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ABSTRACT

Weinberg-'t Hooft mechanism for rendering mass
differences finite, in conjunction with a.new representation for
these mass differences make it possible to. compute A = Mp-Mn .

The value obtained is somewhat Tow. but with the right sign.

- usual Forma11sm for A (Cott1nqham Formu1a

- Mass differences within isotopic multiplets,
Tike A‘=-Mp-Mn for nucleons, are usually of the order of «
times the mass. It is natural then to think that these mass
differences should be calcuylable as an g?ectromagnetic effact.
But nqwadays, we also believe that particles are systems composed
of more elementary things (quarks) and in such a case, mass
differences among the components could account for the whole or
part of A. Is the order of magnitude of the mass differences
then, just a mere accident?

In the framework of renormalizéb]e uﬁified gauge

! and weinberg2 proposed a mechanism whereby

theories, 't Hooft
mass differences within a multiplet are calculable radiative
effects. Weinberg showed that even-semirealistic models for. a
could be constructed and went on to explain in detail how the
mechanism works. Models of this type.provide a justification
for the idea that A should be computabie.

For a detailed description of Weinberg-'t Hooft
mechanism I refer the reader to the original papers as well as

further e]aborations3’4.

Ltet me just mention that in the type
of models that were studied by these authors, . the gauge symmetry
is broken sponeaneously in such a way .as to -leave all masses
within a multiplet, equal in zero order. Mass differences are
then calculable as radiative effects in second order in the
gauge coup]ing: Unfortunately, elaborations of these ideas in
the framéwork-of a2 pure weak-electromagnetic theory (no strong
interactions) have shown”that, more 1ikg1y than not, & would
come out with the wrong signa’q.

The next th1ng to try wouId be an hybr1d mode1

in wh1ch weinberg- t Hooft mechan}sm is 1nc0ruorated 1nto the

5,6 etc.). _The



problem with such a programme is the unknown substraction
function that appears in Cottingham's expression when dispersion
relations are written for the Compton amplitudess. In order to
avercome this difficulty I will derive for the mass shift, a
new representationrtc which the substraction function does not
contribute.

After a Cottingham rotation, the electromagnetic

mass shift of a fermion can be written
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where T{-Q?,iv) results from a Cottingham rotation of the

contracted Compton a'mph'tude7
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Q = ¥-k% , v = pk/M ‘and dkE “is the four dimensional volume
element in Euclidean k space.

Mriting dispersion relations, once substracted

for t, "and unsubstracted for 'tzg , we have
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in terms of the usual electron-nucleon scattering structure

functions W; and W, . The stumbling blocks in the use of

Cottingham's formalism for the calculation of A , are the
Togarithmic divergence of the integral over the deep inelastic
region and the unknown functien t,(-G%,0). The logarithmic
divergence would disappear if the Weinberg-'t Hooft mechanism
were operative. In the simplest version of the type of model
where this mechanism s implemented, that ¢f SU(2) x U(1} for
example, the heavy neutral gauge boson {z) contribution to &M

combines with the photon contribution for a net chan993

L L] (4)
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: z
Wheneyer that happens we will have, instead of Eg. (1),
a quE
&M = 5 T(-0%,iv) . (5}
(zm)® | Q2(1+0%/m2)

[n grder to derive the new representation for &M

let me start by defining

o
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the mass shift being a function of

T(-0%,dv) . _ 3u{0%,v)

7
1+0%/m?2 ag2 ()
Z .
The integratl
f d“kE :
I = [ o U(Q?,v) {8)
J .




is invariant under a rescaling ki = A kﬁ of the momentum,
imptying that
[ d%; - -
0 = X{81/3x) = i — 2207 3U/30% + v 3U/av . (9)
H 0 - o
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From Eqs. (6}-(9) we see that the mass shift (5) can also be

written as

'
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to which the unknown substraction function t,(-02,0} in Eq.(3)
would nct contribute. It is simple to see that, after the angular

integration, Egq. (10) can be rewritten in the form
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foermula on which the calculation of the proton-neutron mass
difference will be based.

The off-shell Ceompton scattering can be divided
“into two parts: coherent and incoherent scattering of the system
{quarks, etc.) that composes the nucleon. The coherent scattering
can be well approximated by the Born term since the other resonant
contributions are negligible in comparisonﬁ. The inceoherent
amplitude can be expressed in terms of the structure functions
that are measured in deep-inelastic scattering experiments.

With the elastic structure Funct‘ions9

el
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it s easy to see that the elastic contribution to T s
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This expression,sreplaced 1nt0 Eg.. (11},yields “the Born contri-

but1on te &M given by
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The form factors can be taken as®
6y(0*)/u = Gpfa- = (14QP/mE)TT o, e (16)

where q s the charae, tﬁe maanetic moment.of the nucleon
and_ m; = 0.7? GeV?. Since GE gnd Gé damp the integrand
quité fast_with sz , We can supress the factor (T+Q'%/m;} in
Eg. (15) {z has a 1arge mass, m, = 90 GeV R sayi .

. With an 1nteqrat10n by parts and appropr1ate_

changes of variables the integrations in Eag. (15) can be perfmmwd

yieldingTO
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in terms of R = 4M2/mg = 4.90 . After all that, the Born term
contribution to the proton-neutron mass difference was computed

as
et o L ossmev . (18)

The contribution from the incoherent scattering

to the mass difference is
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where the vin are as in Eag., (3) with the structure functions

restricted to the deep-inelastic region. The domimant part of

a(z) y» which will be seen to be small, is]o
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where the Hﬁ(j,Qz) are the Cornwall-Norton j moments of the

11

en Whenever the Callan-Gross.

non-singlet combinations F?'p - F3

12

relation 2 x F.= F, holds {as expected}, Egq. (20) reduces,

after the trivial v integration, to
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in terms of13

Mz (2,02) [en(0}/a2)] %2
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M-Z(zao.z) =

To simplify things I took -QO = 2 GeV¥ , A =0.2 GeV

and, for six flavours, d, = 1/2. From an integration of

en

. given in Ref. {(14) [ obtained M,(2,4 GeVZ) = 0.018.

e
FEP . f
Then, a numerical integration of Egq. (21) gave A(z) = 0.04 Mev.

The complete proton-neutron mass difference is thus,
o o= a8 alel o g5 mey (23)

almost within a factor two of the experimental Aexp = = 1,29 MeV.

We have here a framework in which A can be
completely calculated. A{l) was obfained from a substracted
Born term but, as it can be ﬂmwn]S, an unsubstracted Born term16
leads ‘exactly to the same result . Sc, some of the ambiguities
that pltague the usual formalism based on Cottingham formula do
not appear here.

The Weinberg-'t Hooft mechanism takes care of the
high momentum divergence while the use of Eq. (11) makes
unnecessary the kﬂuw]edge of the substraction function t,{-Q%,0}
(and contributions from fixed pales if they exist). Within

this framework we can now search for ways of improving the

calculation and obtaining a better value than (23).
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