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RESUMO

Discutimos aqui a determinacdo do limite superior
para a area de um pico em multicanal, com nivel de significincia
conhecido. Esta questao & particularmente relevante nos casos

em que a presenca do pico e camuflada pela flutuacac estatisti-

ca do fundo. 0s c¢3lculos .sao feites exatamente, permitindo que

0s resultados sejam aplicados nos casos de baixa estatistica,
quando nao sao validas as aproximaches gaussianas. Os resulta-
dos sdo comparados com simulacdes pelo metodo de Monte Carlo e

92

aplicados no caso de decaimento beta do Nb

ABSTRACT

We discuss here the determination of the upper
Timit of peak area in a muliti-channel spectra, with a known
significance level. This problem is specially important when
the peak area is masked by the background statistical fluctuations.
The problem is exactly soived and, thus, the results are valid
in experiments with small number of events. The results are

92y,

submitted to a Monte Carlo test and applied to the beta

decay.

* Submitted to Nuclear Instruments and Methods.

1. INTRODUCTION

A very frequent nrob1em in spectroscopy is the".
non 1dent1f1cat10n of a sought after peak in a mu1t1-channe1
spectra. In th19 31tuat1on we canrot decide For a nonex1stnm'
peak. We can on1y say ‘that the peak area is ]ess than or 7
comparable to the background statistical Fluctuation. However,

what is the correct value to the upper limit of the area and

the agreeable significance level?  We discuss here this question,

starting from usual hypotﬁesis in statistical methods iﬁ
experimental physics.

The upper 1imit of the peak area, A , must depend
on the experimental results: the background and total counts in
the peak region. The total counts-in the peak region will be
denoted by C . The background will be denoted by B , if its
true value is knewn (or its standard deviation is negligible).
Firstly, we will suppose that this hypothesis fs true and
subsequently we will extend.the calculations to situations where
the background is not exact]y'kﬁewh} "R must depends also on
the desired significance IEVeiQ identitied by (1—a){iob%.' What
we hope is to say that the peak area is less than A , being «
the error probability of the affirmation. '

The stat1st1ca1 treatment presented is not unigue
for peak area in mu¥t1-channe1 Spectra It is applzcab1e to'
any equivalent exper1ment 1nvo1v1ng a stat1st1ca1 background
and a contr1but1on due te a source. -

In our apnroach the f1rst and fundamenta1 step
is the determination of the probability dens1ty funct10n (p d, f.)
of the peak area after the experiment. This p.d.f. will be

identified by gf{a). The variable a 1is the peak area, if we



(1.2} In a more rigorous

consider it as a statistical variable
formalism, g{a} is the degree of belief in different possible
va1u§s éf a(3}._ fhe p.d.f. of the area after the experiment
should depends on the reéuIts, B and € , and on thg prior
p.d;f. . ‘The second step is the determination of A , which-can
be easily made if we know g(a}. .

. This same problem, fhe.determination of upper
limifs for non observed peaks, has been discussed by some authors,

h(4’5’6). Those authors consider two

with a different approac
hypothesis: the peak exist and the peak does not exist. If the
observed count exceed a critical limit AI , they recommend to
decide for a non zero area; if this critical value is not exceeded,
they reéommend to decide.for a zero area [(the peak does not
exist)(S). Nevertheless, there are'some problems in that approach.
If the observed count exceed slightly the critical value AI s
we should decide for a finite (non zero) area; if the count is
s]ight1y_bg1§w the c¢ritical value, we should decide for a zero
area. : Thys,iphere is a diséontinufty when the count is équa]s to the
cri;ical va]ue‘. This prﬁblgm is due to the two initial hypqtheses, the peak
exists and the peak does not exist, which are djscreets. Other
problem is in the decision "the pgak dqes not exist". This is always a
impossible decision or, likewise, it is a decision with a zero
significance 1gve1. We can never decide for.an exact value-of
a measuréd qyah;ity, whatever experiment we are dealing. This
implie§ a zero standard deviatioh and, thus, is impossible.

Add to that, atﬁgr problems related to that

approach has been pointed(T).

2. PROBABILITY DENSITY FUNCTION OF PEAK AREA

If the mean contributions of the peak area and
of the background in a multi-channel region are a and B

respectively, the probability of one obtaining C counts is

e (2B} 5y C
c!

P{C) M

This is a Poisson distribution with mean a+B-, and is correct
if a and B "are the true values. Ineq. {1} a and B are
parameters and .C a discrete variable.

The inversé problem, the determination of the
p.d.f. of a after the experiment, was stablished. very ear]y“’z):
if the p.d.f. of a before the experiment is a unitform frequency
functien on the axis (0,=) , them the right side of eq. (1) is
preportional to the p.d.f. of a after the measurement. This
result can be explicitiy shown using the Bayes theorem(s). Thus,

- B C
gfa) = N E;if:_llﬂiﬁl_ \ (2)

C.

where N1 is a normalization constant such that

J gla) da = 1 . {3}
]

Ineg. (2) B and C are parameter and a a continuous variable.

There is a usual gaussian approximation of eq. (2} |

R
gla) = Ny, (4)
et _ :




where a3 = C-B ‘and NZ is a normalization constant. This
approximation is va]id if C> 1, and is familiar for spec-
trescopists: the estimated value for the peak area is a -and
vT its standard deviation.

- Equations {2) and (4) are valid whé1thetmckgrmmd
is'exéctly known or has a negligible standard deviation. If

this does not occur, the expression for g(a) is
a+B)§a+B!
g{a) = f(B) dB . {5)

In this equation N3 is a normalization constant and f(B) the
background p.d.f. Frequently f(B) has a gaussian shape with

mean B0 anﬁ standard deviation op
we can expand the integrand to obtain_an épproximate expression

If so, and if € >> 1 ,

for q(a)
L ela et
g{a) = Ny —ro—— . (6)
vem o
In this equation 3 = C-B and o2 - cg + C ., Equation (6}, as

equation (4), is usually adopted, be{ng d the estimate of the

peak area-and o its standard deviation.

3. UPPER LIMIT OF PEAK AREA

If we know g(a) we can determine the upper limit
to the peak area, with a desired significance level. The

probability of an a value greather than A s

g = | g{a) da . S A A

The_probébﬁ]ity of an a value ieés than A is 1-a . Thus,
we can say that the peak area is less than A , with 2 stgnificance
level (1-a).100%. The A value depends on the experimental
results, B and C if the error in the.background is negligible,
ar B0 » Og and C, if the background'standérd deviation is -oé-; and on a .

Figures 1 and 2 show plots os A versus B for
some C values. These figures were obtainad using equation (2)
in equation (7) and are valid if the background standard deviation
is negligible. For example, if an experiment B = 5.3. and
C = 4, we can say that the peak area is less than A = 5.3 with
95% significance level (o = 0.05). 1If, at the same background
condition, B = 5.3, C = 6, the A value is 7.1 , with the
same (%5%) significance level,

An important property of the upper limit is the
addition property. If both-examples cited above, B = 5.3 and
C=4and B =5.3and =6, correspond to. the same peak in .two experiments,
we must add both to obtain the over-zilil upper limit. . Thus, we
anatiyse the result B = 10,6 and C =.10. This result cor-
responds to A = 7.8 with 95% confidence level.  This addition
property'can be proved . using, in the.Bayes theorem{s), the p.d.f.
of a after the first experiment.as the prior p.d.f. of a in
the second experiment. We can demqnstrate it also when the
background is not the same and for more than two experiments.

It is interesting to nmote that when C = 0 , the

p.d.f. of a after the experiment is

gla) = &% ' ' ' (8)



T

whichever is the B value. The upper limits to the peak area
in this case are 3,00 and 2,30 , respectively for o = 0.05
and a = 0,10.

If we use the gaussian approximation equations
{4) or (6}, in expression (f), we obtain a comfortable expre_s;‘.ion

for o . Using the error function

L = L c
z.
we obtain
A-3) | :
I|—= S i
@ = [ a } L (10}

In this equation @ = C-B and o = /T, if the background

2

standard deviation is negligible, or '3 = C—Bo and ¢ = C+u2

B
if the standard deviation of the background is op . The
addition property discussed above is-also valid in this case of
gaussian approximation.

We must observe that, no matter whichever are the
experimental results, we'never have A = 0. The value A =20
corresponds t¢ o« =1 din equation (7} and, thus, to a zero
significance Tevel. 'Consequént1y; we: neveyr decide. for a non

existing peak.

4, A MONTE CARLO TEST

The basic¢ hypothesis in our approach is the prior

p.d.f. of a .. Before the experiment we suppose a total ignorance
about the peak area and this is quantified adopting a uniform
frequency function in the range (0,=). Thus, im a Monte Carlo
simulation, we need to generate a true "unknown®™ a value in
this range. MNevertheless, this is impqssib!e but, luckily,
unnecessary. -We can restringe the upper limit in a W value,
if the probability that an a value greather than W generate
€ counts is negligible.

In the Monte Carlo test it was set the B and
C values and generated the true "unknown" a value, uniformly
distributed in the range (0,W). After that it was generated a
count value, obeying a Poisson distribution with mean value a+B.
If this count value was not equals to C , the a value was
discarded and a new one generated. If the count value was eaqual
to € the a value was considered. Following, it was examined
ff the a value is or js not less than the upper Timits., Table
1 shows the results of 1,000 a values considered. The Tast
two columns show the total number of incorrect decisions about
the true a value. The expected numbers in these two columns
are 50 and 100 respectively. The differences between these
expected values and the observed are compatible with the
statistical fluctuations. .

The results of Table 1 correspond to Tow ¢
vaiues and to & negligible standard deviation of the background.

Table 2 shows a Monte Carlo test for C >> 1
and a non-zero background standard deviation. In this simulation
the backgPDUﬂd was normaly generated, with mean BD and standard
deQiation ay = /E; . After that, it is generated a true "unknown" a
value and then a counting value. If this counting was equal to

a initially choosen C value, the experiment was considered;




if not, a new-background and a new true “unknown” -peak area was
generated. The upper limits of Table 2 were calculated using
equation {10). It was simulated 500 experiments.

The differences between expected and observed values toerrmmﬁus
prevision of the peak area are not only because statistical

fluctuations but also because the involved approximations.

5. THE 2%y DECAY -

We measured the residual gamma-ray activity that

gsz beta decay. The:ﬁurpose.was defermine the

follows the
feeding of the f383keV, 1496 keV and 2067 keV levels of 922r.
The feeding of this tast level was determined as 5.2 .]0'3%(8).
The feeding of the first two, characterized by 449 ke¥ and

562 keV gamma-ray transitians(s’g)

, Was not observed. The
knowledge of the total counts and of the background in the peak
regions can be used to determine upper limits te the peak areas.
These, by their turn, allow the determination of upper limits

gzlr

to the beta transitions to 1383 keV and 1496 keV levels,

A The 92Nb source was produced in 93Nb {(v,n)
reaction. The source was a metallic niobium layer, 1.0 g/cm2
thick., It was made three countings of the residual gamma-ray
activity which were summed. It was used a 53 cm3 Ge(Li) detector
and an Ortec 572 amplifier with pile-up rejector. The system
-resolution was about 2.5 keV at 1173 keV. Ref. 8 describes some
others experimental details.

Table 3 shows the obtained results. The C values

correspond to the total counts in a 8 keV region centered on the

peak. The Bo values correspond to the total counts of two

.10,

4 kéV region; at the peak region neighbourhood. We assume -that
these are the mean background value in the peak region, with
standard deyiation VF; . "Ysing-equation {10) we determine upper
Timits to-the 449 keV and 562 keV peak areas, for  a = 0.05

(95% confidence level).  Knowing upper: limits to peak areas,

(9,10}

conversion electrons: coefficients. ,'absorptimwcoefficients“l),

. 9
and using the 934 keV gamma-ray transitionsas~reference( ),
we can determine upper limits. to'.the beta‘transitions.

The upper limits of 92m

922

Nb  decay to 1383 keV

r levels are -3.3.:107°% .and 4.5 .10 3

and 1496 keV- %
respectively, with 95% significance Jevels.

The last.column of Table 3 shows the lower limits
of log ft values, determined: using usual tabies and-nomomamsuz).
These values accords to second.forbid&en transitions, .as expected

by spin and parity assignements(g};h-
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values greather than
¢ B " o.05 | Ro10 Ao o5 | Ro.10
0 3 10 3.0 2.3 50 106
8 5 24 9.6 8.2 43 95
10 5 26 12.0 10.4 45 99
10 10 22 8.1 6.6 45 103

TABLE 1 - Results of the Monte Carlo test foran exact knowledge

of B, The upper limits, AO 05 and AU 1o » Were
determined -using eq. {2) in eq. (7).
values greather than
Bo C W Po.os | Aa.10 R A
0.05 g.10
50 50 50 19.6 16.4 35 58

TABLE 2 - Results of the Monte Carlo test supposing a background

with standard deviation /B . The upper limits Ay o

and A0.10 was.determined using eq. (10) with «=0.05

and «=0.10, respectively.




FIGURE CAPTIONS

FIGURE 1 - A versus B -for some C . values to 95% (a = 0.05)

‘confidence levell

FIGURE 2 - The simg of Figure 1,”here't6,gd$ fa = 0.10)

N - confidence level. .
E(kev) | ¢ (10%) | B (10%) | Ay g6 (10%)] 1, (107%) | log £t : _

449 7467.4 7467.1 7.8 | < 3.3 > 10.2

561 79092.6 7908.7 - 8.5 1 < 4.5 > 8.9

TABLE 3 - Upper limit to 449 keV énd-SGJ keY gamma-ray peak
areas {AQ 05) in gszb 'decay and uppe? 1imit to beta
transitions (It}. Thé results correpond to 95%

confidence level.



Figure 1

5 20 B

Figure 2
1 % 1
10 15 20 B

———



