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Abstract

The Time Dependent Variational Principle is applied
to the scattering of closed shell oscillator fragments. The
effects of antisymmetrization are included and we show how
they lead to a change in the structure of the phase space of
relative motion. The main new feature is the appearence of
forbidden and distorted regions in phase space which have, in
the quantum treatment, a close connection with states for-
bidden and partially allowed by the Pauli principle.The elastic
phase shifts are evaluated semiclassically in the distorted
phase space. The method is applied in detail to the simple but

quite reatistic case of a~a scattering.

* Contribution te the V  Nuciear Physics Workshop

Itatiaia, Brasil 8-11 September, 1982

1. INTRODUCTION

Although the Time Dependent Yariational Principle
(TDVP} in quantum mechanics has a long historyr it has only
recently been applied to realistic computations in nuclear
physics. These computations have successfully described in a
microscopic way many qualitative and also quantitative features
of the dynamics of large nuclear fragments which inciude deep
inelastic ahd fission phenomena in heavy systems and fusion
in lighter ones. This has been done in the framework of the
Time Dependent Hartree Fock {TDHF) theory where the wave func-
tion is restricted to be a Slater determinant at all times.
There is an extensive literature on this subject. Recent re-
views of both theoretical aspectsz) and numerical applications3)
have been published and extensive reference to the ariginal

Piterature is there provided.

There are two main features in the TDHF description

of a nucleus-nucleus coliision that we want to focus upon:

1) The Pauli principle is taken into account exactly. This
happens because the single particle states all evolve in
the same (time dependent} field and therefore the ortho-

gonality of the wave functions is assured at all times.

ii) The excitation of the fragments and its coupiing to the
relative motion is treated self-consistently and exactly
{inasmuch as it can be deséribed by one-body dynamics}).
The internal motion is not parametrized in any way and the
only input to the calculation is the two body force ( of
Skyrme type) and the initial conditions. This allows in’
partfcular_for a microscopic description of the large
dissipation of kinetic energy that occcurs ina deep inelastic

collision.

As a disadvantage we should point out the lack of a practical
ﬁay-to extract quantum information froem the calculations and
the large amount of numerical work that goes into them. The
other microscopic methods available for the treatment of nu-
cleus-nucleus scattering are the closely related Resonating
Group Method (RGM)Q)'and Generator Coordinate Method (GCM)S).



Both approaches are entirely quantum mechanical and they are
capable of providing relative motion wave functions and phase
shifts. They take inte account the Pauli principle exactly
but in their usual application they assume that the fragments
cannot be excited so that only the relative motion degree of
freedom is considered. In practical applications of both RGM
and GCM one is limited to rather Iight fragments (A s L0} and
the complications increase very rapidly if they are not closed
oscillater shells. The computation of overlap and energy kernels
which provide the microscopic input to these calculations is
at a very sophisticated stage and makes use of powerful mathe-

6.7)

matical techniques (6roup theory, Bargmann Space).

in a nutshell we can say that TDHF treats the coupled
dynamics of the relative motion and the intrinsic degrees of
freedom in a classical context without violating the Paull
principlei‘RGM and GCM instead only treat the relative motion,
disregarding the coupling to other degrees of freedom. However,
they do this quantum mechanically, also without viclating the

Pauli principle.

The method that we propose in this work is somehow the
intersection of these two approaches. We use a trial wave
function which is essentially the same as in GCM but the gene-
rator coordinate is treated as a time dependent parameter in
the TDVP. With this we obtain a classical description of the
relative motion which takes into account the Pauli principle
(but not the coupling to other dégrees of freedom}. A similar
method, called the Time Dependent Cluster Theory, has been

8,9 However, the emphasis has been in

proposed recently
the classical solutien of initial value problems much in tEe
same spirit as in TOHF. Here.we shift ihe'emphasis to the study
of the symplectic structure, or generalized phése space, asso-
ciated to the norm kernel. By doing this we are able to incor-
porate the effects of the Pauli principle into a "distortion"

of the phase space of relative motion.

Instead of solving the equations of motion and
displaying trajectories we also shift the emphasis to the compu-
tation of guantities which have a quantum interpretation. These

guantities, usually computed as areas in the distorted phase

space, .can provide semiclassical information on bouno s:tates,

resonances and phase shifts.

The presentation is organized as follows. In section
2. we give a brief overview of the TDVP especially in connec-
tion with a trial wave function parametrized analytically. In
section 3. we describe the trial wave function in general
terms leaving some technical details for Appendix A. In section
L. we study the symplectic structures associated to the Interac-
tion of SU{3) scalar fragments and we show how the Paull prin-
ciple appears in classical phase space. In section 5. we apply
the method to the simple but still quite realistic case of o-a
scattering. We show how to evaluate the elastic phase shifts
from the variational equations and compare them to the RGH
computation of Okai and Park]u .

2. THE TDVP WITH COMPLEX PARAMETERS

Recently, we have studied the structure and the geometry
of the TDVP in quantum mechanics especially in relationship with
Lie groups and symplectic structures on orbits of their coadjoint
representations‘]}. In this section we review briefly the
symplectic structure and the varfational equations associated with
a trial wave function parametrized analytically, regardless of

the existence of such a group structure.

*}

We assume a many body wave function |¢(El,...,2r> pa-
rametrized in terms of r complex numbers z.. Their physical
significance depends on the problem at hand and they wusually
measuyre some geometrical property whose approximate time depen-
dence one wishes to describe. We assume that |¥> depends analy-
tically on z. This means that the dependence is only on
Z =Re z-1 Ilm 2z, and not on z. This requirement s vio]atéd

if the wave function is normalized so that we will not assume a

*) The bar denotes complex conjugation. The use of z in the ket wave function
is conventional. When no confusion is possible we will abbreviate

|¢(5l....,2r)> = lz)




definite normalization. Aécordingly; the usualiz) TOVP s
modified to make the action, and therefore the equations of
motion, invariant under a change of phase or normalization

of the wave function. This is achieved by defining the action
as

5 = I L dt (2.1)
where the quantum Lagrangian is given by
<Ppld> - <pju>  <p|H|p>

-2 - : (2.2)
<¥|v> <piv> |

the bracket indicates integration over coordinates,spin and
isospin of all particles and H is the microscopic hamiltonian.

It is well knownll’lz)

that unrestricted variation of (2.1)
leads to the time dependent Schrodinger equation while varia-
tions compatible with a given parametrization yield equations
of motion of a classical nature for the variational parameters.
Using the parametrized wave function we obtain

r

L = %; oz - 2
i=1

i3z, 5z
! [

InfN - H {2.3)

Once a trial wave function is chosen the ingredients needed to

compute the action are thenm the norm and the energy

N(z,z) = <z|z> (2.4)

<z|H|z>

H(z,z} (2.5)

<z|z>

Variation of 'the action with the lagrangian (2.3} yields the

eqguations of motion

if 9;. é. L , and c.c. (2.6)
IR 1
where
. 2 o
g9.. = —>— 1a N (2.7)
H Bziaz

The matrix gij’ which is determined complietely once the norm
of the -trial wave function is known, will be of paramount

importance for our discussion in Section 4.

The symplectic structure associated to the parametri- -
zation is revealed by defining a Polsson bracket for general
function F(z,z), G(z,z)

r
{F,6} = 7§ BE g7 28 .38 -t 2F (2.8)
- 9z, o3z, 3z, ooz, :
i,j=1 i ] i ]
In particular we obtain the fundamental brackets
(z.,2.} =g}
it%j 9y
(2.9)
{Zi’zj} = {zi,zj} = 0
and the equatidns of motion

inz, = {zi} H}Y ~and c.c. {z.10)

The Poisson bracket form of these equations assure the energy-
conservation along the solution trajectories. The main advantage
of defining the Jlagrangian as in (2.2) is that then the équations
of motion are independent of the phase and normalization chosen
for the wave function. The proper phase and normIS), as speci-
fied by the time dependent Schrgdinger equation, are restored

by

is  1z(t)>

[e{t)> = e —_— i {(z.11)
- v<ziz>

where $ is the action (2.1) computed for a given trajectory

z(t).

An important special case occurs when the norm is given
by

r
N = exp {_Z Ei 211 : (z.12)



.6, 7.

. "‘-f .
In that case'gij - ij.; {cf. (2:1)) and tbe. symplectic where | 1) are oscillator states and a the corresponding

. . B i hich k. as
stritcture is° the usual c¢anonical Poisson bracket. If real and creation operator. The compiex vector s, which we take

L . i i i i dis-
imaginary parts of z are defined as'zi.=-t//7ﬁ (qi-'pi) the the variational parameter, is related to the relative is
actionm becomes the usual one in classical mechanicslh) tance { and momentum P of the centers of mass of the ﬁ?gmentg

i . o PR _ . by
o A o o S~ -
= . - uQg  bP
R EPREIELES | | | oL [ e 6.2)
/T b v,

" We will refer to.this case as canonical and call the associated
) Here b = YK/ (mw) is the oscillator lenght and u = A]AZI(A]+A5

phase space flat.
N is the relative mass number. The trial wave function is then

: . r A] Az
3. THE TRIAL WAVE FUNCTION 8> = ALE 5 liy.s) i“_]‘ ipr) (3.3}
. 1 2-

We refer to Appendix A for notation and a more detailed ana-

As in all variational calculations, the family of . ; B .
lysis of the construction of this wave functian. Here we

wave functions to be used in the TDVP will depend partly on our . .
want to stress some properties that are important for our
hysical insight into a given situation and partly on guestions .
phy g 9 P Y q further discussion.
of mathematical convenience. Our main assumption will be that

the scattering of two nuclear fragments can be described by a a) In any representation |5> is an AxA (A = A1+A2} Slater
trisl wave functiom which is a totally antisymmetrized product determinant. 1t is bullt up from non-orthogonal and non-
of single particle states centered at two different positions : : -normalized singie particle states which are parametrized
and boosted so as to have different momenta.  The second analytically by the complex vector s.
assumption is that the fragments remain unexcited during the )
callision so that only the relative motion degree of freedom b) |§>,doés not have in general a well defined linear momen-
is taken into account and its dynamics investigated. A third tum. However the fact that we use oscillator states of
assumption, more technical in nature and which simplifies the same frequency in both fragments leads to Lhe well
matters considerably, Is to assume oscillator states of the same known factIS) that the CM coordinate separates in a pro-
frequency in both fragpents.The trial wave function is construc- duct wave function completely uncoupled from the relative
ted from single particle states Ei]), e R L L one motion. |f we do not use ascillator states (as in most
fragment and iiz), i, = t,...,A, in the other. The label I TODHF calculations) or even if the fragments have unequal
stands for all the gquantum numbers {n,%,m,s,t) needed to specify frequencies then the CM does not separate. In any case,
the single particle state. As we describe in more detail in Ap- : however the mean values of the CM coordinates and momenta
pendix A the displaced and boosted fragments.are constructed are zero.
frdm states
c} The angular momentum is also not a good quantum number

fi]nﬁ) - exp{ %E §-§+1i3]} in fragment | for s> . A classical angular momentum can be associated

: 1 - : ’ (3.1) . to a given s by
!ié;f) = éxp[— %E 5 §+} [iz) in  fragment 2

[t
i
]

(3.4)

= —
1=
x
[ -]
-
14
x
L




where the fact that the overlap depends only on the ° scalar

This is a classical quantity and can take ‘any conti- ;
s.s (and not on s.s or s.s) is a direct consequence of the

nuous value. However it can only be used as & conserved angu-
Yar momentum in the asymptotic region where the clusters do 5U(3) iavariaace.

not everlap. We return to this gquestion in Section 5.
The matrix g that defines the symplectic siructure is

There are well known projection methods to obtain . easily computed from (2.7} and (&.1)
states which have a well defined linear and angular momentum
from Slater determinants which do not, They wusually involve gij = 3_lﬂ:£ = 513 u + ;isjv : (4.2)
large computational efforts which For the moment we wish to asiasj
avoid. We will therefore in what follows treat the angular where
momentum as a classical quantity. : :

PRI LI R NP I L . | (4.3)
As-5) 3s.5)
L. SYMPLECTIC STRUGCTURES ASSOCIATED TO THE INTERACTION OF SH(3)
SCALAR FRAGMENTS ¢ < 220N _ ., 2 ink : (k)
3(s.5)? 3(s.5)? o

Although the trial wave function |s> is quite gene- Asymptotically, for §.§ + ® we have u +1 .and v~=*0 and
ral we will consider here only the case in which both frag- therefore g becomes the unit matrix. As a sum of a diagonal
ments are closed shell oscillator wave functions with the and a separable matrix g is easily inverted
same frequency. This is the simplest case because then the -
isolated fragments are spherically symmetric and SU{3) inva- (g'l)iJ =t [%ij - L. EISj ! (4.5)
riant and all computations can be done analytically. In prac U ETY -
tice this restricts the direct application of the method to
l‘He, ]60 and |L”)Ca as interacting clusters. However the picture The symplectic bracket for arbitrary functions is thendefined
that emerges is general and the restriction to SU(3) invariance according to (2.8)
or equal frequency can be lifted at the expense of a subs- 3

Ly . aF _, -1 36 36, -1 aF
tantial increase in complexity. - _ {F,6} = 1} [ ~——-{g )ij T TTT\g )ij
i,j=1 asi asi Bsi st

4.1,  The symplectic structure (4.6)

We apply the general connection between the overlap In particular
and the symplectic structure, embodied in (2.7), to the trial _ “1. - _
states constructed in Section 3. Explicit formulas for the {si’sj} = g )ij ‘ _ (4.7)
overlap for some pairs of fragments are given in {A.25) to . '
(A.28)., In all cases <§!§> can be written as {si’sj} = {51’53} =0

<s|s> = N(s.3) = exp(§.§)[M(§-§}ju (&.1) In principle this is all we need to solve the equations. of

motion, which are given by



0.

th5, = {5, H} (4.8)

Numerical solutions can be easily obtained from given
initial conditions, as is 6one, for example in ref. . However
it is more convenient to first rewrite (4.8} in terms of cano-
nical varlables so that all the results of classical two body

scattering can be utilized.

The transformation to canonical variables, which of
necessity will itself be non-camonical, is guaranteed to exlist
locally for any symplectic manifold {(this is known as Darboux
theoremls}). In the next section we construct it explicitly
for all points of the manifold. The distinct new feature “that
emerges Is the.appearance'of boundaries which exclude certafn
regions in phase space. We will show that these regions can
“be directly linked to states which tn the quantum treatment are

excluded by the Pauli principle.
4.2, Transformation te canconical variables

The easiest way to find the cancnical variables is to
go back to the actlon (2.1} {without the emergy term)

3
5, = B Idt izﬂ (;_3__513_) In N (4.9}

° R 3s .
i !

Using the fact that ¥ is only a function of s.5 we rewrite (4.9)

as
5o=ﬁjdt (s.5 - 5:3)
2

where u is given by (4.3). It is then easy to check that the new

variabies

i i (4.10)
wy = /& Sy . '
transform § into
s, = 2 [ oo Go-owr CHE)

The variables wy are then canonical in the sense that

—~—
=4
=4

-

It

(4.12)

This is obvious from {(4.11} and can also be checked directly

using the explicit expression for the bracket given in (4.6).

In terms of w the variational equations take the cano=
nical form
Ty aH
Ih w. = —— and c.c. (4.13)
Jw .
i
where H is assumed to be expressed as a function of @ by inversion
of (b.10). To make these eguations appear even more familiar we

can transform to real variables defined in analogy to (3.2}

B
b= |2 - a—e (h.14)

- YZ b I R
where r = u]/2 Q and p = u”2 P.
in terms of rs P everything looks like ordinary classi-

cal hamiltenian mechanics i.e.

(4.15)
{ri,pj} = 6ij
In (4.15) a factor t/iR has been absorbed in the bracket to
conform to the standard definition of the Poisson bracket in

classical mechanics.

The important new feature is that, while Q and P could
assume all possible values, the canconical pair r,p has b;mmariesL
i.e. some regiens of phase space are not allowed, To study these
boundaries we go back to complex variables. From (4.10} we obtain



w.w'= s.5 ufs.s) . (4.16)

The function 9.@ , which for reasons that will be ¢lear
below will be called the Pauli distortion factor, can be commned
expllicitiy using (4.3} and the expressions for the overlap given
in Appendix A. |t has been plotted for several combinatians of
fragments in Fig. 1., Some general cha}acferistics of this func~-
tion are worth noticing. For §.§ + ow, 9.@ hd 5.%. In.this region
the s variables themselves are canonical and the Pauli principle
inoperative. For convenience we define a number Nf such that for
w.w > N, w.w differs from s.5 by less than 1%. We call this the
‘folding region. At the other extreme we see that for s$.5 + 0 we
obtain for w.0 a definite non-zero number Ny characteristic of
the pair of fragments. The region @.é < N, is forbidden. For
values No £ 9.@ < Nf there is a large difference between @.@ and
s.s but the region is allowed. The camonical phase space w® can

then be divided in three regions as follows

N, < @.@ folding region

Pauli distorted region (h.17)
Pauli forbidden region

In table 1 we give.the values N, and N. for some pairs

of SU(3) scalar fragments. If the antisymmetrizatlon between fragments

a-o a-Ll50 a-"*%Ca t6g - 189
Ny 4 g 2 24
Ne 10 ’ 21 30 8o

Table 1: Boundaries between forbidden, distorted, and folding regions (as
defined by (4,17))} of the canomical phase space for the interaction of some

SU(3) scalar fragments. _Nf has been determined at the peint where u = 1.01,

40

30

13 20

10

Figure 1 - Pauli phase space distortion factor for some combi-
nation of SU(3) scalar fragments. The dotted line carresponds

to the neglect of antisymmetrization,
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were omitted the trial wave function would be a product of two We will see below that & is the conserved angular momentum., So it
Slater determinants and the factor # in (4.1} would be equal to makes sense to consider the curves @.@ = N in the radial phase
1. Then u=1 and w would be equal to s throughout their ranges. ptane {k,r) for fixed &. They are closea curves which decrease
In Fig. 1 we hav; drawn this as a do;ted line. Deviations from _ in size as % becomes la[ger and disappear alttogether for £ > N.
this line reflect the effects of the Pauli principle and start The forbidden region w.w < Ny will then appear as a hole in the
becoming noticeable for g.é < Ne- The reason for calling @.§>Nf radial phase space for 2 < N . For Ny < & < Nf'there is no for-
the folding region comes from the fact that when antisymmetriza- bidden region but there will still be a distortion region where
tion is neglected the potential energy between the clusters 1s there is an effect of the Pauli principie. For & > NF the interac-
abtained by folding the density of each one with the two body tion will be governed by the local folding petential and anti-
force. This is a procedure that has been used extensively to symmetrization will be irrelavant. Exampies of these radial phase
compute the real part of optical potentials between heavy ions]72 spaces with the different regions are given in Fig. 2 for the
Our consideratfons make a definite prediction as teo thg region of case of a-a scattering.

phase space where negleqting antisymmétrization is a valid

assumption.
: k.4, Relationship with guantum results

4.3, Radlal coordinates and forbidden regions ) There is a deep connection between our results based on

the symplectic structure associated to the TDVP and the more

To see more clearly the meaning of the different regions familiar ones based on RGM or GCM. We will just indicate how
discussed in the previous section we introduce radial variables. . . this connection works without attempting a detailed comparison
We define as usual ) which we leave for a future pubticafion.

r ( r)lIz L {g é + % (@ @ +w Qﬂllz It is well known6'7) that a power series expansion of

) A = the norm kernel in the Bargmann representation give the eigen-
rop Lo ) values and eigenfunctions of the norm operator. Thus with N
kK == = — 0.9 - w.g] (4.18) expanded as
fir 2ir - : :
% -
M= Ty el ' (4.20)

32 = 772 frxpl? = (w.w)}? - (w.w) (2.0) ' N=N, N
The second part of the identities have been obtained using (k.1h). we can read off the eigenvalues Ay from the expansion. The in-
Instead of the radial momentum p. we use the more convenient radial terpretation of this result, which is valid for sU{3) scalar
wave number k = pr/ﬁ . These formulas provide the transformation ) fragments, is to say that the eigenfunctions of the norm ocpera-
from the scalar quantities w.uw, @.@ and @.@ to the radial phase tor are harmonic oscillator wave functions (given here in the
space variables r, k.and the angular momentum- %. Using {(4.14) . Bargmann representation). The eigenvalues depend onlty on the
and (4.15) we obtain . _ : _ principal oscillator number N and are degenerate with respect

' . to L and m. This is of course a consequence of $U(3)} invariance,.

%_@ = % [@ Li + Ei (k2 + £22/r2 ) ] (4.19) ) . States of relative motion forbidden by the Pauli principle have
h2 K AN = 0 and occur for N < N, where N, is characteristic of the
pair of fragments considered. We now prove that N, is equal to

TN, as defined in (4.17). In fact we have




Ny = s-s ulss)|
15.5=0
Using (4.3) and (%.20) we obtain
N
- 3 (§-5) !
N, = s.5 — In AN — + =
- #{s.s) : Ny
_ N
. Ni(s.s) +

(E.é)Nl +
Then for g.é + 0 we obtain
Ny = N,

Therefore the number N, giving the boundary of the forbidden region
coincides with the first principal oscillator number not forbidden
by the Pauli principle. The interpretation of Nf is also quite
simple. it ts known that AN + 1 when N » =, |n the region where
AN is almost unity (say to within 1%} the normalization operator is
the unit operator and there is no influence from the Pauli princi-
ple. The number Nf for which this happens coincides very closely
with the number derived from the symplectic structure. In the region
between Ng and Nf the eigenvalues AN go smoothly frem zero to one
and one speaks of partially forbidden states. This region corres-

ponds to the Pauli distorted region.

Another connection is even more graphical. If one thinks
of a quantum state as occupying an area 2wh in phase space, as
one does in the WKB limit of quantum mechanics, then the forbidden
area can be thought of as representing semiclassicaly a certain
number of forbidden states. This number 1s easily calculated as
the area (divided by 27) enclosed by the curve

H 2
N, = % [u L L TE I Rzlrz)ji
b2
W
for given N and L. This area is
N, - 2

J = 2 ?

2

ber of radial states with n. S 1 (Ng-2) compatible with N

7.

Then if we consider-the radial quantum number n, (N_=_2nr + L)
we see that the forbidden area corresponds exactiy to . the num-
bl ]
and L. It is then apparent that a study of the symplectic
structure reveals many of the features of the quantum treatment
of the Pauli principle, but depicts them semiclassically. This
can be quite significant for larger fragments where the guantum

treatment of the overlap kernel becomes very cumbersome.

5. DYNAMICS

Once having ascertained the structure of . the phase
space appropriate for the description of the scattering of
composite particles we turn to dynamical questions. Here the
chofce of a microscopic interaction will be crucial for a
correct description. As our concern is to see how far a clas-
sical description via the TDVP can go we adopt the point of
view of taking an existing calculation with a given two-hody
force and using it in the TDVP. for the present discussion we
adopt the RGM calculation of a-a phase shifts byOkaiandParkt0
as an "exact'" calculation. The details of the two-body inte-
raction and the explicit expressions for the hamiltonian kernel

are given in Appendix B.
5.1. Conservation of angular momentum

The hamiltonian kernel {2.5) depends in principle on
the vectors s and é. As the fragments are sphericaily symme-
trlc it can only depend on the three scalar combinations E.é,
s.s and s.5. The same will happen after the transformation to
;a;onica; ;ariables w . The form of the hamiltenian will then
be H + Hiw.u, w.uv, @?@)-This form, together with the canonical
equations {(4.13) guarantees the conservation of angular momen-

tum defined as

(5.1)

ﬂ
X
hvl
W
e
1w
]
1o
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Notice that, in the region of overlap, where u#l, the conserved
angular momentum differs from the asymptotic angular momentum.
This fs another manifestation of the effects of the Pauli prin-

cliple.”

"if radial coordinates are introduced as in (4.18) the

hamittonian becomes a function-in-radiar phase space
H o> H(r,k,2%) (5.2)

which defines a radial two-body scattering problem at a flixed

angular momentum £.

The radial equations are

Fo={r,H} = a4

ak
. {5.3)
ko= {kHy = -2

or

In these equations the angular momentum appears as a parameter

which can take any continucus value.

5.2. Radial phase space trajectories

The variational eguations have now been reduced to what
looks Tike an ordinary scattering problem in classical mechanics.
There are however some Important new features which are hidden
in the transformation (4.10}. The most obvious one we have dis-
cussed in section 4. in connection with the distortion. and
forbiddenness of regions in phase space. The other effect, of a
dynamical nature, comes from the fact that, even for local two
body forces, the hamiltonian (5.2} will be highly non-local ex-
cept in the folding region. By no means the k dependence is
through a mass term proportional to k*.  For the same reason the
dependence on %% will not appear as a centrifugal barrier 22/r2.
All these effects are important in what we have catled the Paulli
distorted region in radial phase space. Outside this region the
hamiltonian takes the usual form

2
Hir,k,8%) = B (2 4 e+ ve(r)
2mu

where VF is the folding potential.

Given an explicit form for H, we could easily solve the
equations (5.3) to find r{t), k{t). It is, however much more
interesting to use energy conservation to find the phase space
trajectories k(r). These are defined implicitiy for given & and
E by

Hir, k,2*)= E {5.4)

These trajectories have been plotted In Fig. 2 for a-u scattering.
In Appendix B we give the details of the two body force and the
oscillator parameter, which are the same as those used in reflux
The Coulemb force has been included in the folding approximation

only, to produce results comparable to reflo).

A word of caution should be raised here concerning the
assignment of angular momentum. As our trial wave function does
not have a well defined angular momentum, 2 can adopt any real
value. To assign the values with physical meaning we need an
extra prescription. For large values of £ we can just choose L
to be integer. (Actually for o-a scattering one should choose £
as an even integer to take inte account the identity of the
fragments). That this procedure is not correct for small values
of & is well known from application of the WKB metheod to the
radial Schrddinger equation] ). in that case it is possible to

show that % should be chosen as

1 .
L= LQM+—2' (5.5}

where LQM takes on integer values and £ is the classical value

of the angular momentum. This is also the prescription used

i9)

when applying semiclassical methods to heavy ion reactians
We have adopted this prescription here, although we have not
been able to derive it. Its use 1s validated a posteriori by
the excellent agreement with the gquantum calculation In the next
section. Obviously, the correct procedure to assign the angular
momentum would be to use L-projected wave functions in the va-=
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Figure 2 - Radial phase space trajectories for alpha-alpha scatiering. The

oscillator parameter is b = .37 fm. The trajectories are labeted by
in MeV. The shaded region is forbidden and the dotted )ines give

the

E

M

Pimit of the region of Pauli distortion (N.=10). The angular momentum has

been assigned by the prescription £ = L +11/2.
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riational principle. This would lead to a classical hamiltonian
HL(k,r) in which the continuyous dependencé-on 22 is replated by
a discontinuous dependence on the allowed L-vaiues. This pro-

blem needs further clarification.

In Fig. 2 the essential characteristics of a-o scattering
can be recognized. In all cases we have drawn the critical tra-
jectary leading to the top of the Coulomb barrier. This trajec-
tory leads to orbiting of the fragments at a fixed distance and
separates the trajectories which only feel the Coulomb repulsion
from those that penetrate into the nuclear region. Notice that
both the t=0 and L=2 barriers are well outside the distortion
region indicated by the dotted tine. This means that the barrier
poesition and height 1s determined solely from the folding part
of the potential. For Ls=4 instead the critical trajectory enters
the Pauli distorted region and is therefore affected by anti-
symmetrization, Another interesting effect that can be seen clearly
is how the periodic trajectories {cf. the small loop at -6 MeV
for L=0) are strongly affected by antisymmetrization.

5.3. Computation of phase shifts

Semiclassically, in the WKB approximation, the nuclear
phase shifts for two body scattering with a Coulomb plus nuclear

potential are computed 3519)

GL(E) - J
.

where k and kc are the wave numbers corresponding to the radial

k dr - J kc dr (5.86)
r

¢ [

motion with and without the nuclear poteatial U({r)
1

,

1 2

k{r) ={ EEJT"‘ [E - ulr) - v ()] - (L+ 2.)z/rz}
{5.7)

2 i 1/2
kc(r} = i -%g e - e?Z,Z,/r] - (L + 7)2/r2}
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Here ra.and r.oare the more ouiward F“r"i?g points for the two
trajectories, where k or kc vanish, Vc is the Coulomb potential
which at shoert distances could differ from the point Coulomb

interaction e?Z,Z,/r. The centrifugal potential is computed for

the classical angular momentum & = L + 1/2,

) In Fig; 3 we have represented the phase shift (5.6}
schematicaily as an area in radial phase space. Disregarding
for the moment the forbidden region (B+C) it is the area bounded-

between the curves k(r) and k_(r}.

We propose to compute ithe phase shifts with a similar
formula where k(r} is replaced by the trajectory obtained from
the variational principle defined implicitly by {5.%). Examples

of such trajectories are given in Fig. 2.

In the computation of the area under k{r) the forbidden
region should be excluded. The secend term in (5.6) s not
modified. The resulting phase shift [s again best characterized

as an area in phase space. In Fig. 3 it is the area A-€.

in Fig. % we show the results of this computation and
compare with the RGM resulits of reflo). The areas were evaluated
dividing the phase planeg in a grid of Ak = 0,03 fm—]and Ar = 0.06

fm and adding.the areas ArAk that satisfied the conditien of

belonging to region A (counted positive) or C (counted negative).

The accuracy of the procedure was checked in several finstances
by halving the size of the grid and verifying that the computed
phase shifts did not change by more than one degree.

From F}g. 4 we conclude that the TDVP computation repro-
duces all the major features of the quantum one giving an overall
quantitative agreement with RGM. Of course some features cannot
be reproduced with the simpie WKB formula (5.6). These features
are caonnected with typically guantum phenomena like tunneling
or reflection above the barrier. The semiclassical calculation
has a discontinuity at the top of the Coulomb barrier where the
classical trajectory suddenly enters the attraction region. This
discontinuity is smoothed by tunneling effects in the RGM <cal-
culation. it is apparent from Fig.4 that both the position and’

the magnitude of the discontinuity are carrectly given.

.23,

Figure 3 - Graphical computation of the semic]ass{ca] phase
shift (schematic). The are B+C is farbidden. k{r) is the
variational trajectory as given in Fig. 2. kc(r) is the
Coulomb trajectory with the same energy and angular momentum.

The nuclear phase shift is computed as the area A-C.

200

100

=0

T

-100

Figure 4 - Nuclear phase shifts for alpha-alpha scattering.

Full line is the RGM calculation of refln}. Datted 1ines

are the results of this paper.
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It is interesting to notice that the repulsive effect
of antisymmetry {the "Pauili hard core") is accounted Ffor by
the negstive contribution to the phase shift {area € in Fig.3)

where the Coulomb trajectory enters the forbidden regien.

Finnaly a brief comment on the computation of bound
‘state energies. These would be naturally computed using the
Bohr-Sommerfeld quantization condition on the closed periodic
trajectories at negative energies. In the present case there
is not enough aréa to hold a quantum state at negative energies
and again this is due to the Pau]i'principle which acts by
excludling area in phase space which could otherwise be occupied
by 2 bound state. Although in the a-a case it is not very
relevant, it is appealing to know that for heavier systems,
where one expects some bound states, the TDVP can provide a
unified description of semiclassical type of bound states,
phase shifts and even resonances {(by extending the Sommerfeld

‘rule to periodic trajectories at positive energies).

6. DISCUSSION AND CONCLUSIONS

We have presented a method based on the TDVP to study
- microscopically the scattering of light fragments. |t borrows
physical approximations and computational technigues from both
TOHF and RGM-GCM. From TDHF it inherits the Slater determinant
restriction to the wave function and the consequent one body
evoiution via the TDVP. However this evolution is not the more
general one but is further constrained to allew only for the
relative motion degree of freedom. On the other hand the me-
thod inherits from RGM-GCM the basic idea of clustering of
‘nucleons and all the mathematical apparatus for the calculation
of norm and overlap kernels. However 1t treats the RGM-GCM

equations classically.

There are twe main new resylts that we want to stress
from the present work. The first is the concept that the effects
of the Péu%i principle between nuclear fragments can be assimi-
lated to a distortion of the relative motion phase space andg
studied in a classical context. The main features of the quan-

-tum treatment of antisymmetrization via the eigenvalue problem

.25.

for the norm kernel are reproduced semiclassically including
the forbidden and the partially forbidden states. Therefore,
inasmuch as the radial motion of two fragments is semiclassi-
cal, there is no need for a full guantum treatment in order
to include the effects of the Pauli principle. Of course, to
fully substantiate this statement one would need more calcula-
tions for other pairs of nuclei. These are presently under,wéy. No -
tice that, for heavier fragments, where the computqtion_ of
the full overlap becomes very cumbersome we could consider ex-
panding it according to t2e7?umber of particles exchanged. Such
s

expansions are well known and using them one could study
how the symplectic structure changes all the way from a "“flat"
phase space when no exchange is included to the full effects
of antisymmetry. |In any case, due to the strong optical
absorption in the inmer region and to the diminishing range
of multiparticie exchange effects,onfy the first few terms of
this expansion are expected to have significant influence on

the scattering.

The second result that we want to stress is the
paossibility of extracting meaningful quantum information from
a time dependent variational solution. This problem of re-
quantization has been approached recentiy by many authorszuh
but only in connection with bound state problems in simple
models. We have shown here that in a fairiy realistic situa-

tion these methods can be extended with success to scattering.
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APPﬂmlg A <x P> = A det [(xi:¢.)}

VA ! J

We provide here some details on the construction of the We use round brackets for single particle states and angle

trial wave function and the proof that, for oscillator fragments, brackets for many body states x, labels the position, spin
. i »

it can be chosen to depend analytically on a complex vector - and isospin of particle i while x stands for the set

We follow a simplified version of the methods proposed by Kramer, {x x,}. A Weyl shifted determinant is constructed as
I LA S ‘

John, Schenzle 6) for the computation of overlap and hamiltonian

kernels in the theory of interacting clusters.

_ i
x|y (p,a)> = = dec{(x;|¢,(p,q ))I
A.l - Weyl translation of a quantum state v

and it is easy to see that 1t can be written as

Consider any mormalizable single particle state I¢n) and % [p Eﬁi-q 25;1

position and momentum vperators p, §, such that i[§,§] = A. The lwu(P,Q)> = e iw°>
Weyl translated state is defined as
%(pﬁ-qﬁ) R Thus, in terms of the center of mass (CM) operators
[o,{p,q)) = e lo,) = Wlp,a) [¢)) (A1) A
- 1 . - .
Q= 'A" Z CI‘ » P = Z pi
This state depends on the two c-numbers p, q and has the i=] i=l .
following properties . (A.4)
’ i[f.8] =
(9, tp,ad]dle, (o,ad) = (& [G]d,) + q
(A.2) we have
(65 p,a} 1610, (pra)) = (8,180 ) + p F(ap - af)
[‘;’D(p!q)> = e [‘bo>
The interpretation is clear. If [¢D) is a wave packet with given
mean position and momentum, then |o,(p,q)) is another wave packet Then, in complete analogy with (A.1) and (A.2Z) we have
shifted in phase space by the c-numbers p and q. All higher mo-
ments of p and § are unaffected. We can then think of [é, (p,q)) <¢ﬂ(p,q)\d§¢0(p,q)> =<y, | Q [v,>+ g

as a state with a definite mean position and momentum. Gf course,

in general it will not be an efgenstate of neither § nor §. It <¢u(p,q)lﬁ\wu{p,q)> = <¢U|§[¢0> + pA
is obvious that p and q can assume any value so that their ranges
are It is then convenient to label the many-body state by the mean
- @< p,g < a (A.3) values of the (M operators as
i : . . - 7(P3-0P)

This arqument only depends on the commutation relations !wu(P,Q)> = e |¢0> (An.5)
of p and § so that it can be immediately generalized to the
translation of the center of mass of many body wave functions. where
In fact, consider for a system of fermions the Siater determinant P = Ap , Q= gq 7 {(A.6)

formed from A single particle wave functions l¢i)
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This is the refationship between the Weyl shifts of the single

particle states and the phase space cocrdinates of the fragment.

"A.2- Complex form of the Weyl operator

When the single particle states are oscillator states
it is more convenient to rewrite the Weyl operator in terms of

creation and annihilation ocperators

5 [ a _ . %g ]
a = e = -
vZ'P .
(n.7)
PO [ 3 bp ]
a = — + 0 ==
ST b f
[a,a*}=l
and the_complex variables
-1l la e )
F4 ﬁlb"'lﬁ (8)
A.
%l %)
zZ = — = i
ST b fA

In the above formulae b = vVR7mw is the oscillator lenght of a
particle of mass m in an oscillator of freguency w. Using (A.7)
and (A.8) the Weyl shift operator can be written In complex

form
lp,q) = W (z,2) = 23 T %@ (A.9}

The Baker-Hausdorff formula c¢an be used to write (A.9) in the

alternative forms

=at
W(z,z) = e e e = e e ™% &% (a.10)

A special_buf very Important case eccurs when we let this ope-
rator act on .the ground state of the oscillator, defined by
3i0) = 0. In this case, using (A.10)}) we obtain

1 -

: = 2z zaT

- - 2

wc(z,z)ﬁo ) = e e?? o)
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1 = .

Notice that, except for the normalization factor e T zz‘ we

obtain a state parametrized analytically in terms of the com-

plex variable z. It is, of course, the usual coherent state
of the harmonic oscillator. )
A.3 - Trial wave function for two fragments

It is quite natursl to try to describe a scattéfing
sltuation for two fragments of masses A, and A, by the anti-
symmetrized product of two Weyl transiated states

1215815025057 = AW (R0 L0p> Wy (Py 050 [9p2d (A1)

where A is the antisymmetrization operator and [¥;> and [y,>
are Slater determinants constructed from single particie states

]i]>, iy = 1,...,A, and |i2>, Py = 1, A,

1

We will assume that states in each fragment are ortho-

normal
(i |i‘) = §. ",
101 i H
(i,]i4) = 6. .,
2! 2 igiy
For the moment, states iil) need not be the same as |i2).

We now transform to center of mass and relative coordi-

nates in the usual way

i ' A
Ay e A0, t 7 -

Uy = n A s A b 9;

Ayrhy ! 2 =

A
Pen =8y v By = ;Zl By
{(A.12)

) AP - AR, A A F g
Po= ' = 1 8w Ly
- Ay + A,y A g1 ig2
- . . 1 o o -
Q=8 -8 =5 I & -7 .1 3
TR ST A g CE Ay g
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with similar formulas for the c-aumbers g], E], 92’ EZ' The trial

state can then be rewritten as

| Pens Qems Bo Q2= Wey(PrynQpy) A ﬁ(E-g)Iw,>|w2>]
(A.13)

As the €M operators are symmetric under particle exchange we
 have commuted them with the antisymmetrizer. This of «course

cannot be done with the relative motion operatorsP, Q.

The Weyl shift corresponding to the CM coerdinates is relatively
uninteresting as we deal usua!iy With translation and Galileian
.1nvartant hamiltonians. When the snngle partncle states are
harmonic oscillator the CM coordinate factors as a product wave
function and the €M motion is completely separated from the
relative MQEion. In other cases projection-techniﬁues are availa-
ble but we will not deal with such cases here. We therefore con-
centrate on the relative motion wave function. Using {(A.12) we

can rewrite it as

| £ (2.0-0.7)
[P,Q> = A e > feg> 4 =
ri = A2 = 1 = A b
(P8, - == Q.P PO, - wme— Q.
- A [ﬁﬁ(~ & - myea; o ~l)|wl> eﬁ(- % - myEEy 4B o,

Then the relative motion wave function is built up from single

particle states

A (PG - ug B _
Lil) in fragment I
(A.14)
- A7 (P - 1Q.E)
e _ ;iz)_in fragment 2
where we have in;roducedthe relative mass number
an .
p=_12Z _ - {A.15)
A]+A2~
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1f we use the single particte bosen operators intreduced in {A.7}

we obtain the complex form of (A.14)

i -
expL %E (§.§* - §_§)J| i]) in fragment |
! (A_16}
exp[ %g (g_éf - E-é)]liz) in fragment 2
The complex vector s is related to P and @ by
s =1 [%g q - b p] (a.17)
VE - T

In general the Slater determinant constructed with the states
(A.16) depends non-analytically on s, i.e. it has a functional
dependence on both s and é. However if the states |i]) and
tiz) are oscillator states with the same parameter b it is easy
to show that the essential dependence is on s and that the de-
pendence on s is only through an overall factor. Iln view of

the properties of the variational principle discussed in Section

2. we can just drop this factor and obtain an analytical para-

metrization. To prove this statement we use (A.10}) to write
5. .50 - s, .3 Y5, -5, 5,-87 -s,.3
o I b/ - Ty oEp-E 1= ) -
e ||]) = e e e ‘ll) =
; - - -t -
IR E] - -4 S 8
= g E. e {ll)(|i| {l‘) {(A.18)
i
1
. ' 1/2 .
Here we have introduced 5y < il /A1§ and inserted a complete

set of oscillator states which is truncated at the maximum
cccupation number in the fragment. The Weyl translated states

in fragment  are then limear combinations of the states

51.

eq] 2 fi ) which are much easier to handle and depend anaiytl»

cally on s. The transformation matrix (|‘{e = ~|r is lower

triangular with unit diagonal and therefore |ts_éeterminant is

one. This-means that the determinant constructed with the states
513 :

|| in fragment 1

{A.19)

5,85 .
e '.1:2) in fragment 2
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is the same as the one constructed with the states

iy

38 s
1 =1
e

e H‘) in fragment

- . (A.20)
"§2'§+ 52-
e e li,}" in fragment 2

1y

The argument is not valid if the fragments are excited. The only source
of non-analyticity is the multiplying factor in (A.18) which we
drop from now on.

Qur main conclusien is then that it is possible to des~-
cribe two oscillator clusters in relative motion with a trial
wave function that depends analytically on & complex vector s.

In the main text we denote this wave function as

Moo et Az -3,.8t
s> = |-_]'[ e li)) 1 e 75 7 1iz}]
i=1 1,=1
(A.21)
where
s, = H%?E s, s, = ulzz s {(A.21a)

and where s Is related to P and Q by {A.17).

A.4% - Computation of the overlap <s|s>

1)

terminants is given by the determinant of the matrix of overlaps

It is well.known2 that the overlap of two Slater de-

which aiso plays a fundamental role in the computation of mean

values of one and two body operators. For our purposes the overlap ma-

trix B is conveniently partitioned in blocks

[ 't p'?
B = 21 22
{ B 8
where Bc"8 @, B = 1,2 are the overlaps of the single particle

states (A.20). Using repeated!y the decomposition (A.10) we

compute explicitly the 8 blocks
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o 5.5
B]l - 51 o eul 1
11
12 "5 -5, LTS v, -
B = (I]IE u g.2 M 2-4 liz)
BZ] . (B1Z)+
So.5
322 _ s ) A
f2'2

Because the diagonal blocks are proportional to unit matrices the
determinant 1s easily computed using the matrix identity

11

g1l o 1 (B];)-]B‘z F'(B“)-IBIZ(BZZ}-] 21

g?! ol ! 1 0

Explicit computation yields them the final result

- -5.5/u
o2 % det[i A M ] (A.23)

M
n
wr

v

H

where

-1/2 + u-l/Z
n'? . (ille e

bt
104
tivy

5.
- Fiy) (n.24)}

This is a very compact and easy to use expression for the overlap.
The interpretation is also quite simple. The first factor is
what we would obtain if we were to neglect antisymmetrization. In
that case the trial wave function Is a coherent state in the re-~
lative coordinates and e2 % j5 the familiar overlap of two coherent
states, The second factor in (A.23) refiects the influence of
antisymmetrization., Notice that it is given as a determinant of

a matrix with the dimension of the number of particles in the
smaller fragment. Its computation is then quite manageable. The
matrix MIZ(M}Z)+
and its computation is lenghty but straightforward. The negative

has as elements finite polynomials in s and 3

exponential e—§'§/]'l takes into account the decreasing influence

of the Pauli principle as 5.5 becomes large.
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To conclude we give explicit formulas for some pairs of fragments

of interest APPENDIX B

We collect here the details and analytic form of the

o= {n=2)
- hamiltonian kernel for a-a scattering.
5.8 R
<s|s> =e~ - [1 - e™¥]" (A.25)
T : a) The two body finteraction
-0 (u = 16/5) The hamiltonian for the relative motion (with CM energy
s.s subtracted}is
- e~ M - =X 4
<s|s> = e [ {14x) e 7] (A.26) W= T eV eV
rel coul
4 :
a-""Ca = 40/11
(p. ) 1 g (E| - E')Z
z T @ —
3-8 - . rel b
<s|s> =e” T [1 - {1 + x + % x2)e X (A.27) 2R i#] Zm
A
1
18 16 = v = = E v{r,.)
0 - *%p = 8)
t z i#] H
E'g bt s -Zx
<§|§> = e - (4 + x)e + (6 + Zx?)e - where
vir) = v, (W+MP_+ BP_+HP P )e'B'”Z
-k + x? eT3% L oThx ]h : ' (4.28) ° x o x g
5.5 ) ) 10)
where we have used x = ——= . The parameters are in complete agreement with ref and are
" B = D.h6 fm'z, V, = -72.98 Mev, W = 0.3742, M = 0.4408,
In all cases the 4°F power is due to the fact that the fragments B=0.1159, H = §.0691. They correspand to a mixture of 94%
‘are spin-isospin saturated. The simple dependence on only the Serber + 6% Rosenfeld force.

quantity g.é is due to the fact that the fragments are SU(3)

scalars., k) The hamiltonian kernel

Matrix elements of one and two body operators in Siater
determinant states built from non orthogonal single particle
states can be calculated using the techniques of ref. . For
the o-o case the methods of ref.ZI) are simpler. The resulting

analytic expressions are

H(E'E) = T+ Vcoul
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. <slT o ds> 3 (s-3)2  s.5 E
T(5,8) = ——2l= Ly | R
<§|§> L 4 1-E
<s|V|s>
Vis,s} = = = =X, UV, + X UV
R <s[s> d d e e

where

-
i

8W + &B - LH - 2ZM

8M + BH - 4B - 2W

X
Vd f K° %l + 1{s+s5) +

[1(s=5) - 1(s+s)]E® - 2[1(35) + |(§) -1 - i(s+s)]E

+-
(1 - )t

[1(s+s) + 2 - 21(s) - 21(s)]E

(1 - g)°2

-~
n

o= 2 [1 v et T

2
0 = e [ B
+

E = exp [f % §-§ ]

In. the final calculations the constant terms in V and T
yielding the ground state energy of the separated alphas, were

subtracted.

The Coulomb interaction was calculated neglecting antisymmetri-

zation as

<
t
—
©
—_
M
1
[
Lz
I

where p is the density distribution of each fragment. Norma-

lizing ta the point Coulomb interaction at large distances we
obtain

¢) The folding limit
in both ¥ and T a leading term can be isclated which
dominates asymptotically for s.s =~ =. In this limit the

hamiltonian becomes

Ho>He = - % fu(s-3)° + X, K 1(s+3)

which in terms of P and Q@ takes the folding form

H = ;i; p* + v (el + v (lgh
whe re
' | B?
vellaf) = X Ko exp [-;f:—égzz-}

_This is.the form of ‘the hamiltonian outside the distorted
region. 1t has.a local gaussian.form for the potential and a

kinetic energy with the (constant} reduced mass.
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