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NON LINEAR o MODEL., SUPERGRAVITY AND THE SPINNING STRING ‘ superfield). upon imposing local supersymmetry, we are ied to an inveriant

lagrangian. Taking advantage of the . 1/N expansion{éz we obtain an
E. Abdalla and R.S. Jasinschi

- © : effective action where the original boson and fermion fields aquire
Instituto de Fisica, Universidade de Sao Paulec )

a’ mass dynmﬂcally(6}’(7} - This fact breaks the Weyl symmetry so that
the Gravitino anrd Graviton fields cannot be gauged away.. They

present, in calculating their propagators to lowest order, long

ABSTRACT range forces due to poles in the infrared region, that can be inter-

preted as Goldstone boson and Goldstineo. It is worth mentioning
We discuss the locally supersymmetric O(N) non linear . (4) (g)'
that in 1+! dimensions the Gravitino and Graviton fields do
sigma model and its conexion to the spinmning string.
noct present a free term, so that all their non trivial n-point

functions arise from matter fields guantum fluctuations. On the

other hand, taking inte account the finiteness of the string, we

I. INTRODUCTION restrain the domain of integration'®) of the longitudinal variable

(x1 or ¢} so that momentum is quantized, generating mass for the
Local supersvmmetry emmerged first in the context of . ) . '
(1) Gravitino and Graviton fields. This mass is exponencially small
the Neveu-Schwarz-Ramond (NSR) dual string model . There, in _
with respect to the string lengh. In this way we obtain a natural
addition te the reparametrization invariance with respect to the

(2) , the theory

Classically, it is possible to define a non-local

(3) From a :
. (10}

explanation of the string stability.
variables (o,t) which describe the string world sheet

presented a symmetry between boson and fermion fields
. (4) conserved charge, as in genersl non-linear sigma models If
field theoretical point of view, Deser and Zumino {DZ} showed

this charge survives quantization, it should imply a factorizable

that the NSR spinning string can be described by a2 1+1 dimensional . (11) .

S-matrix . Because of the confining properties of the model,
action, given by a free boson and fermion fields, which is invariant ) N-1

we guess that it shares some properties with the CP nodel,
under local supersymmetry {(including Lorentz and general coordinate az)

which presents an anomaly destroying non-local charge conservation
transformation symmetries). This introduced in the theory a Graviton . L. . A .
Finally, it is also worth studying two dimensional
and a Gravitino fields. which due to Weyl symmetry, could be gauged B . o . . .
world to mimic the reality. Non trivial behavior of four dimensional

away. : . . . . .
Y field theories, can be obtained in a very simple way using two

The existing field theory string medels dq not (13)

dimensional toy models, such as confinement and @-vacua Also

account for the string stability in a dynamical way. In the present . . . . . .
& Y Y non perturbative informations can be gathered, with techniques such

{6 (14)

work, we generalize the DI lagrangian allowing the original fields

as 1/N expansions or instanton gas calculations , which are known to exist

to interact. Starting with the O0(N) non linear sigma model with ) . .
g ) g in four dimensions but from a technical point.of view are not manageable.

(5) (where the b d fermion fields have ,
global supersymmetry (where ¢ boson an rmi In two dimemsional supergravity, we are particularly interested in the cancellation

. a geometric censtraint on the scalar - L
each N components, plus g of infinite mmmtltles"s)

due to férmion (against) - boson‘contributions.



In section IT we perform the functional integration

- on the bosonic and fermionic fields obtaining an effective action,
whereupen, in sec. I1T; through 1/N - expansion, the quadratic Green
functions of the Graviton and Gravitino are calculated. A discussion
of thé renormalization of higlier order terms is given in sec. IV
and in sec. V we discuss the finite version of the string. Sec. VI
‘contains the physical interpretation and in sec. VII we draw

conclusions.

II. THE EF?ECTIVE ACTION AND THE 1/N EXPANSION

Impasing local supersymmetry on the globally super-

symmetric¢ (O(N) invariant) non-linear sigma model(s) it can be shown
that the following Lagrangian is symmetric(*)(+)
- N — |1 _uv . o, 1o
R [é gV 8, ng 8 ny 1WAy 4
R 2 - WLV 1 = M U
g Bywy) 0 vy g G, B8 Yy Gu] (I1.1)

with additional constraints (vhenever two indices repeat, sum is implied):
é'.n. =10 oy Prnow 00 T o T i - (T1.1ayb)
The ‘action is:
s.=[d2x L JEEEERE IR _ ' Co(TIN2)

In the string model case, to be discussed in section

V the action is replaced by(g)

(#*) In ref. (iG) a detailed pfoof of this faet is given,

(+) In  order to taks into account the dimenmsion D of the space~time in which the

string is immersed, we should,in all formulas replace ¥ by N(D-2).

o L/2
S; = { dxg [ dx, L . (I1.3)
lw -L/2 '

The local supersymmetry transformations are given by

6ni =€ ¥y (£r.4a)

S0, = - i3 n, ¥ e - i IY' e + Ln(F, v)e I1.4b
i [T A u I 21 7) 9 (11.4Db)
Yo o4 owl

Sel = 2i G Y, E (I1.4¢)
a _ _ a _ _ a _ 1 ab b

SGU = (Dua] = {aﬂs + 7 W, E ) ) (I1.4d)

where

. uv v ab

i) g =e, &, 1
with nab given by the flat space Minkowski metric(*)

) YR = v ek

e: is the '"vierbein' (zweibein) gauge field associated to

local general coordinate transformation

iii) Gi is the real gravitino gauge field associated to local

supersymmetry transformation

N a .
iv) by and n; -are ‘N compeonent real fermion and boson fields

suhject to constraints (IT.la,b)

{(*) See appendix for notation.




ab _ ab
V) 0 WY

) is the spin conexion. It does not appear in lagréngian

(II.1) because in our représentation it is true that

Pt e =Ty v -0 | (11.5)
We have also the following symmetry for the gravitino fiéld:

Gu.f Gu + Y; 9 | _ (I1.6}

and the Weyl symmetry:

-1/2 : .
v+ A ¥ (I1.7a)
n=+n (I1.7b)
6 »c 27 | | '
TR . . (II.7c)
e » e ' o (I1.7d)

The Introduction of quartic counterterms in h and
G, fields to the lagrangian can modify the dynamical properties of

the model, whenever these terms turn out to be important:. These
quartic interaction can through quantum fluctuations generate a

mass, as in the case in Gross-Neveu(ﬁ) model. This mass, if it
exists is exponentially small in the coupling of the interaction,

j.e., if the induced counterterm has the form:

the dynamically generated masses have the form:

|2

mnoe . (11.9)

This could be important at energies comparablé te the
Planck mass, where the gravitational field becomes important(16).

Rescaling(*) n and_‘w

N -z P 7 i/ : _
n=+n"= {f?] N and - @ ey’ = {%%] ¥ (11.10)

we can write the functional generator for the Gréen functions as:

Z(T....)..-.- J [cub] [de;]. .gtfn) g(.rf:.- ZN—f) x

x eiﬁ i [ dthfg {% guvaunavn + %'ﬁfam +

aw "+ WY ne, = F @) @ ey ¢
L, In L E T ' .
AR --'-J"zEGJ : o {IT.11)

The following identity holds

_— e | _
$(n* - 77 §(Tn) exp 35 ] dx /T ) -

(3%

{[dc}[dtt][da] exp [d;(‘/__g[% (n? - %} -

ivE. $2

jﬁ MEw+Tcm - 2FE Tue - i W} (11.12)

+

() We will cuhsequently_omit any index, unless necessary.



We also rescale the Gu field

so that we can rewrite (IT.11}, using fii.lz} to obtain
- [ u 2 1 —
2(J,...} = J _.[dxp] [d_ea} exp | dx Y=g |- 5 agn -

- i IR
P gy« 20 o o yiy¥oa Tn o

| b

— - . 2
+lm[GY Yy +c:|zp—% u-—i%—+sourcetems] (11.13)
where AB and AF are given by the following expressions {we have
already included an m® in the boson part, which is completely
irrelevant at this stage corresponding only to a reparametrization
of the normalization term, and an M which appears due to symmetry

breaking - see next section.

. 2i
A —a(g“"FEa)+m2-——~
L v L

i

(TT.14a)

21/”

b= B - iM + ¢+ Z—CEYYHG) (II.14h)

After performing functional integration on the ¢ and n fields,

(1.13) turns out to be:

2(3,...) = J [dc}“'[‘#e:]- e'xﬁ{'i Seee ”

£-7 (T« Ear /N )

-1

SR T oA Lepga, Ly
(A ? R RO E/viﬂ +3E e, v 5, G } [IF. 15}

.The effective action appearing in the above expression

is obtained from the functional determinant of AB and A, resulting.

F
from ¢ and n integration. It contains also the o and $?

terms already in (I1.13), and reads:

S = - i Trlogf-gfa-im+3§~—/f¢+

N
eff Z

o (Cu'vauGV)] - Tr log /-% [L N (g"v /g 3,) *

/-g
sl
+ im? - H% _ ¢ —{T—c' - | dx VT gﬁm } (II.16)
N
where c¢' = i(c + y“quvau)

ITI. MASS GENERATION AND QUADRATIC TERM FOR THE FIELDS IN 1/N
EXPANSION SCHEME

The VN  order terms in the effective action lead mass
generation. The mass term breaks Weyl invarimme(ﬂ and this fact has
important consequences for this theory*. The ¢ field generates
the fermionic mass (M). Rescaling it according to: _

/?d, ‘ (III.1)
and subtfacting a constant from it, which will turn out to be its

vacuum expectation value, gives:
o' = ¢ - /N M2 (I11.2)

The N order ¢ field term is:

(*) See physical interpretation, sec. VI’ (26} o )
(+) There is mo contradiction with Lischer-Elitzur theorem , since it cor-
responds to a local transformztion which does not have any gauge field

associated to,because of (IL.5).
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. - ' : |
/N [Tr (F ey + J dx ¢;] - S (I11.3)

with the compact notation

R VL 3, - iM)°
It is clear that (III.3) diverges as N -~ » and unless the bracket
expression is equal to zero the 1/N expansion does not make sense.

We impose

g M ax? (1T1.4)
2 (2.77)2 KZ—MZ :
With a Pauli¥Villars regularization, (I11.4) implieé

| S 2 g2 . | . . :

gr < gy logh?/M (TII.5)

In an analogous way, we have for the o field the condltlon that
/N order term should vanish, which glves us:

1 1

e A Logh?/m?

(I11.6)
This shows that m=M , which is expected to occur, since we'ére:

dealing with a supersymmetrxc theory.

The quadratlc terms for the flelds are calculated in-

the 1/N expansion (that is, are given by the lowest order terms),

In particular, we define the quantum "tetrad” field asti’J:.

oF L b _ . n
W . ca__'a : ' (111.7)
a K
‘where 2 = 167G (G 1is the Newtonian “gravitational" coupling
constant) and n} is the flat space "tetrad”. In terms of the

quantum tetrad" field we writte the metric field:
O T Y LA M S S LA (117.8)
Rescaling h: )

u wo_ -1/ .y
ha + ha = (N) ha

.10,

such'thét . 2N—A_, where 1A is flxedtlg), makes k proportiondl

to 1//N , enabling us to obtaln the quadratlc term for hg {_én the
1/N expansion’ scheme. The Gravitino quadratic part is calculated,
approximating the metric and tetrad fields by its corresponding flat

space terms*. In this approximation the éffective action reads: °

$e¥f;~;.%¥ {Tr_log[Yééa —_1M13'21 %§'+ g% (G YbY Gb)] -
- ;I‘r 1v'..'>.g[i.(u +‘ mz’-')_ _E-% [ I:,Y-aab - c) (v B v_-_...iM)-"‘ X

] _ © o AN f_ ; . :
x (c + <ydg ad)} -.} | - (i;i;é}
Writting F =_Yaaé;iu. and_ 3'; Li@n4ﬂ¢] g.gé hé;é-éér:ﬁhé Gravitine

pure quadratic part:

J ak dy 6*(x) T (X9 6 ()

| =

i o Chean e hia eileld o]l
e s e i

which is formally written'as follows:

- % [— J d§'d§'§a(i)7b7a3§<XIF'1!y> Ychaz 4y13"1ix> G;(Y) *
1
+ % Tr { d; ﬁa(x)?bYaGS(x} <k|F'1|x>] ’ _.  o -?I?I.ll)
| 11
The corresponding Feynman graphs are displ=y=zd in
figure 1. -

(*) The “Gra_vitnn-other—fiel&s" vertices appear only in the subsequent orders.



1.

The flat space ¥ and n fields proﬁagators are

given by:
-1 1 - dr? eiK(X;Y)
(Zﬂ}zi ! 3 M+ 1€ .
and
] _ 2 ik (x-y)
«x|B 7 |y» = L T e . . (III.13)
(27)%i | k% - m? + ie

Equation (III.11) contains two terms which can be
handled in momentum Space. The first term (I) is given by:
s [ aBARE, (1) ¥P¥? (o rp) (B YT¥ K46 ()
I. = + f . - - > <
[(e+p)” - M) [k? - m 7]

(ITI.14)

: ) P
where the ie 1is absorved in M2 , and G,(x) = Jdpelpra(p} , etc.
Since(*) anch = 0 , terms containing ¥ and ¢ do not contribute.

Because m = M , we have:

z+E 2
J dk (Pbﬂcb)Kd, = indp.p 1 M 1 <
[(erp)®-f [e*-M7] ° d_ p? p? /p*-aM2p?

{2, /% _1u2zoz]]-
Zn E__i__P_:iM*P*'} ) % nbd{f Lnw - Ln(-M?) + T(-e/2) +
p? - /p*-aM’p?

+2 - /p - p" L, |p? ¢ VpPoaMPp?

2
P p? - /pﬁ_4szz

(II1.15)

(*} We use the symme try (I1.6) to restrict Gu to obey 'fu Gu"—* 0.

N AN

Analogously for the second term of (III.l1):

1 a? §_(p)v"v*6, (pIM
Il: T Tr (I11.16)
1 KZ_r"i2
Now since
dKZ*E
L —iﬁ[?(-s/Z) - fam - zn{—MZ)] (III.17)
=M
and- also
s . boa c dn ab_cdz = )
Gy y"y v G, = 4nT NG Gy (TI1.18a)
& vPv3s, = 2n?PE G, (TT1.18D)

the sum of parts I and TT is finite and can be written as:

1 <G/G 2 aaZy- 1 M2 1
5T {(p*.M°) = sMiZpppy |— + - ————— X
2 brd
bd p? p? /—pz-'.'lepz
< 2 fE#_aMin - 5 - ‘/P“_4M2P2 in {pg + fp"_q_szz}
“hd 2

.pZ - fpk_q_MZpZ

pz _ /pn_4szz ’ P

(ITE.19)

We have to add te (III.19) the term corresponding to the Gauge

fixing

I | U v
lesy =38 YquG (III.20}

so that the Gravitino two point function turns inte:




13,

T /G Gu/Gy : -
1 = =/ By :
7T PPN - 3R T - Jawyy (111.21)

The ¢ field pure quadratie’ part is:

= ) IR 2 LI 2.2

%_I.c/c (p2.M2) = — M T 4, (B2 Yp-aM’p (I11.22)
' (p“-4M2p2 pz - /Pk_4szz

The ¢ field quadratic part can be also be obtained by standard

methods(lg)

4

(III.zé)

% f$/¢ (p?.M2) = 2w

2 _gm2 "
EP aM ] in {PZ p"-4M2p2
/p2_4M2PZ pz - fp{""ﬁ-sz?

But to obtain the complete Gravitino and ¢ field quadratic parts

we have to calculate the mixed term for these fields. It is given

by:

Byu/c 2 an mi 1 2 o /ot -am2p?
Ty (p,M)---——_zan—P——Lx
Pk'4M2P2 P pz - {p“-4M2p
Ziwﬁpb
X [Zprp2 * ﬁpb(pz—QMz)]- — (1717.24)
p

In the same way as the Gravitine field has no kinetic term . the
Graviton has no free propagator in two dimensions. It is described
by the symmetric part of the quantum tetrad field. Writting the
metric field in terms of the symmetric (Suv) and antisymmetric

) parts of the quantum tetrad field gives:

(auu

.14,

e g s gl el e et ] annas
We fix the Gauge by adding to the lagrangiahcls):
Lsu“ = - 1'/:; :alsuv _:i-év'sa 2 . ' ITT. 26
fix . ‘2- in 7 o . ( . )
N '1. N S E - L
i mm 5 e [am,] B _ (I1I.26a)
“(whit nd wo_ 1 . ven e f;)
{(which corresponds to have aus\ =3 ] Su and aﬁv = 0Y." The

effective action, with speciazl attention to Gravitom field, is:

iN

Sepf = " T {Tr log/~g + Tr 1ng[K ﬁ“au + F + ..;] -

- Tr log [iau(g““frg 3,) o1 g™y 3uav; hﬁ;fgq-..l (T11.27)

Using (IIT1.25) égdr ayy = ] givés thé quadratic tefm.fdr Suv :
3 [ ax gy sV 95, () =
- - % Tr {_- %, [5uau F-1:|2 ) Z[Suva.u-av Bfl]z .
IIY v
‘i sgs"aa.uav B! - % (s¥v SUV)} : | (I1I.28)

v

Piagrammaticaly, we have the terms ITIT, IV and V in

figure 2. The momentum space contributions are given by:

*
Although there exist ghost coatributiens,they only occur at higher

order in 1/N.
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a5, (<,70,) (e, 42 ) e [y v P ]
[Ce+p) 2 -¥2)] [(x*-M7]

4|

A

G [“ B:l drfrey (6yrpy) (I1I.29a)
U et i

de? K K (K +P\a) (k +PB)

r .
3 ; : . (II1.29b)
i [{K+p)2-M:I [e*-M*] '

2
uvaB(p M%)

(IIT.25¢)

dr?r k
- uy
vaB(P MZ) T [

EK]

Adding (I1Y.29a), (ITI.29b) and (I1I.29c) gives. the result:

: dK2 l: 2
I Cle+p) 2-M2] [ 2-M?] n¢5”KUK P“,+ nGB.KUE Py TS GPB

- - - 2
* “u P pB FU BKv uePuFo ” ﬁaB KuPy

g gk P naBKugvpz:]  (II1.30)

We can use dimensionalz;egulari;ationczo) (2+e
dimensions) to get.the'divérgéhf'parf of (IIf.SG)
1 _88div .z w2y - pim 1 - ! .
C7 Tvas (P5M) = 5= 15 g _nuv”uB r(-e/2) . (III.31)

The fimite part of (III.30) can also be readily calculated:

1 .88Fin" g o S [
z ru\mB .(p M%) = 2 [(nuﬂnuv 7z nuaan) X

.16.

PZ + /pk_q_MZpZ _ szl .
p? - /Pu ~4M? p? . "

x[% P ~dMEp? En

n,n e PIM? 2 4 _AMEn? S ‘
. Muo"vs o |2 + /pt-amip? (111.32)

4/13"*41‘&219? - /p"-iszz

Taking into account that two dimensions is conformally

£1at‘®) ye can impose h_(x) = h(x)n, . and both the infinite part

wv
(T11.31) as well as the first term in (II1.32} equal zero.
We should call attention to the fact that Gravitino and Graviton

propagators are massless, y behaving as 1/p? in the infrared region.

I1V. BEYCND LOWEST ORDER IN 1/N EXPANSION

Up to lowest order in 1/N expansion of the
effective action we showed that the theory is finite. But if we
analise subsequent orders, in the effective action, we will find
that non finite amplitudes occur an example of a finite
amﬁlitude we have the two Gravitino and one Graviton term.

The part of thé effective action corresponding to
this amplitude is given by:
26l1s _ _ i :

eff e {%[{Ga 8 G F v (@, v 8t ) BT -

S

I IT

_ ad -1.= _ab =1 _ |7 ab La. o-icd -1
8% 3, F (G, vy G ¥ ] [Ga 87 v®oy FoyyT Gad BT +
111 o v

= b La =lcd =l = boa, -1 d
+ G, ¥ sabF Yoy GCBdB.fGaYYabF YGBdB

¥ . : VI.




7.

b.a b. c.d

+GYYBbP'rSGBdB +Zis“"auavB‘GYyaeP YYGdeB -
VII VIII
- GyPy?a, Bt gh g, FySyd G, ?d B’ . (IV.1)
a b h
1X

The corresponding Feynman Graphs are displayed in figure 3.
It can be shown that this amplitude is ultraviolet

finite.

Next.we have the two Gravitino-two Gravitons amplitude.

The terms corresponding to the amplitude are given by:

2Gl2s . ' -
Seft ='EN’2“TT{ L(G £ 5 Gb)F_-S LF (@, 2 v GF

I II

+

b La -1 b .a -1 cd -1
(EaYSGb)Fi~['(§aS$BbF Yy GCBdB
111 w
g, PPy F st a6 s +F SYaF(SYGBdB
v VI

+

1

+

c o4 -1 = .b 48 -1 e d - Caod -1
YSGCBdB)+GaYSBbF($YGCBdB +Y 76 B ):l+
VII VIIiE IX

— c d E Y] =1
@, v 3 FvSyt 6 aa B )[-1au(s§s°‘)a\,3 -

+

_ i aMegHO -1 . QU gvE -t
i0v(s"%s ) 8, BT - a5y 5T a0 B }+

XI XII

+

4 gHY -1 b a, o~} cd -1 b ga, o=t c.d -1
{~2i8 %%B )[Gas Y aF Y Y GCBdB +§a~.r sabF YYGC'adB +
X111 XIV

+G YbYaaF Tt C. adp™’ + T, Py WF R G, adB'J] +
X ' X1
c.d ~ b ,a o ed -1
+ T 8 vy B saF wsadB G T B o EaF % e B
XVII ' 7 XVIII-
+ T, Py o B gt B SYGBdB Ybyar-sap vy ads ™ -
' XIX : ' : C R
- T, 8 F (s"aF)wc B+ EFN PR 6F ¢
I oIl
»as™ o, B, 'YbYa 2 F” Ych 6, 3 B-l)} . (1V.2)

XXI1Y1

_ Figure 4 coﬁtains_the'Feynmah'graphs aésociated with
these amplltudes o . ' - _
Through a lenghy calculatlon 1t can be shown that
this amplitudé is not finite. We have to add a counterterm to the
lagrangean. Making analogous calculations for the quartic vertex.
of the Gravifpn and the Gravitino we ﬁqnclﬁde tﬁat_their“amplitudes
contain also a non finite term.which must berrenormalized through

the addition of new counterterms to the lagrangian.

V. THE STRING MODEL

" As already mentioned in sectiom II (eq. (II.3) the

‘string action is obtained integrating the lagrangian over a finite

region oflspace, i.e., the-string-lengh is finite. . This implies

guantization of the spatial component of the moméntum. In particular,



.19,

all formulas of chapter III must be réobtainéd,”fof thé finite lengh
case. For doing that task, we use a well know formula, very useful

in the framework of finite temperature quantum field theory(21}:

3 ' , . .
T ! ar (P} = { i%%z%TgE— = J £(p) dp + B v.1)
3 n,pn.'-" r" B e . - 1: . ., )

where B . is given by the sum of two. integrals in complex plane:
wie. 7 ese © o s
- o Efp) d f{p} dp .
B = [ eLiD [y * [ e2Lip 4 _ (v.2)

—o=ig Rt 1

We should calculate only -the expression (V.Z}, because
the remaining integral, corresponds to the infinite lengh cése,yhich

has beén already treated. Because of the exponencial behavior of

the integrands in (V.2}, for f(p) being any power of a rational -

function it can be calculatedlCiosiﬁg»the infégra; with a circle in
the infinite and calculatiﬁg by residues.
B Fdf‘thé'chse of'mass-geﬁeration we have no.contribution
:siﬁce-aftef'iﬁtegrétiﬁggdver the'zerdth~cbmponent of~mom¢ntum"(asi

in' (IIT.4)} we are 1ad to:

- 1 = 1 = £{k1) _ (VL)
w kZ-kZ-p? !
¢ 1 k§+m2 :
This function has no pole, and does not contribute in v.z) .- As a
consequence mass generation 1is untduched * in"the case of n, and ¥,
- We now turn to the Gravitino propagator. The calculation
is easierlf performed in euclidian space. The téerms to be studied

are {see (III.14)):

.20,

: (p+k) . k _ o
- | dx L P — ‘ v.4)
° Xy [(p+k)*+m?] (k¥ +m?] ki k*+m?

The second term remains the same as before.. The

correction of the first term of {(V.4) with respect to (ITI.15} is

given by:
w=ig - otie
. . “dky f].l\J(k’p) dk]fu\)(k_,P)
['W(Pu .p1) = dko eZLﬂEl_ ] + dko e"__k—ZLi 1 . (v.5)

- -o-ig . oo —ootig
where fpv(k,p} is given by the integrand of the first térm in
(V.5) (or (EII.15)).

There are contributions to (V.5) from the following

poles:
I L ' ' _ ) (V.6a)

ki = - p, - i/(p+K ) m? _ _ _ (V.6b)

to the first integral, and

P
3

+ i/ Km? ' - - ©(v.7a)
ko o= -p i dkgrp) it o S L (V.7D)

to the second one.
We are interested in the behavior of the pele in the
Gravitino propagator, which in the infinite lengh limit cerresponds

to a massless state, so that wg—calculate (V.5) for p? near zero,
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and L very big. 1In this case it is easy to see.that (V.6b) and
{(V.7b) produce a very much oscillating function. We turn to the

contribution of (V.6a) and (V.7a). Because of the lack of Lorentz
invariance, we calculate separately T,, and. T;, , whose results

are

kz
Top = - L [ dk, —2 L (V.8)
2m S m? 2L/k?en?
o 0.
=] -1
. fk2+m2
T, ® —-“2 [dko —_— (v.9)
Zm 2L/k? +m?
e ° -1
The two point Gravitino functions are given by (p2 =z 0):
\ .
<B4 (p)G, (-p)> = g-; + Ty {(V.10)
m
2
<Gy (p)G1(-p)> = - ;Lz T, _ (v.11)
m )

To calculate the inverse propagator, we should take inte account
mixed [G-c fields] contributions (see chapter III}. However, (V.10)
and (V.11) have a deep result: there is a mass gap exponencially
small for big L, providing a breaking of the strong force for finite

L . The same result follows for the Graviton,

VI. PHYSICAL INTERPRETATION

Finiteness of the string lengh led us to massive

gravitational fields. This is a nmatural explanation for the stability
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of-theistring: if it goes to infinity, the gravitino (graviton} mass
tends quickly (exponencially) to zero, origiﬁating a long range
force whose tendency is to collapse the striﬁg.
‘The quantum nature of our calcullation was of
fundamental importance. Classically there is no mass generation,
so that Weyl invariance ié unbr@ken." This invgriance permits to
gauge away the graviton and thé.gravitino.fielﬁsfzz);_and the only
trace of their previous presence were the sfring conditions (4 (230
~In the infiniie lengh:limit ail fields are confined.
Géuge:iﬁvariant objects, Shqgid-surfive. ,However):supersymmetry

invariance implies Lorentz invariance, and gauge invariant objects

are in this case space independent. Nevertheless it is a good

" supergravity laboratory, concerning divergence cancellations: un-

expected finite Green functions appear in the theory; such as gravitino

(graviton)_two point functions, and two gravitine-one graviton

vertex.

Classically, the model is yet integrable. A conserved

" non-local charge can be writtén, namely

Q - [ &YI&Y2E-(Y1'Y2]Jgk.(t-Y1)Jlgj (t.y2) - J dy [Jij(t’ﬂ * Zilij(t’)'):

(v1.1)
where
ij _ i3 iy 3,151 A i
Ju aun n n Eun + 3 Yy ? 7V Yy P or
e gtV ¥ nJGV -9 Y yE ot G, (v1.2)
L i3 i j , I
3y 3, noon nt oA | (V1.3)
RPES S A ooy i ' Vi
iy TV oY, ¥ AT 4 . . (vi.4)



'f'model.' For more compllcated models

Conservatlon of Q means

because of the ex1stence of many candléat

to the non~renorm&llzab111ty (sectlon IV}

cla551cal 1ntegrab111ty.___l

fHowever we' guess that quantum fluctuatlons sp01ls duuge qnmevnwlon,' '
(24) d S

es to the anomaly

VII. GONCLUSIONé AND OUTLOOK- . .=

_ We dlsplayed a mechanlsm for strlng stablllty It is T
'naturaI to ask if thls mechanlsm halds fu

models, fbr example _other symmetry group

T other quantum strlng

s. It seems that most

1mportant 1s the mass generatlon and consequently Weyl 1nvar1ance s

breaklng turns out to be a- fundamental fe
(19)

'consequence for other structures such as

of flavor and colour degrees of freedom

ature for thls klnd of ;:' o

, we w0nder about the

6 vacuun1 and,conflnement

24,

APPENDIX. ™

C Métric

Ny 5 diag §}ffll e

Sy, matrices representation’

-Yﬂ = 'yl =
» i 0} i 0
, 1 0
Too= :
0 -1
¥ o= gy,

" Fierz transformation:

8 = L
Sag Sap T2 [5up YT sap sAB uaoYAB]
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