 1ntroduce a

renormal1zed coupling constant fr(u) s defined by.

I I N LA (a.6)
1, 1 ¥ yiad

The use of {A.5) and {A.B) in (3;4} results into

*mass transmutation® by which a'theurv containing only dimen-
sionless parameters generates a mass.. In- the present case it

is given by:

e ot e (8.7)
w? :)1‘ ’*F'(' hif_)

Using {A 3),it is easy to compute the leadang
lln contr1hut1ons to the proaer tun palnt funct1ons for the o

and 1 fields.

rﬁ?ﬂr;_zf_dfk T S o (A.8)
o Emt (kF ) f;{k??}e*”""} . -

r_{zJ

%‘L‘glfl- ) {44 (prakl (pr 2k), - (A9}

XA - f
}NS i (hei'-mlj (‘3“2’Lh&gm"')[tb.l'éffﬂz}' '

(A.8) and (A.9) come from the graphs of figure.

Z (b} and:2(c.d} respectively. - As. it happens tn gauge thearies,

.16,
{A.9) has no inverse. To obtain a propagator we need to fix

the gauge what is made by adding gﬁ (auAu)z- to (A.3). in

the Landau gauge {a » 0} , we obtafn:

o propagator: D(f) : EAI?)1-1

with (A.10)
Alp). L L In V5w, pT
L PJ‘( P rhmy ] ve "F{#{M: - f le
: A
A, propagator: AMN Lpd ;( ;pw - ﬂ;ii) D (p)
with | , (R.T1)

J)A(f') :[ ( p*+ ‘i-m'&)'ﬁ"[rj . —f{t—}—{

The Lagrangian (A.3} and the expressions (A.10)
and (A.11) give the Feynman rules listed in the text. .The
diagrams of figure 2 are to be amitted since they have already

been explicitly considered.
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