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GENERALIZED LANGEVIN EQUATION FOR THE EXTENDED

CHARGE IN STOCHASTIC ELECTRODYNAMICS

H.M. Franga and G.C. Santos®

Instituto de Fisica, Universidade de S3o Paulo,
5.P., Brazil

SUMMARY - We derive a covariant equation for the
motion of the extended charge and show how.a consistent’
description is achieved for non relativistic velocities.
If the external force is generated by the classical
stochastic zero-point electromagnetic. field the equation
of motion has the form of a Langevin equation with
memory. The memory function is due to radiation reaction
and is related to the charge density which we have assumed
£o be spherically symmetric and rigid in the non rela-
tivistic limit. Some deviations.from similar attenpts
are obtained. 'The extention of our results to finite

temperatures is discussed .

* Work supported by Conselho Nacional de Desenvolvimen-—

to Cientifico e Tecnoldgico (CNPg).

1. INTRODUCTIOR

Stochastic Electrodynamics is a theory which
received growing attention in the last decadél._ The
central idea of this theory is to assume that the zero-
point radiation is a classical and real field wh;;h
produces observables effects and.seems to have been
introduced by Planck and Nernét in the beginning of our
century. = Its developments, however, was only advanced
very recently mainly with the pioneer works of Erafﬂnﬁ?,
Marshall® and many othersl’4'5f6.

The role of tﬁis classical theory, Which is
able to give a satisfatory @escription of a small but
significant sgt of microscopic phenomena, is not yeﬁ
very c¢lear. It is obvious that it is a theory wﬁich is
more complete than the orthodox claséical physics because
Stochastic Electrodynamics takes into account the
interaction of charged particles with the radiation
emitted by all the matter that fulfil the universeT.
This radiation is identified with the gen&qxﬁnt radiation
and is considered random because it is generated by_a_
large number of sources that emits in;oherently._ Thg_
spectral distribution of this backgrpund radiation is

univocaly fixed by the requirement that it must be
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isotropic and homogenecus in any inertial reference
frame. Planck's constant enter in the theory as a free
pafameter, which is necessary to fix the intensity df
the zéro—point radiation and whose numerical value is
determined by comparing the theoretical results with
the experimental observation. In this way it is possible
to derive {on classical grounds) Planck's formulas'9
for the cavity radiation at temperature T as well as
to get a satisfactory microscopic description of some

10 behaviour of

5

systems as for instance the diamagnetic

charge& particles, the harmonic oscillator and a few

others successful r&sultsl'4'5’6;

If we consider this initial success it is
quité natural to raise the feollowing question: it would
be possible,.with Stochasﬁic Electrodynamics, to get a
safisféctory classical explanation of the whole set of
microscopic. phenomena currently described by Quantum
Mechanics? To answer this question it will ke maxﬁséry
to extend the Stochastic Electrodynamics calculations
to ﬁény other phenomena including those invelving non
linear fbrées as the hydroqen'atom for instance. At
this point Stochastic Electrodynamics found its major

obstacle and none non linear problem has been solved

in a satiéféctory way up to nowl. The main difficulties

are concentrated around the following aspects of the
theory: 1) the Lorentz invariant spectral distribution
of the zero-point radiation generates a non Markovian
stochastic processes and also divergent contribution to-
the kinetic energy of the freell and harmonically bound
particlelz; 2) the dissipative force associated te the
non Markovianh stochastic process is te radiation reaction
force in the Abraham-Lorentz approximation and presents
inconsistencies as runaway solutions or violation of
causality13’l4.

Those twe characteristics implies that the
Fokker-Planck type eguation for the probability dis-
tributionl (apparently the simplest way to study
phencmena involving non linear forces) can cnly be
obtained in an approximate way which is c¢ertainly in-—
consistent because the starting point, the so called
Braffcrd-Marshall equationl, presents the same short-
comings of the Abraham-Lorentz equation. Therefore the
problem is to establish the equation of motion to bé
used in Stochastic Electrodynamics. This will be the
goal of our paper.

The establishment of a consistent equation of

motion, at ieast in the non relativistic limit, is .

clearly the starting point in order to answer the



question raised above. The answer, no matter which,
will be quite impertant to our understanding of Nature.
If affirmative one can say that Quantum Mechanics is
the "stationary™ limit of Stochastic Electrodynamicslz.

If negative we shall be able to identify very clearly

what are the ingredients really non classical of our

microscopic world. Even this last alternative, much
less ambitious, certainly will advance to a more profound
comprehension of Quantum Theories.

The problem of getting a consistent equation
6f motion for a charged particle is very old in Classical
Electrodynamics. The consensus is that this eguation -

can only be obtained for extended charge513_17.

To
admit that microscopic charges are extended particles
not only permits the obtention of an eguation of moticn
without the inconsistencies of the Abraham-Lorentz cne,
but aisoc permits to justify why Stochastic Electrodynamics
gives finite results to the kinetic energy of the free
and harmonically bound particle for instance, despite
of the fact that the spectral distribution of zero-point
radiation is not integrable.

We shall describe, initially, how to get a
covariant equation of motion for a localized distribution

of charge and matter by using the method proposed earlier

by Dixoan. Afterwards we shall discuss very briefly

how the non relativistic limit leads to a consistent
equation for a spherically symmetric (monopolar) charge
distribution whose deformations are neqligiblel3’14.‘
Small deviations from previous worksll are obtained and.
we show that they are really negligible in the case of
the free particle. The so called dipocle approxinﬁtionls,
very frequently used in Stochastic Electrodynamics, is
justified in the case of the extended charge in non
relativistic motion. However those approximations are
possible only if the mean sguare charged radius is much
larger than a critical value which is approximately one.
over ten of the Compton wavelength for particies with |
the elementary charge. In passing we comment what . is
the order of magnitude of the charged .radius of_soﬁe_
microscepic particles, as the proteon and the electron
for instance, assuming that Relativistic Quantum
Mechanics gives a realistic description of those corpus=-
cles.

Thé equation of motion .obtained takes a form.
quite similar to the generalized Langevin egquation. of .

non Markovian theories of Brownian notionlt?720,

- The
random force is generated by the interaction with the .’

fluctuating electric field of zero-point radiation and
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have a temporal correlation function which depends on
the spectral distribution of background radiation and
is also a function of the Fourier transform of the charge
denéity. The dissipative force is the radiation reacticn

force and have a memory kernellg’20

like the generalized
Langevin equations.

The - effects of thermal radiation are discussed
in the final part of our paper. We show that the
expected dissipation due to the motion through the
thermal radiation with Planck's spectrum (not Lorentz
invariant) can be cobtained only if we include the inter-
action with the Lorentz magnetic force which we have
neglected before. We achieve a dissipative awverage force

. proportional to the velocity21

(Stokes's law) only if-
we consider the combined effect of the radiation
reaction force and the Lorentz magnetic force {treated
perturbatively in our analysis}.:

Based on the results we propose that the non
relativistic eguation of motion for a charged particle
in Stochastic Electrodynamics must be formulated for
the extended charge and the effect of the fluctuating
magnetic field should be included, even in the case of

non relativistic motion, if we want to take into account

all the dissipative effects which appear for non-zero

temperatures.

.8.

2. COVARIANT EQUATION OF MOTION

The covariant eguation of motion for an

extended charge was obtained before by Nodvik16 and

Dixonl?. However, for the reader convenience, we present

here the outline of Dixzon's c?teriv;a.tioh]'7

13

which seems
more simple as was stressed by Kaup
l We shall consider the particie to be a

localized distribution of charge and matter which evolves
in space-time according to its internal dynamics which
will not be specified in detail. We only assume that
the charge distribution-is stabilized by attractive non
electromagnetic fGrces.r

The electromagnetic fields F*Y(x) and the

charge current Ju(x) are functions of the space-time

coordinates x" =-(x0,§) which obey Maxwell's equations
3, PPV o= oar 0Py, (2.1}
8y Fw + 8, F}m + au F,y = 0 (2.2)

and the electromagnetic energy momentum density tensor

is defined in . the usual wayl3
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Wy o=l Guhov 1 pv af :
Te (x} = In (F FA 7 9 F FaB) . (2.3)
Local conservation of energy and momentum
together with Maxwell's equations implies the following

equation for T;v the mechanical energy momentum density

tensor of non electromagnetic origin:

a, ThVx) = - 3, oV = - PV a0 . (2.9)

We denote by zu(t}'_the spdce time coordinates
of an arbitrary material point of the extended ¢harge
with respect to some inertial reference frame; () =
E_dzu/dr = Y(l,é) is the four wvelocity of this material
point, T is the proper time and y = {1—[ _1/2
the Lorentz factor since we are taking the velocity of
hight ¢ in such units that c=1

The instantaneous mechanicai four momentum of

the particle is given by

Bl = [ a’x T %) (2.5)
z

in relation to the system in which . z=0 instantaneously

and the equation which defines the integration hyper-

A10,

surface £ is

L}
o

* =
. _ > o .
z.(x-z) = Y[xo—zo-z.(x—z)[ (2.6)
We can easily convert (2.5} into a explicitly

covariant form by writing

p;;(t) = J do, T;v(x) ; L 2.7
4 A .

where the =zlement of hypersurface and its normal is
written as the four vector dcv.U = vd3x éu(T) . In this
way p;(z} is understood to be the instantaneocus
mechanical four momentum of the extended particle with
respect to an inertial reference frame in which the

material point z¥ has an arbitrary instantaneous

3
velocity 2z .
The covariant equation of motion can be

obtained by taking the following limit
gl ] .
dp { ] =11 -
m _ v N uv
—2 = Lin [ [ a0, W) - | a0, T | () J . (2.8)
J } N
z I

{T+AT) {1

Denoting by V the four dimensional volume
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delimited by the hypersurfaces I(t+At) and Z(t), and
using Gauss' theorem we write (2.8) as a volume integral,
namely

[ i

b+ . 1 | 4 Hv

pP. = £im |7= | d4'x 3, T "(x) (2.9}

M Aty [éT J V- T J
v

since we are assuming that T;U(x) is associated to a
localized distribution of matter.

The generic volume element d'x , delimited
by T(t) and I(T+AT) , can bé written up to first

order in AT as:

1

a*x = 4o (1) [x”(r+Ar) - xu(T)] =

n
- dx 2
= ag, 3L v+ oAty (2.10)

where x"(t+At) - belongs to T(T+4T) and %" (1) belongs
to t(t) defined in- (2.6). Denoting by 2" = dz"/dar
the four acceleration of the arbitrary material point

U

z¥ is easy to show that from d[(x-2z).z}/dT 3 0 we

get

H .
‘dl% = 3V i-l—(x-z).:v::|+a“ , (2.11)

.12,

where a is an arbitrary four vector such that:

The results (2.4), (2.10) and (2.1ll) are the
requirements to put (2.9) in the following form in the

limit AT ~ 0

pY = - v(3y | atx PV T, (%) [1-(x-z).£1 . (2.12)

E

This equation  is a particular case of a more

17

general formula derived previously by Dixon and -

discussed by Kaup13 and by Franca, Marques and da
Silval4. It is important to mention that expression
{2.12) is fully consistent with special relativity since
its derivation does not involve the assumption that the
particle is rigid. Less éeneral and more cumbersome
approaches have being discussed by others15 under the
prescription that the shape of the charge distribution
is fixed in a sequence of inertial frames in which the
charge center is instantanecusly at rest. As far as

we know the appreoach indicated by Dixonl7 and ocutlined

here is the more clear and simple.
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3. NON RELATIVISTIC LIMIT

The equation of motion derived above will he

analized in the situation in which the charged particie

interacts with the external world only electramagretically.

In this way the electromagnetic field Fuu(x} will bhe

decomposed in two terms:

RV _ pHVv HV
Fr{x) = Fself(x) + gmdjx) ' {3.1)
where E;;j(x) are the fields generated by the current
Ju{x). Therefore the equation (2;12) becomes non linear
and very difficult to be solved in the general case.

However the non relativistic limit ]El << 1 , discussed

before by Kaupl3

14

and more detailed by Franca, Marques
and da Silva™ , presents remarkable simplifications if
some assumptions, only accountable in the case of non
relativistic motion, are introduced.

In the following we shall assume that the
deformations suffered by the particle are so small that
the corpuscle can be considered rigid to a good
approximation. The charge distribution p(§—§) will

be taken spherically symmetric and 7z will be identified

with the charée ahd mass center. The magnetic Lorent:z

.14.

force will be considered very small as compared with the.
electric one and we shall also assume that the particle

does not rotate and that all the torques are completely.

negligible.

With these assumptionsz the current distrilation

can be simply written as

0 = 1,3)) pG-E e
N B ~' . . '+ ;'+ - SR
= e(l,z) —d—-q—3- g exp[iq. (x—z):l , {3.2)
12m -

wﬁere 6(0) =1 and e is the total charge.

The same hypothesis permits us to write the
mechanical four momentum as p; 2 motl,z) where mo
is the mechanical rest mass of non electromagnetic
origin,

A}l these simplifications allow us t0 write

down the following equation14 for the spatial aqumehts

of {2.12)
3 - -
m, z(e) = F_ . +.i" =

- | + > %
z [ dﬂx[ﬁself&,t) + E(x,t)_]p{i—%) [:l+(x-z) .Z:I, (3.3)
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where E and £ are the self and external electric

self
fields which generates the self force gself and. the
external force. F respectively.

The calculation of the self force F 15 Was

discussed with great detail .in reference 14 and there-

fore will not be repeated here. The result can also be

written in the form

o

m . - .
F : =.é§_3(t) - [ dt alt)z(t=1) + 0(22) , (3.4)
Q

where m, is. the electromagnetic mass which is given

by

- >,
m = % d?x a’x’ O(f)ng )
J |x-x" |

ez " R
=S | & BP0 6.5

o]

and the function af{1) , the memory kernel which we have.

mentioned before, is defined in terms of the Fourier
transform of the charge distribution as

-}

2
%F dk k252 (k?)cos (kt) . (3.6)

whia

af{t} =

0 ————

It is not difficult to see that ot} has the following

16,

properties:
{ dt a(ty = 0 ' {3.7a})
3
drt T a{{t) = - 4 m {3.7b}
3 Ve " N
o
2 _ 4 »
[ dtr t° afx) = - 3 e (3.7c)
o
and
dt 1% a{t) = 0(e’r) . _ (3.74)
o

where f is the mean square radius of the charge
distribution.

The approximate Abraham-lorentz equation can
be easily obtained from (3.3) and (3.4) by making a
Taylor expansion of é(E-T) and using the properties

collected in (3.7). The result is
mz(E) = % e? 2(t) + 7, (3.8)

where m = m_ g is the total observable mass of the

particle.
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This last equation exhibits runaway solﬁtions
which can be eliminated at the price of violating
causalityzz. This means that equation (3.8) is an
approximation which can be usedlbut with care. However
‘the original non relativistic limit, namely (3.3} and
(3.4}, does not have runaway solutions nor vicolation of

causality if
n > % m ' {3.9)

as was shown before by Kaupl3, Frangal4 and more recently
" by de la Pena, Jiménez and Montemaycrls. This condition
implies that the charge radius of the particle cannot
be taken arbitrarily small. If we admit, only to fix
idea, that the charge distribution is Gaussian With
mean square charge radius r therefore

o r2x?

5ict) = expi- K {3.10)

and conditicn (3.9) is equivalent to
nir: > — e {3.11)
) - 3 ’

This restriction on the radius of the corpuscle

.18.

is also important for the calculation of the external
force F generated by the interaction with the electric
field of zeroc-point radiation as we shall see below.

4.5 the zero-

Following the notation of Boyer
point electric field will be written as a superposition

of transverse plane waves

, . S
E=re [ |a% 30“2,1)h(w)emp[_ii€.§-mt+ioﬂ’c‘,x):i (3.12)
A=l -
where o(k,)\) are random phases® ®, Z(%,») are the
polarization vectors, w = |§| and the function
h?{w) = w/27® ({(our units are such that h=e=1).

With this notation is easy to show that (3.2),
(3.3) and (3.12) gives the following expression for the

external force

o

= J a'x E(X,t)p(x-2) [1+(§—iz’_).'§]

[

[ i |

2
Ree § {dsk Bk, Ohin) exp +.Z—iwt+ia(§€,x)]5(k2) ,
A=l

! (3.13)

where we have neglected the term proportional to the
acceleration % . We can disregard this term only if

the charge radius is sufficiéntly small as compared
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with the inverse of the acceleration namely
2] r << 1 . (3.14)

This restriction introduces considerable
simplification in the equation of motion (3.3) but would
be in conflict with the causality condition (3.11), for
the Gaussian charge distribution, or (3.9%) in general.
We shall return to this point latter on.

Expression (3.13) for the random external
force can be further simplified in the case of non
relativistic motion. If we.choose,iwitﬁout loss of
generality, the origin_of the coordingte system and the

origin of time in such a way that ;(t=0) =.0. then

exp[—iwt-bil-z.;(t):l =
. .
Lo
- exp{-—iu}t[ -5 [ & z(t')}} = exp(~iwt} (3.15)

[o]

. . .
because !kl/w =1 and |z] << 1 . The above approxi-
mation impligs that the random force can be taken as a

function of time only and is usually called dipole

approximation18 in Stochastic Electrodynamics. We must

.20,

note that the assumption of non relativistic motion
[%[ << 1 , required to justify the dipole approximation,
will be discussed latter and, as we shall see, will
also restrict the charge radius cof the particle.

In summary all these approximations means

that the external random force can be written as

2
Fte) =Ree § | a% E(E,A)h(w)a(kz)e@[-mtﬁo(E,A):] ,

=1
(3.16)
while the eguation of motion takes the form
Moy = N 5 > '
[mo - —?] z(t) = - dt a(t)z{t=-T) + F{t) . (3.17)
o

which is guite similar to the generalized Langevin
equation from non Markovian theories of Brownian

motionlg’zo.

4. STATISTICAL PRCOPERTIES OF THE FREE PARTICLE

11

In recent work de la Pena discussed with

great detail the statistical properties of the random
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motion of an extended charge which obey equation {3.17).

The only point in which our analyses différs from that

of de la Pefiall

isrthelfact that he introduced a cut
‘off in the high frequency contributions for the random
force (3.16}., 1In our case the form factor pH{k?) which
appear in (3.16) gives a natural attenuation of the
high frequencies and, as we shall see, assures finite

> of the sguare

result to the ensemble_average <é
equilibrium velocity.

For what follows we need to calculate ensemble
averages of some physidal'quahtities. These averages
are simply averages in the random phases o (¥,2) which
appear in the zero-point electriec field (3.12). This

is a standard procedure4_6

and we only giwve here,
without proof, a useful formula for the average of the
product of the components of twe random vectors.

Consider for instance a vector i(t)' which

can be written as

Rit) = Re § [ da’k Ak, exp[—iwt+ia(ﬁ,l)1 4.1)
) -

and a vector B(t) with similar definition ( a(kK,))
replaced by B(E,A)). The ensemble average of the

product A;{£)8;{t') and denoted by <B; (£)By(E")>

22,

will be given by the following ex'press'ionz3

(

2

Il o~

. 1
<Ai(t]Bj(t')> == Re

3 a*k a; aé,:\)b;f o?,x)exp[iw(t;t'ﬂ. (4.2)

With the help of this formula it is easy to
obtain the correlation function for the external random
force at zero temperature. The result follows from
(3.16) and is given by
s

e 152, .2
7?'6ij dw w® p* {w*)cos (wt) . (4.3)

!
(o]

Wine

<Fi(t)Fj(G)> =

Here we just want to mention that the usual

19’20, namely the

fluctuation-dissipation relation
proportionality betwsen <E>a(t) and <§(t)-f(0)>

where z is the equilibrium fluctuating velocity, is

not valid in our approximation of Stochastic Electro-

dynamicslas can be seen from {4.3) and_(3.6).

We shall discuss now a few properties of the-
Statécnary solution of “the equation of -motiocn (3.17).
The :eadér interested_ih thé*éﬁéiysis'of-how the
étaﬁionar? regime is reached should léok ét the paper
by de la PeRa’t ﬁhergithis:poinﬁ is-discussed in detail.

The stationary velocity which is 'solution of
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(3.17) can be written as
Z(t) =.v +z t8) (4.4)
where Ef(t) is the fluctuating part with zero mean

value and v is a constant vector ([3[ << 1). It is

simple to verify that

> +
- 2 E(k, A\ h{w)d (?exp[—lut + 1o Gk, 2)]
Ef(t) =Ree ] [dsk T - {4.5)
— . ™
A=l ) &) - iw{m -—e]
o 3]
with
Blw) = [ dt aft) explivt) =
o _
e =i dn o+ 2 2?4 0(e’wir) . (4.6)
i 3Met 3 : : 4 :

where we have_used-the p;operties.(3.7) of the memory
function- a{T)

If we want -to make-a.careful analysis we must
verify under. which.conditions <%;>,<< 1 in order to
check the consistency of the non relativistic treatment.
The ensemble average <é2>-_is calculated by.using. (4.2)

f
and {4.5) and the result is

.24,

<éz> =2 e J duw w B* (v
T m - 2
Im -8y 2w
o o 3 w
r ~2 2
=2 e [gy whlw) (4.7)
Ton? dety?
5 1+
9m?

if we use the expansion (4.6).

The explicit calculation of <;;> depends on
the details of the charge distribution. Since we are
only interested in the gqualitatiwve aspecté of the motion
we present the result for a Gaussian charge distribution

whose mean square radius-is r . In this case

o

32 02 et ) _4 e? rlw?
<Zf> i "'-; J du w[l g 2 exp| - 3 - (4.8)
o
or more explicitly
3 2 L3
<§f> = _3e [1 - % & + . . (4.9)
mm2g? L mir?

Therefore the motion is non relativistic if

m?r? >> % e? _ (4.10)
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which is a result that does not contradict the causality
condition (3.11) obtained previocusly.

The average acceleration given by the fluctuating

zero-point electric field is such that

5 w oz 2,.2
<zl» = % L [ duw m’[l - dew ]exp[— r3w ]
m? | 9m*®
)
>2
3<w >
2 £
- % e . {4.11)
mir* r?

for the gaussian charge distribution. This means that
if <é§> << 1 then <z?>r’ << L which is a result
conslstent with the assumption (3.14) mede above.

The conclusion we reach is that the equation-
of motien (3.17), as well as the approximate expression
for the randem force (3.16), are consistent non rela-
tivistic limits of the covariant equation of motion
(2.12). Thée motion of the extended charged particle is
causal, dees not exhibits violation of energy conservation by self
acceleration (runaway} and stay non relativistic in the
stationary limit if the mean sguare chargeé radius is
much larger than a critical radius of order e/m . This
condition is verified for instance by the spin 0 nuclei

which are spherically symmetric and have charge radii

and Sharp

.26,

which are much larger than the. critical radius we have
mentiored before. The experimental resultsz_4 for the
pion mean square charged radius gives r, = 0.8z (0.1 fermi
and therefore large than the critical radius which in
this case is e/m = 0.1 fermi. In recent work Moniz
25 obtained the generalization of the classical
Abraham-~Lorentz equation starting from non relativistic
Quantum Theory for the spin zero particle. The eguation
of motion they arriwve, as the classical limit of
Heisenberg eguations with self electromagnetic inter-
action, has the form (3.17) except.for“the'teﬁn m, 2/3_
Their expression for the memory kefnel (T} 'is o
analogous to (3.6} as if the.quantum partiékzﬁms ex&aﬂe&
put with a charged radius of order of the Cbmpton wave-
lengh and therefore larger than e/m

Our analysis cannot be applied to the proton
and the electron since these particles have a more
complicated electromagnetic structure because they have
spin and intrinsic magnetic dipoie. Despiie of this it
is interesting to rgmember the existing qualitative
estimations for the charge radius of these particles.

One of the simplest one is due to Mollerzs"'

and is based on the fact that the spin vector $ of

an extended object with mass density Dm(;) , total
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mass m and a maximum radius r obey the following

cbvicus innequality

(3] = H ax xx¥o (¥} ¢rm . C o (4.12)

H
.
N
|L’a+

L N
I

. (4.13)

£
s
]

It is guite interesting to note the similarity

between this result and that obtained by li‘csl_dy-z--'r in its

interpretation of Darwin's termza'which'appear in the
non relativistic limit of Dirac's equation. for the
27

electron. More explicitely, Foldy showed that Darwin's

term is the deviation from the pointlike interéction

with a potential ¢(;) namely:
2
A% p(x-2)¢ (XY - ed(Z) = S V29(2) + ..., (4.14)

2 7

where r° is given by the equality2 in (4.13}. The

result (4.13) was confirmed later by_Yenniez?, ammanU
and Franga3l,_which have shown that this radius cor-

respond .to a real extension of the particle and not a
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pseudo-extension generated by zitterbewegung as is often
believedza.

In summary the known microscopic particles
like the proton and electron are extended charge
distributions guite localized whose mean charge radius
is larger than its Compten wave lentgh. Our analysis
of Stochastic Eledtrodynamics, validy only for spin
zero- corpuscles, shows that for radius of order e/m
the motion in the zero-point radiation becomes rela-
tivistic and for radius of order e’/m the theory violates

causality.

5. EFFECTS OF THERMAL RADIATION AND CONCLUSION

The inclusion of thermal effects in.Stochastic
Electrodynamics is done in a standard waylfS. it is
sufficient to add Planck's spectral distribution to
the zero~point distribution since the first can be

derived in the context of Stochastic Electrodynamics.

In this way we substitute h?(w) = —2; in (3.12) by
i 2w
2 _w : w
heflw,T™ = —2-"2 coth [z'k—,'r“] . (5.1)
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Here we.are assuming that the temperature is not very

high and does not induces relativistic effects that is
BT << m . (5.2)

The fluctuations in the velocity are affected
by the thermal radiation, The mean square fluctuating
velocity is given by the generalization of {4.8) that

is

. @ 7
2 2.2
<;ff>=% e—zjd(n ml%-'-_q—cb]:“ﬂ—ﬂj exp[— w3r] (5.3)
m ) I exphﬁﬂ -1

for a gaussian charge distribution. For low temperatures

22
we can replace exp[— €4r ] by 1 whenrn multiplied by
[}Xp ﬁ%] - l]ﬁl . With this approximation we get
: 2 2 2
<;§> = —%— i, 20 [EE] 1 ) {5.4)
) nir? 9 m |

that ig the thermal correction for the mean sguare
velocity is sma#ll for particles such that mr?=1
The modification in the spectral distribution

introduced by the thermal radiation has also some
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implications for our equation of motion (3.17). This
is because the thermal fluctuations must be associated
to some dissipation which is not inclﬁded in the
approximate formulas (3.17) and (3.16). In fact, when
T #0 , the particle is moviné in a radiation fieLdvdmse
spectral distribution is not Lorentz invariant, therefore
we expect the appearance of a dissipative force pro-
portional to the velocity, the Thomson cross section. o
and alsoc proportional to the aensity ‘u(T) of thermal
electromagnetic energy21.

We shall see in what follows how such a

dissipative force show up as a combined effeqt?l of the

-radiation reaction force'and the Lorentz magnetic force

which is not included in (3.16) and {3.17). The discussion
will be at the level of the Abraham-Lorentz equation
(3.8) for a point charge. This approximation will not
bring problems to the calculation of the dissipative
force we are talking about.

Formula (5.1) is validy only in the reference
frame § in which the thermal radiation is isotropic
(cavity reference frame). If we look the radiation
spectral distribution from an inertial frame §' which:
is moving with velocity ¥ with respect to S the

spectral distributicn will be given by
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- =
v.k
W

2

-
Rt (0, T) = W2 (0D - [h% (0,0~ w & b? (u,T)] . (5.5)

in the limit [¥] << 1 of low velocity>?.

The fluctuating motion of the charged particle,
as seen from frame B5' , will be with a stationary
velocity é% which is solution of the Ab;aham-Lorentz
equation (3.8) where the external force F is simply
s B where B is the.electric.fielq32 as seen from

s* . In this way we get

!

2 [dak B, 0h' (w,Tesp[- iut + io 1]
w

3 .
z; = Re ie AZ

=1 @3+ i % e?u)

(5.8)

where nh'({w,T) is given by (5.5).
The average Lorentz magnetic force in the

frame 8' 1is

i
i
o
A
N

x B'> {5.7)

where B' is the random magnetic field in 8' . The

>
dipole approximation of B' 1is written as32

2 = - -
B =Re ¥ dsk@%h' {w, Ty expi =lut+io a”{,A)J . {5.8)

.32,

The force f can be calculated from its
definition (5.7) with the help of {4.2). The'resuit
is different from zero because of the radiation reaction
term in (3.8) and it is not difficult to. show that {5.5),

(5.6), (5.7}, (5.8} and (4.2} leads to
F = - g(Tiv {5.9)

where

32 sz e'(eT)* _ 4

E{T) = 3 T T, E 3 u{T)o (5.10)
m
gr " C )
and ¢ = 3 is the Thomson cross section.
m

The physical content of the above result (5.9)
is that if a particle moves in the electromagnetic
field of thermal radiation with average veloccity 3 B
with respect to the reference frame in which thermal

radiation is isotropié, therefore the‘chafged particle

will experiences an average force £f=- % ud ¥ due to
radiation losseSZl. This effect only appears if we

inciude also the magnetic Lorentz force in the equation

of motion. This is basically the reason we have to

propose the inclusion of the Lorentz magnetic Eorce33
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in (3.17) getting .
] 2(E) = - { ar a(t)z (b-1) +
Q
> | I 3 .-»+ :
+ [ d®x p(x) |[E(x,t) + z(t)x B(x,t)] (5.11)

as the generalized Langevin eguation for the non rela-
tivistic motion of the extended charge in. Stochastic
Elgctrodynamics. This is, in our opinion, the simplest
equation compatible with cauéality, non relativistic
motion and which, probably, includes fluctuation andg
dissipation in a consistent way. However many approxi-
mations were made in order to arrive (5.11). The most
drastic approximation used was to assume that the charge
distribution was rigid in the non relativistic limit.
A mere realistic calculation should include not only
the deformations but also the rotations of the particle

in order to study its effects in the motion of the

center of mass and in the dissipation of kinetic energy.

We want to thanks Dr. G.C. Marques for reading

the manuscript and Dr. A.J. da Silva for discussions.
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