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ABSTRACT

We describe a method for the measurement of the
electren density in a Tokamak by measﬁring the Faraday rotation
in a far-infrared beam propagating in the plasma. The propa-
gation direction is considered tangential to a toroidal field
line and it is shown that the effect on the pelarization ¢f the
wave is reduced to pure optical activity related only to the
teroidal field@ and to the electron density. Detailed calculations

are presented for the TBR Tokamak at Instituto de Fisica (Usp) .

RESUMO

Neste trabalho & proposto um método para medir a

densidade de elétrons num Tokamak por rotagdc de Faraday num fei

xe de radiagao infravermelha. A propagacio & analisada numa di

recac tangencial a uma linha de campe toroidal. £ mostrade que

¢ efeito sobre o estado de polarizacac da onda se reduz a- ativi

dade Otica pura dependente somente do campe toroidal e da densi

dade de elétrons. Resultados de cdlculos detalhados sido apre=-

sentades para o Tokamak TBR do Instituto de Fisica (USPY.

1. INTRODUCTION

The measurement of the plasma electron density
by Faraday rotation was made in a electrodeless llnear mmjune .

In a tokamak, Craig2 oroposed the measurement of the electron

" density by measuring the change in the polarization state of a

test wave pr0pagating along a verticai direction {(x—axis in
Fig. 1). He shows that if the initial sfate is linearly
polarized at an anglé of 457 to the toroidal direction the
change in the polarization is independent cof the poloidal field
and it is related only to the electron density. However, the
change in the polarization in this method is not a pure Fanxﬁy
rotation and the techniques for the measurement of an arbitrary
chang; in the polarization state are not.Yet well developed.

In this work we analyse the far-infrared propa-
gation in a horizontal direction (Zw-axis in Fig. 1). We show
that at the usual conditions in tokamaks, the effect on the
polarization state is a pure Faraday rotation related only to
the toroidail mégnetic field and to the electron density. Results
from detailed calculations are presented for the TBR Tokamak3.
The vessel of this tokamak has two aligned ports that are

suitable for a measurement of the Faraday rotation of a laser

probing beam.

2. LINEAR BIREFRINGENCE AND OPTICAL ACTIVITY IN A MAGNETIZED
PLASMA

The effect of elliptical birefringence on the
wave propagation can be described4 as a superposition of the

effects of linear birefringence and optical activity. According



to cristal optics4, the symmetric real part of the dielectric
tensor. describes the linear birefringence while the antisymmetric
imaginary pért describes the optical activity. The characteristic
staﬁes and refractive indices can be cobtained separately for
lin<sr birefringence and.opticél aétivity. In this section are

presented the results obtained5

from the dielectric tensor for
a cold magnetized plasma. The reference system is defined in
Fig. 2 where the wave propagation is in z-direction. The

following dimensionless parameters are used

w2
X =2 ; A =1-X
w?
] (z2.1)
Y = fE = BB v = E?E and Y. = 352
T w wm L Wi 4 T wm !

where w, wp , and w, are respectively the wawve freguency,
the elect;on plasma frequehcy, and the eleﬁtron cyclotran
frequency. .B . BT and BL are the total magnetic field and
its components transversal and longitudinal to the propagation.
direction.. .

The Poincaré.sphere6 is used- to describe the
poelarization evolution of the wave in the plasmé. The longitude
on the Poincare sphere is 2¢ , where 1 is the tilt angle of
the polarization ellipse. The latitude 2¢ is related to the
eccentricity e of the ellipse by

1/2
tg = £(l-e?) (2.4)

where the positive sign is chosen for right rotating ellipses:

(R}. We will use the IEEE convention for the circularly

polarized waves L and R .
The characteristic states LX and L0 for
linear birefringence are represented on the eguator of the

Boincaré sphere (Fig. 3) and their longitudes are

2$x = 2B and Zwo = 2¢X + T , (2.5)

where the anglie f is dndicated in Fig. 2. The corresponding

\ 5
refractive indices are given by

XA
u; =1 - — and ui =1 - —* {2.96)
AXY; : a_-y?
l 2 ) 2
Ay=Yop

The characteristic states feor the optical

activity are the circularly polarized waves L and R . The

refractive indices are given bys

2 1
- . 2.
¥R, L 22 (2.7)
X T
+ A - +
l A2 ‘Y2 ( X ZAX YL)

wherelthe upper sign is corresponding to R .

We.will consider an arkitrary polarization state
{P} propagating in an infinitesimal slab dz of the plasma.
The effect of the linear birefringence is described on the
Poincaré sphere as a counterclockwise rotation of P about

Lx cof an angle {see Fig. 3).

=& - =%
2dab = c_(uo ux)dz c.A“b dz (2.8)




23

For small X , we obtain from (2.6) by series expansion up to

ofder x?
Xy2
fp = e 1+ —% (3 - 2v2 4 % ¥2) (2.9)
2 (1-v*) 2(1-¥?) :

The effect of the optical activity is described
as a counterclockwise rotation of P about R of an angle
(Fig, 4}

w

) dz = 2 &p dz {2.10)

=& -
2dmc T e {uL Mg c

Up to orde X? , we obtain for small X

XY.
g = —= 1+ 32— 2w+ (2.11)
(1-¥*) (1-Y%) ’

The effect of the elliptical birefringence can
be obtained by the superposition method on the Poincaré qdmzed.
According to this method, the infiniéesimal displacements cor-
responding t¢o the linear birefringende and optical activity
are supposed independent and summed.

| In the next section, we will integrate separately
the displacements due to the linear birefringence and the
optical activity. The total displacement on the Poincaré sphere
cannot be obtained by this procedure, except if one of the

effects is negligible. But the results are useful in the

comparison between the two effects.

3. THE MEASUREMENT OF THE ELECTRON DENSITY IN A TOKAMAK BY
FARADAY ROTATION

We will consider the far-infrared propagation
in a Tokamak (Fig. l1}. The following conditions are usually

fulfilled for XA < 1 mm:

X = 0.090 n{10%cm *)A% (mm) << 1 (3.1)
2
¥? = 0.0087 [%(T)A(nmﬂ} << 1 (3.2)
2 2
Bpm << Bt (3.3}
where Bt ’ BPm and B are respectively the toroidal magnetic

field, the maximum polidal field, and the total magnetic field.
The magnetic field transversal to the propa=-

gation direction (z-axis)} can be written in the form
B.=3 +B_+B (3.4)

where gp P %tT , and ﬁv are respectively the poloidal fieid,
the transversal toroidal field, and the external vertical field.
The wvertical field can be approximately obtained using the
cylindrical approximation and neglecting the external vertical
field. These approximations are consistent with repreducing

the actual vertical field. Assuming a uniform current distri-

bution, we have

B_ = (R—Rm) ' : (3.5)



where I is the plasma current and a , R , and Rm are

defined in ¥ig. 1. The toroidal field is given by

B, = = B _cos@ , ' {(3.6)
o

where B is the maximum toroidal field along the path of the

wave .
It results from Eg. (3.5) and (3.6)
B2 W.I 2 (R=R 42 2
£ - [ZWZB ] ( a m] [%Hl (3.7)
B; [o] : o :
where
R-R
a m's 1 ’ %‘ 1
O
and
2
ot I (KA)
[ZwaBO] = 0.04 [}(cm)ﬁbtKGauss} (3.8)

is_of the order 0.01 or smaller for the most of'tokamaks. Thus,
it results the condition.{3.3)..

We consider a linearly polarized wave as the
initial state and calculate separately the effects of linear
birefringence and optical actiwvity. The total effect on the
polarization gtate cannot be obtained by this procedure, except
if one of the effects is negligible. It will be shown that

the linear birefringence is negligible in the conditions that

.8.

we assume for the wave propagation.

If the linear birefringence is absent, the
optical activity is described on the Poincaré sphere as a
counterclockwise rotation of P about R . The angle of
rotation is obtained from Egs. (2.10) and (2.1ll1l) in first

approximation as

2o, =

ale

Xy. dz (3.9)

The effect of the linear birefringence in a
infinitesimal slab dz of the plasma is described as a counter-
clockwise rotation of P about Lx . 'The angle is obtained

in first approximation from Egs. (2.8) and (2.92) as

_w 1 2
2da, = s 3 XYz dz £3.10)

Because the state LX is not fixed, this eguation cannot be
directly integrated, even if the absence of the optical activity

ig assumed. We define
20, = 2| Lxyz az (3.11}
b c 2 0T )

and we show later that the actual displacement corresponding
to the linear birefringence is always smaller than Zub .
The longitudinal and the transversal magnetic

fields are given by

= = 2
B B, cosd B cos @ {(3.12}

and




/2 B? 1/
By = (Btsinze + BY) = B cose{sinze + _E] (3.13)
b o} B2
R
It results from (2.1)
- 2q.
YL = Yocos 4]
and
BZ
¥ = Yzcosze[sinze'+ -E] , {3.14)
0 B2
t
where
2B
_ o
Yo = m

The conditions (3.2} and (3.3} show that

1 Yr B
5 5 =3 Yolsinze + —E] << 1 (3.15}
L B}

if sin®® is not too large. Comparing the integrals (2.9}
and {3.11), it results

<< @ (3.16)

“p
The condition {3.15) will be worst at the plasma boundary where
the plasma electron density (and so X) decrease to zero.
The leongitude on the Poincaré sphere of the
characteristic state LD is obtained from the direction of the

transversal magnhetic field (Egq. (2.5)). The transversal field

.10.

is eésentially the transversal toroidal field at the ends of
the path of the wave and it will be the poloidal field in the
intermediary region. Thus, the transversal field rotates by
an angle 7 along the path of the wave and so, the state T
rotates on the Poincaré sphere by an angle 2w .

In the following discussion, we assume the
longitude of Lo at the initial instant as reference to measure
the longitudes on the ‘Poincaré sphere. Thus, the longitude
2¢0 of the state Lo changes from 0 to 27 . along the path
of the wave. We also assume that the initial polarization of
the test wave is 2y = 24 .= 0.

The. change = 2d¢ .in: the latitude of the test
wave corresponding to an_infinitesimal slab dz of the plasma
can be obtained from Fig. 5. If p - is. the radius of rotation

of P about L0 ;, the displacement of P corresponding to the

- linear birefringence is given by

dr = 2pdab
and the corresponding change of the latitude is
2d¢ = cosy Gr
If the latitude 2¢ is not very large
cosy = 1 and p = £ = sin(zwé—zw)
and using these approximations

2de = 2sin(2wo—2w) dab . (3.17}
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The longitude 2y changes essentially from 0O
to ZaF ; thus, it results that (ZwO—Zw) changes from 0 <o

2(m-e ). If e, > 21 , it results from the oscilation of

F F
sinczwb—zw) that .

b << (3.18)

b
Actually this condition will be reasonable in any case. It
results from Egs. (3.16) and (3.18) that the angle ¢ 1is
negligible. Thus, the effect on ‘the polarization state is a dis-
placement along the equator of the Poincaré sphere by an angle
Zm?'} Or eguivalently, the effect on. the polarization is a
pure Faraday rotation by an angle o. . .

F
The electron density can be written in the. form

n(RO,G) = nof[Ro,B) (3.19)

where B, ig the electron density for ©8=0 and R=RO . Using

(3.1}, (3.2}, and (3.14}, we cbtain from (3.2}

_ 2 . 14 -3, -
ap = 26.3 BO(T)A (mm}Ro(m)nb(IO CIm )IF(SO) {3.20)
where
8o
IF(BO) = f(RO,S) dag
_eo

Similarly, we obtain from (3.11)

- 2 3 14 . ~3
ab = 1.23 BO(T)A (mm)Ro(m)no{lO Jem )Ib{eo) {3.21)

1z,

where

2

8
o
- . P
Ib(eo) = J f(RO,G) [51n g + ] a8

B2
_e t
Q
Since f(RO,O) = 1 and f(RO,e) = 0 , we can
estimate the integrals IF and Ib using a simple function
f(R_,8) = cos =T 49
of 290

o]

Neglecting the poloidal field and taking eo=4o we have

I, = 0.9 and Ib = (.08 (3.22)

Equations (3.21) and (3.18) show that linecar
birefringence is negligible. Estimating Oy, for an unfavourable

case,

A=1lmm , B =37 , R =1m and n=5x10%m

= 0.4 and O, 36

In this case Op >> 21 and the condition (3.18) is very well

satisfied, or

¢ << 0.4

Smaller values of the wavelength L are available in the far-
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infrared region.

The density profile nO{RO) in the Tckamak can

be obtained from the measurements of « (for some values of

r
Ro} by a convolution procedure. For each value of RO , the
integfal I?(Bo) is not expected to depend strongly on the

density profile (see Fig. 1). The values of « are expected

B
to be strongly dependent on nO(RO). It means that the
convolution procedure to determine no(RO) from the values of

0, can be simple and accurate.

4. CALCULATIONS FOR TBR TOKAMAK

The electron density can be measured in the TBR
Tokamak3 by Faraday rotation in a far-infrared test beam. We
consider the propagation through the two aligned diagnestic
parts of the Tokamak (R0=Rm in Fig. 1). The main parameters

of Tokamak are presented in Table 1 and for A=lmm we have

X = 0.009
¥ = 0.05
Q

and
BZ
—;ﬂ = 0.01
By

Thus, the conditions (3.1}, (3.2) and {(3.3) are fulfilled. It

results from Eq. (3.21)

¢y = 0.0007 rd

.14,

and we see from (3.185 that the linear birefringence is a
negligible effect. Thus, the effect on the polarization state
will only be pure optical activity. We consider a linearly
polarized test wave at the initial instant and the Faraday

rotation angle is obtained from (2.10) and (2.11)

XY
da =%g L |:1+~]-1-}£-——(1+§Y2)] (4.1)

Neglecting the poloidal field, it results from {3.6) and (2.1)

1 = 1 z 1 - ¥’sen?®
o

—y2 —-y2 2 _v2
1-y 1 Yocos 8 1 YO

and the second term can be neglected. Also

<< 1

(=R

can be neglected in the second order term in (4.1). Integrating

(2.1) aleong the path of the wave we obtain

Y n R 2 n z
mF=%..‘(':£—°-°°mm__§w |:11 +%—° £ Izji (4.2)
{1-¥2) o (1-¥2%) me_w?
o] o
where
6
o
I, =[ E(R_,0) d0 (4.3}
_60
angd
BO
I, = £2 (R 0} de - (4.4)
-8
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Eq. (4.2) can be written in the form

B n R AZ )
a, = 2.632 -2 22 !_I[ + 0.0045 n Azxz] {4.5)
F (l—YZ} v (o)
o
where the units foxr i , B0 PR and Ro are respectively

-3
mm. , Tesla , 10 %cm , and - m .

The electron density is assumed of the form

r
n{R) = n Ll - {4.6)

where oo is the maximum electron density in the tokamak. We

obtain from Fig. 1 and Eg. (3.19)

R; R, 2j|£ n
f{rR ,0) = - — {sece - __] — (4.7}
o] a? RO no .
where
£

n (R ~R )?

= = [1 - &} : (4.8)
m a?

The values of I and I numerically calcu-
lated for RO=Rm are presented in Table 2. The Faraday

rotation angles o are given in Table 3. We can see that

F

the angle o has small dependence on the exact form of the

density profile (for fixed Ro). It means that an acceptable
"value of n, can be obtained from only a measurement of O
(for R =R }.

o m

The density profile .nO(Ro) can be obtained

.16,

from the values of on for different wvalues of RO . These
measurements would be troublesome in the TBR Tokamak because
of the reduced dimensicns of the aligned vessel ports. But we

will consider this case as a numerical illustration.

Neglecting the second term in (4.5), we obtain

aF(RO) = 2,632 — R Il(RO) (4.9)

where the calculated values of I1(R0) are shown in Table 4.
‘I‘(Ro) is weakly dependent on the density profile {or £} for
each value of R, r while no(Ro) is strongly dependent on £
(see Eq. (4.8}}. It means that it would be simple to obtain

the accurate values of nO(RO) from a (Rb) by successive

F
approximations.

5. DISCUSSION

The poloidal field in a tokamak can be obtained
by measuring the Faraday rotation in a far infrared test 7’8.
The propagation direction must be perpendicular to the toroidal
field. We show that. if the propagation is tangential to the
toroidal field lines, the effect on the polarization is a pure
Faraday rotation unrelated to the poloidal field. Thus, the
electron density in a tokamak can be measured this way. In
particular, we show that the method is viable in the TBR
Tokamak. Far-infrared lasers and techniques for measuring
Faraday rctation angles have been developed at UNICAMPQ. The

wavelengths are available in'the range from 0.04 to 1.2 mm.
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Major Radius Rm 0.30 m
Plasma Radius a “.0.08 m
Plasma Current I £ 20 KA
Torcidal Field B, < 0.5 7T
Poloidal Field Bp $ 0.05 7T
Electron Density n & lOlscm_a
Maximum 8 90 38°

TABLE 1

I, I;
1.086 0.978
0.978 0.861 -
0.909 0.792
0.861 0.745
0.792 0.682
0.745 0.639

TABLE 2




o

(degrees)

¥
nO
- £=1 =2 £=3 =4 =6
(10'%cm
0.01 0.25 0.22 0.21 0.20 0.18
0.05 1.23 1.11 1.03 0.98 0.90
0.1 2.46 2.22 2.06 1.95 1.80
0.5 12.3 11.1 10.3 9.77 9.00
1.0 24,7 22.3 20.7 19.6 18.0
5.0 126 113 105 99.5 91.6
10.0 256 230 214 203 187
TABLE 3

R {em) £=1 =2 £=3 2=4 £=5
30 1.09 0.98 0.91 0.86 0.82
31 0.97 0.85 0.78 0.72 0.68
3z 0.87 0.75 0.67 0.61 0.57
33 0.77 0.65 0.58 0.52 0.48
34 0.67 0.56 0.49 0.44 0.41
35 0.56 0.46 0.40 0.36 0.33
36 0.45 0.37 0.32 0.28 0.26
37 .31 0.25 0.22 0.19 0.18

TABLE 4
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