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THE ANOMALY FREE CP! MODEL AND ITS $-MATRIX

M.C.B. Abdalla, A. Lima Santos

ABSTRACT

After showing that the CP! model factorizes we

obtain the S-matrix for fundamental fields and bound states.

-I. THE ANOMALY FREE MODEL

The classically stablished equivalence of the Cp!
and 0(3) non linear sigma model(l), was never showh guantum
mechanically. This notice aims at calling attention for a fact

" that, in our opinion solves the problem.

The CPn_l model has a guantum ancmaly preventing

conservation of the non local (classically conserved) charge(z).

However, when. coupled mihimally to fermions, the anomaly cancels
‘the gauge field zero mass pole disappears, and the model turns

out to be factorizable(4).

The S-matrix can be .calculated, and
compared with the 1/n expansion of the model(4). Accordance

is obtained in lowest order. The S-matrix has no pole in the

physical sheet, and the z-field interacts via a repulsive force,
preventing bound states. This situation is very different from
the pure CP"‘_1 model, where long range forces confine partons
in mesons. This long range forces, responsible for confinement,
imply also the existence of the anomaly, as. shown in a explicit

calculation(z).

(3)’

.2,

Briefly the cP" ! model is the theory of an

n-component complex z-field which Lagrangian density is given

by[l)
CB)= Di-lz Dllz | (1)

where
Duz = Buz - Auz {2a)
- _f = '
A, = -1 3 'é’uz | (2b)
and the comstraint zz = I %z, = n/2f . {2c)

i

At classical level this model is known to possess

(5]

an infinite number of conservation laws and the simplest

classically conserved non-local charge is given by:

o0 . . g
o = | avidvasyi-y) LN,y 03 ) - B | P ewmay 3
]

where
Jij (x) = z%(x) ‘é’u Zix + 2 A, 2t (x) 3 x) (4)

is the classical tracelless Néther current associated to the
SU(n) rotations.

The classical integrability condition

2f

i3 15 2f Tid
g, gl 22 [Ju(x),Jv(x)J -0 (5)
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At the guantum level we have problems Because the
charge , (3} involves a product of two currents at the same ppint
and so it is not well defined. To give a proper definition for
the guantum non-local charge we must look at the short distance
behavior of the product which appears in the commutator of

(2}

equation {(5}. This was done and we are left with:

EI;: (x+€) , 3, (X)_llj =, (e)gﬁ}' @ + 5o Iai 0 + 5 €z ZF ) (6)

nP?

. [
where Cuv r By

po - -
and Euv are non zero and ?DU = 3pAg BUAD

Now we are able to define the gquantum non local

charge Q

%’ =53l dytdns(yl-y_zwf)_k(_t,ynajgj(t,y;) - Zg) ay 37 vk (7)

lYl‘YéiBa

_where the dependence of 2 on the cutoff 6 1is such as to
cancel the linear divergences which appear in the commutator (6).
So that, in order to obtain a well-defined charge Q we must

have
3 2T [' 2

The mass m  is dynamically generated and given by
m? = p? e V28 Ghere u  is the renormalization point and ¥
is the Euler-Mascheroni constant. |

In accordance with the confining properties of
the theory one can verify using (6) and (7) that the quantum

non-local charge is no longer conserved.

2.2, Fq dy (9}

This means that the model has an anomaly in its
quantum non-local charge and because of this the model is not
factorizable, and consequently has nce factorizable S-matrix.

However, for n=2 the picture changes. 1In this
case the anomaly c¢an be easily shown to be a total divergence,
and we are able to construct a new guantum non=local conserved
charge. We can then shiow that the CP! model has a guantum
conserved non-local charge just redefining the old one (7).

The N&ther current (4) can be written as follows(s):

J =-D XX +XD X =¥D Y -D ¥y (10}
u T TR u u

where the fields X and Y (for the CP! case) are the two-

compcnents fields:

Z1 [ 22
X = [ } . Yy = | (11)
2, Lz,
satisfying
v'x = 0 (12a)
xx = ¥y = 1 (12b}
and connected by Y, = €55 X; e (€27 = -1} . : (12¢)

In general the following identity holds

Xt Yy oyt _1 -
X Fuv_x +Y R, Y 7 8,7, avJu) _ (13}
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Now, the anomaly is just

(%;%] - 36,0 P = iy, -3 5540 Y, (14)

The above identity being a direct consequence of
(11). So that we can take the mean value of both sides obtaining
(13), which is a total divergence of the current (10}.

At this point a standard definition for a axwgnmﬂ
quantum non-local charge can be made and we conclude thﬁt the
model is anomaly free.

This fact follows from a very simple criterium

obtained in the context of group theory(?}, for the so called

non linear sigma models defined on. symmetric Riemannian spaces.
There it is shown a general criterion for the presence or ébsence
of anomalies in these.qﬁantum models. The conclusion is the
followiné. Let a model be defined on a symmetric space M = G/H.
One can have two possibilities:

1) The model is anomaly free if H is simple.

2) Anomalies are allowed if H contains nontrivial ideals.

II. FUNDAMENTAL z-FIELDS S-MATRIX

In this section we construct, from the knowledge
of the asymptotic field, the guantum non-local charge which has
no contributicn of the gauge field Au . To justify this procedure

we remember that the asymptotic part of a conserved current can

pbe taken as the one which has the same commutation relations and

vacuum spectation-value as the interacting current(s). The

procedure as well as all the normalizations are completly

analogous to the ref. (2).

The non-local charge can be written as:

{oo

o'l = - %J du (p,)du (p2)E (pr-pa): (al_(B1)atn () -
L] k 2 ’ .
- bt pnpk () @ (2)ailtea) - aln(pe)al (pa)):
- L L2 [ (ya ) - 5 b (o) -
= J éu (p) £n = .{aj_n(p)ain(p) bin(p)bj_n(p)
s83 4k k x +k, .
- = (a; PYa; (p) - by (piby (Pl ¢ {15)

where a and b are creation and destruction operators obeying
the usual commutator rules. The out-form of the same charge
Qij differs from (15} just on the sinal of the first term.

The action of the non-local charge Qij on
asymptotic states of two particles characterized by the rapidities

8,.9, and by the isospin indices Spr dz, cé, dk is given by:

i3 = [wid) : _ 16:
Q Iﬂzclrezcz>in = (Minjd¢dgclczEeldl'sde?in {l6a)

[ | ig
ot 91182 {M;ut]c;c;a{da

i

o <8ict 850107 (16b)

where

Mlj = = X (6iclsjdza<32d1 _ 61026jd16C162)
injd;dscc2 2

s i3 '
- ﬁl (61015]d1602d2 + [ J 6c1d1602d2)

g% (61026jd26C161 + G:] GcldlﬁcZGZ) .(17)
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i3 1, .idigjesgdier _ sidzgicigdics
[Mout}clcadidi 2 (677787778 )

8

- r . i 3 L]
LA La%dlﬁjciscidé + 623 c;diﬁczdz) _

g% {5;désjcéapidi

Now the elastic scattering amplitude of two

particles with rapidities 8; and 8, can be written as:

I Ll
® T C1C C2&
out 01C1 8202 10102005y, = (4MF 5(81-01)8 (62-02) {6 TR ey +

.l L ? T
+ 1% g% uz(a)} - (4m)? §(81-8,)8 (82-01) {GF‘C‘SCZCZ ui (8) +
1 1 :
+ G162 go2e1 uz(e)}. | . (19)

where 8 = 8,;-6, and u;({8) , uz(8) are restricted by the non-

local conserwvation law obtained imposing that:

<61d1 923316101, 02027,

lj 1 1
{ {M;utlc'lczd'!d; out in

(R oy i3 [
Out<elclrﬂzczIQ;J{9161'SzCz>in_= 1. (20a)
|
1
L

out

. ‘s
<G;C{:9202|91d1u32d2>inpﬂig]dldzcECZ

(20b)

This set  of linear equations for 1u,(8) and
uz {8} can be solved giving us one of the so called "factorization

egquations”.

uz (8) = - AT e . _ (21)

The other factorization equation which relates
t;(8) with t,{8) can be obtained by the usual crossing symmetry
or by the same way as u; (8) and u,(8) just writting the
elastic scattering amplitude of one particle and its anti-particle
as follows:

1= :
—_ _ 1 C1Cy oCaC
Out<eic;,a;c5ie[cl,ezc2>in = (4m? c(el—el)a(s;-sz) {s 1616282 ¢ (8 +

_ 1—r T = —t
+ 80102 C1ee tz(e)} - (4m)? §(81,82)6 (8261} {sc‘cl G202 ri(e) +
- —
+ogC102 g0 rz(e)} : . (22)

From the abhove equations we obtain both relations

among t£,(8) , tz(8) and r,{8) , r2(8) which read

£2 (8) - 25 e (23a)

and o ri(8) r.(0}). = 0 . (23b)
Finally we see -that the relations (21) and (23)

correspond to those of class IT of ref. (9).

IIT. BOUND STATES S-MATRIX FOR CP! MODEL

‘Now it turns out that pure CP! and the model
coupled to fermions have the same factorization eguations. We
claim that the difference hetween both models lies on the bound
state spectrum. For the model with fermions there is no bound

(4}

state pole . consequently the S-matrix for the partons is the
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‘complete ohe. On the other hand the pure model should have one
bound state polg, in order that quantum mechanically, the equiva-

lence between CP! and 0(3}) non linear sigma models hokh{lm

We define bound state ag(l07. (11},

8,402) . _ 1 [, - -
:132 | { it 2). =5 {Im (81)02 (B2)> - luz(aljul(ezp} Azma (24)
where 12 are the Pauli matrices.
@y . -

We suppose that a bound-state is defined with a
difference in the rapidity variables given by a constant o ,

which charaeterizes the bound-state pole(ll):
91-82=i‘!TCI.

The bound state S-matrix is defined as

4<Y;;;5;E;I“15}3132> =0 16,

. . )
qH52632615Y15;6756; * GzaalYiﬁazﬁl 828, 1,6,

+ p ] ’ 1 + 1 1 + S . +
03631326a2726816157151 Uk6a16163281%hTPY15; GSEQIBZSGZSEGB!Y; ¥, 8,
+ 0.6 ) 4 ) ' 8 'S [ +
% %Yy “2Y£6315; B85 * o q16{6u26;§BIT;66272 * GBGGLY; @, 8, 8,8} 8.7,
+ Gab . b 8, S, oo (25)

o 2;8) Y, B1Y] 8,6,

and the action of the nen-loeal charge 07 on the bound states

is well known.

ij, a b _ had3 a b 26

¢ Iﬂaluzwﬁzﬁz>in Pﬁn ]u}uQB{B;a,azslsz i“a;a;“816;>in (26a)
a b ij _ a b ij } o 26h

out My, "1 63 10 0ut<w¥172“5151!GW;ut ¥,Y,8,8,7 17080 8! (260}

.10.
where
13 = L (gimagiBi By | B, o, 2,81 %1% B,B;
{Min 2818l 0,68, =3 (6 TS SR M Lt acie
oL (slBagdoagaa | giel 38200083, soralBaE)
R g A PLICHPC LN N
v 1 oelergIB2g0iBl | iBigdaig0n6a) u00] B8],

+ agtlsnimigaaz BiBi BB | sioggJal eya] B iBls8, 8]

£ g, 0005000 gora] (B8] 8,8) _ b,61B153B guralsao0; sB,B)

ial aa t ' '
+ 9,5 82578250000 a0l B8] _ (27a)
8
with ¢l = in
and

ij orer = = L @8IV I8 | (vl 3818071, cvav) (6,80
P%NJYJZQGJQBGNZ 7 @1gIig 8118751011y Y2 T

oL oelVigdbagYabs _ 18, 37, Y160, cYava 8, 5)
(& ) S [ ] [ )8 [

M

- = (6iY2636155{Y; _ SiG{GjYéﬁﬁl'\(Z)GY.]Y;GSZGE

S od

b=

. = {6i626jY55Y255 - 51Y26j656Y552)6Y1T;6615; ¥

+ aaljaYlY;(SYZY;sﬁlG;észaé — d)l‘sl‘YiﬁleﬁYzYé5616;6626£ +



LI

. . T r s = ] ] ]
. ¢261Y253Y;6Y;Y;55;555525a - ¢3515{53516Y1Y15Y2T255252 .

The non-lecal conservation law

-out]Y,YzﬁlﬁzY;Y;G;BQ

<?1Y25;§;¥u55261§2> =

- —_— e .|_| [ &4 ] ij .
= <11728,8, l0q1m,8:8,> [Min]aiuésiﬁzaluzﬁxﬁz

implies the following egquations

Tz )
%1 d+a-1
= Os
S T F1T%
= Os
g3 = d40-1
gy, = g5 = 0
gy = 38
62
gg = g9 = = %E
where @ ¢1;¢2'~ ¢3;¢a .

We have then as solution for the S-matrix

(27h)

(28}

(23a}

(29b)

{259¢)

(294)

(29e}

(29£)

12,

]:24; (¢-1) + (1-a?)]

1352 = - Gra-D] %° %13 %ke
Pplp=1)2 + {$=1) {1=-c?) _
+ [ ¢l o—a-17 (g+o-1) 95 S5y Sy

[?¢{¢—1)2 + (@—1)(1-a2)1 e
02 (p=a-1) {p+a-1) -

5 (30)

$ie %4k
Now we sece that we must fix o in order to

satisfy crossing and for o=1 the final S-matrix becomes that

one from the 0(3) non-linear sigma model(lo)(ll).

ACKNOWLEDGEMENT

The authors wish to thank E. Abdalla for stimilating
discussions. The work of M.C.B. Abdalla and A. Lima was supported

by Fundagdo de Amparo & Pesquisa do Estado de Sao Paulo (FAPESP).




.13,

REFERENCES

(1) A, D'Adda, M. Lischer and P. Di Vecchia, Nucl. Phys. Bl46
(1978) 63,

(2) E. Abdalla, M.C.B. Abdalla and M. Gomes, Phys. Rev. D23
{1981) 1800 and IFUSP/Preprint-331.

{3 E. Abdalla, M.C.B. Abdalla and M. Gomes, Phys. Rev. D25
(1982) 452.

{4) R. Kéberle, V. Kurak, IFUSP/Preprint-200.

(3} H. Eichenherr, Nucl. Phys. B146 (1978} 215.

(6) M. Forger, Ph.D. Thesis - Freie Universitit Berlin 1980.

(7) E. Abdalla, M. Forger and M. Gomes, IFUSP/Preprint-329 (to

' appear in Nucl. Phys. B).

{8) C. Orzélesi, Rev. of Modern Phys. 42 (1970) 381.

(9) B. Berg, M. Karowski, V. Kurak, P. Weisz, Nucl. Phys. Bl134
(1978) 125,

(10) M. Karowski, V. Kurak, B. Schroer, Phys. Lett. 81B (1979) 200.

(11) M. Karowski, Nucl. Phys. B153 {1979) 244.




