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1. INTRODUCTION

(1)

The generator coordinate method {cCM) is a

variational method largely employed in Nuclear Physics in the

(2}. It is now beginning to be applied to

(3-7)

last twenty years
atomic and molecular systems Due to the generality of the
method, moreover, many calculations exist that can be interpreted
as "unconscious"” applications of the GCM, see for instance ref.
{8). The purpose of this work is to report on an exploratory
calculation of some low-lying‘ J=0 _states of the H; melecule
usiné_#hg GCM in a way that allows for non~§diabatic coupl;ngs
to hegomé o?érative._ We will}.in partiéqlar, set up the methoa
in such a way as to be able to take maxiﬁum advantage of good
analytical approximatiéns to the adiabatic wavefunction for the
same moléculg. _ ) )
- The trial wavefunction of the GCM is typically
writtén as a linear superposition of a congiﬁuous family of
labeled functions ¢(a) , where the labels o are cailed the
Generator Coordimates. They span a purely technical space - the

(%)

label space - and are in fact integrated out in the typical

GCM ansatz for the trial wavefunction.

¥y = Jda fla)d{a) {1.1)
in which f(a) is a weight function for the linear superposition
defining ¥ , to be determined variaticnally. The optimal weight
functions f(a) are found to satisfy the integral equation

named after Hill, Wheeler and Griffin

!da'&ﬂu,a') - ES(a,a')] £{a') =0 (1.2)

where

Hz,o') = <p(a)|[H|$(a")>

and

Sta,0") = <¢pla)|d(a")

are respectively the energy and coverlap kernels. H is the full
hamiltonian of the system under consideratiocn.

Analytical sclutions of eg. (1.2} are possible
only for rather special systems, and in general one ressorts o
numerical techniques invelving a discretized version of this
equation. The discretization techniques qurrently used are
reviewed in section 2 below. 1In section 3 we review some relevent
calculations of H; and then describe an exploratory application
of the GCM to this simple system in sections 4 through 6. Section

7 contains some concluding remarks.

2. THE DISCRETIZED GCM -

In numerical applications one usually replaces

eq., (1.1) by {(see e.qg. ref. (8)}

¥ = c; ¢(ai) (2.1)‘

1

where the sum runs over the points oy of some given mesh in
lzbel space. While it is possible to take eq. (2.1) to be a

discrete approximation to the integral {1.1), it is also possible,
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in view of the general variational character of the method, to
treat it as a proposed ansatz in which the weights cy and/or
the mesh points a; are to be determined variationally. 1In
this latter case, the main relation to the continucus GCM resides
in writing the ansatz as a superposition of a given parametrized
basig function ¢(e¢) with itself (at different parameter wvalues),
rather than ﬁith other (possibly orthogonal) functions, as done
e.9. in configuration interaction calculations. Given a mesh
{ui} in label space, the optimal weights ¢, are found in
standard way to satisfy the discretized version of eq. (2.1),

i.e.

§(Hij - Ensij) ey = 0 (2.2}

where 'Hij = H(ai,aj) and a similar notation is used for Sij .
Leaving aside any reference to the GCM, eq. (2.2) can be

immediately linked to a well known guantum-chemical methodology:
for the given basis (this is a nonorthogonal basis formed by the

¢(ai) evaluated at the chosen meshpoints in label space) the

coefficients cén)

are the cptimal linear variational coefficients.
With them, as many values of E are obtained as there are mesh-
points (or, more generally, as there are linearly independent
vectors in the adopted basis). These will be variational upper
bounds for as many of the lower exact eigenvalues of H(lﬂ).

The quality of the results obﬁained by using egs.
(2.1) and (2.2} to approximate variaticnally the stationary states
of a given (molecular) system, on the other hand, will clearly:
depend a) on the particular form chosen for the parametrized

wavefunction ¢(a) and b) on the particular set of meshpoints

adopted to set up eq. (2.1). We assume, of course, the system

.4,

to be chafacterized dynamically by its hamiltonian H , expressed
in terms of a complete set of dynamical variables ‘acting in
b a).

Defering the discussion of point a) to section 4
below, we may note, concerning point b}, that there are at least
four distinct procedures for selecting the meshpoints {ai}

which can be recognized in the literature{s):

A - Adopt a large number of meshpoints, separated by equal
spacings A« or by some other "a priori" prescription, around
the single variational optimum o, which minimizes E{a) =

= H(e,a}/8(0,0) ),

B - Select the {ai} on the basis of some guadrature

rule(3).
C -~ Select the {ai} by the interative method propesed by
Caurier(zyz given a seguence (al,....,un_l) , choose oy to

minimize the lowest energy eigenvalues in eqg. (2.2) (see also

ref. (6)).

D - Adopt a "brute force" optimization procedure treating

. s 11
all nonlinear parameters a; as variaticnal parameters( ).

In any one of such préocedures {(and in fact in -
connection with the continuous GCM as well, see ref. (9)) due
care should be taken with an important technical difficulty due
to the nonorhtogonality of the basis {¢(ai)} : inereasing the
nﬁmber of meshpoints and/or decreasing the separation between
meshpoints will iead, from a certain point on, to an approximate
linear dependence (ALD) of the basis that will enhance numerical

(12}

noise. Following ref. s -we may characterize such ALD by the

critericn that the ratioc of the largest to the smallest eigen-—
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value of the overlap matrix Sij is largest than lUN . where
N is the number of decimal figures carried in the calculations.
One particular consequence of the set in of ALD is that the upper
bound variational proverty of the energy will be progressively

obfuscated by numerical inaccuracies.

ALD tends to make the overlap matrix nearly singular.

Thus, the solution of the eigenvalue problem (2.2) can no longer
be safely carried out by traditional matrix inversion methods.
In order to bypass this difficulty, an alternative scheme is

frequently used in connection with GC calculation which can be

sumarized as follows(lz):

(i} Diagonalize the matrix Sij ; i.e., obtain lk and
{bi} such that

(ii) Form the orthonormal set of vectors

b

5 =1 Al olay) . (2.3)
Yo%k

They provide for an alternate orthonormal basis in which the

Hamiltonian matrix appears, in terms of Hij y as
*
3 pkT b :
Hk£ = g . Hij —1 (2.4}
I v % Y

which makes the source of trouble apparent through the occurence
of terms in the sum with vanishingly small denominators (the

small eigenvalues of the overlap matrix). Thus

.6

(iii) Truncate Hamiltonian matrix (2.4) by eliminating all
eigenvectors Ek assocliated with eigenvalues Ak of Sij
smaller than a suitable limit € . This truncation scheme
amounts to removing from the original nonorthogonal basis inde-
pendent components of nearly zero norm. The sclution of eq.
(2.2} is then replaced by the diagonalization of the truncated
version of eg. (2.4). In favorable cases, the discarded vectors
do not contribute appreciably teo the eigenstates of ﬁkﬂ with

the lowest eigenvalues, while still being able to generate

unwanted numerical noise if carried in the calculation.

+

3. H,

CALCULATIONS: A SURVEY

A. Discretized GC adiabatic calculations. We menticn here

three electronic variational GC calculation for Hi which

however make no explicit reference to the GCM(11’14’15).

The
first of these (ref. (11)} makes use of the procedure D (see
section 2) for selecting nine values of each one of two generatoxr
coordinates, and performs in addition the usual determinantal .
optimization of nine linear coefficients. It leads to an

excellent value for the ground state energy. The chosen generating

function ¢(¢) is a simple gaussian.

B. Non-adiabatic calculations.

B.l. Variational calculations. An early calculation by

Froman and Kinsey(lﬁ} does not achieve accuracy up to the thirg

decimal figure for the ground state energy of H; . Curiously,

these authors have detected problems with ALD (their basis was



not orthogonal}.
A series of three variaticnal caleculations in the
preceding decade have led to the best known results for the first

. . 17-19
"vibraticnal" (J=0) energies of H+{ ). The basis set is

2
formed by the functions(ls)

v =0k

2
bon (EsMR) = eV n“coshsnR'3/2expi:- - (R—'{S)z}Hn(R—G) (3.1)

where & ,n are two electronic coordinate in concofocal elliptical
coordinates and R is the internuclear distance. These functions
involve four noﬁwlinear variational parameters o, B, v and §,
H (R-§) are Hermite polinomials. The value of the ground
state energy obtained in ref. (17} with an expression involving
57 terms is -0.5971387 a.u. {the best adiabatic wvalue being
-0.5971385 a.u., 'see ref. {18)). An expansion involving 176
terms yielded the value ~0.59713905 a.u. {(ref. (18)) and, when

pushed to nearly 500 terms, the value -0.59713906 a.u. {ref.(19)).

B.2. Perturbation calculaticns. The non-adiabatic variational

calculations described above have not, until now, taken full
advantage of the information contained in exact adiabatic wave-
functions, or in good approximations for them. If, in fact, one
takes the leading term of the basis (3.1) (i.e.. booe (ErNAR))
and takes for the four nonlinear the values of ref. (18)(cptimized
for the entire expansion) the resulting ground state energy is
very poor. In 1967 Hunter and Pritchard were able to obtain the
value -05971387 a.u. adopting a perturbation treatment starting
from the adiabatic ground state wavefunction and mixing in two
adiabatic excited states. TFurther improvement along these lines

. 21
was however hard to obtain. In 1978 Wolniewics and Pohl( !

.8.

were able tc cobtain the value —05§Ti3905 é.u. .in é comﬁined
variational-perturbation calculation which still needed many term
expansions. Energies obtained in this calculation for the Ffirst
two "vibrational" excitations were also less accurate than those

obtained in ref. (19).

Ne GC-type non adiabatic calculation appears to

‘be available to date for HT .

2

4. NON-ADIABATIC GC CALCULATION FOR H;

Why should one attempt at another non-adiabatic
calculation for H; ? An answer to this question contains the
main motivation for the present work: a GC calculation may allow
for the possibility of taking maximum advantage of the information
already contained in good analytical approximations to adiabatic
wavefunctions in terms of the simplest and most widespread method
in guantum chemistry, wiz. the variational method. Particularly,
in ground "electronic” state calculations, one needs just a good
variational adiabatic wavefunction for the lowest eigenstate (a
J=0 , v=0 state), ¢§d ==T§£ ™€ | one is freed from the
requirement of including excited electronic states in order to
allow for nonadiabaticity since non-~diagonal matrix elements
H(a,a') involving wavefunctions of the same analytical form

¢Ad

o actually allow for the incorporation of nonadiabatic

couplings(7).

An additional, technical advantage should alse
be mentioned: since the GC bhasis set {¢2d(ai)} involves elements
of the same analytical form, the energy matrix H(ai,aj) is
given in terms of one single analytical expression. A similar

statement holds of course also for the overlap matrix S(ai,aj).
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4.1. CHOOSING THE GENERATING FUNCTION ¢ (o)

We restrict ourselwves in this work to rotationaly
invariant {i.e., J=0) eigenstates. This restriction is implemented,
as usual, by projecting the complete Hamiltonian onto the J=0
subspace. This is conveniently done in the coordinate system of
ref. 22, which éontains three variables: two electron-nucleus
distances, T and ry s and the internuclear distangce R . The
generating function will therefore also involve only these three
variables. For the present exploratory calculation we have

chosen as generating function the adiabatic wavefunctiontzz)

9(a,B,8) = Yo, (£, r5i0,8) X(R,8) =

exp[—u(rA-f-rB):' [exp (—BrA) + exp(—BrB):I

Ll
* exp[— g— (R—é)z:i . (4.1)

The electronic factor ?EZ is the Gillemin-Zener wavefunction
Optimal variational values for a, B, vy and § , determined by

Diehl and Flﬁgge(zz), are

o = 1.346 ; BO = 0.913 ; Yo = 3.200 ; GO = 2.043 (4.2)

leading to the value -0596430 a.u. for the ground state energy.
We have selected o, B and § as generator coor-

dinAtes. The parameter Yy was held‘fixed at its optimum

‘variational value Yo o The egpansion (2.1) is therefore now

written as

{23}
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y = aéﬁ Cups $(0, B, 8) (4.3)
where the sum runs over the adopted meshpoints. The choice of
these is discussed in the next subsection. Actually. it can be

(9} that were one to treat ¢ as an unrestricted, continuous

shown
generator cocordinate, this amounts to no restri;tion regarding
the internuclear degree of freedom R . A great deal of flexibility
is to be expected by allowing for the coupling of these generator
coordinates. Particularly, dynamical couplings invelving 6
and the electronic generator coordinates o and § will introduce
dynamical correlations between nuclear and electronic motionf?).
It should be noted also that the symmetry of the
electronic part of (4.1) does not allow for bound electronic
excitations of the molecule. Thus, the number of bound states
obtainable from the secular determinant will always be limited

by the number of different values of & . They can be associated

essentialy with nuclear vibrational excitations.

4.2, CHOOSING THE GC MESHPOINTS

We have adopted the procedure A (see section 2},
in its simplest férm, for selecting the GC meshpoints: a fixed
interval was chosen for each one of the three generator coordi-
nates, and a variable number cf points was used in_the.neighbor—
hood of the variationally optimal values given in M.Zﬂ Moreover,
it has been found useful to carry out two types of preliminary
probing tests before attempting at a calculation with a large

number of meshpoints:

(1} calculations involving all three generator coordinates

with few (e.g. two} different values for each of them, leading
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-to small matrices {e.g. 8x8 matrices).

(ii) ealculations involving only two gererator coordinates,
the third being held fixed at its variational extremun {e.qg.

taking a number of values LI Bi with 6=6o and so on),

The results of these test calculations have been
instructive in that they roughly indicate the effects associated
with the different generator coordinates and with their couplings.

They are discussed in section 5 below.

4.3. EVALUATION OF THE ENERGY AND OVERLAP KERNELS

The procedure followed to obtain the two kernels
analytically is completely straighforward (see ref. (22)). As
on will immediately recognize upon inspection of eq. (4.1), the
integrations over the interhuclear distance R will lead to
expressions involving error functions. The& were programed by

making use of Hasting's algorithm(zﬁ)

than 7.0 x 10~7. However, given the value chosen for Y

with an accuracy better

{YO:3.2) the obtained accuracy was in all cases considerably

better than this limit. The reduced mass was taken as 9084ﬁ64(21h

4.4, NUMERICAL PROCEDURE

Matrix diagonalizations were performed by the

conventional Jacobi method(ZB).

A test analogous to that utilized
in ref. (12) was used to assess the numerical reliability of the
obtained energy eigenvalues, as a check on the absence of ALD

problems. All calculations were carried out with double precision

on a PDP-10 computer.
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5.. PRELIMINARY TESTS

Small dimensionality runs (typically using two
valués for each one of three generator coprd;nates o, B and
§ , leading to 8x8 matrices) were useful to indicate adeguate
spacings of meshpoints. The numbers corresponding to the best
calculation of dimension 8=2x2x2 in an extensive series of
tests are given in Table 1. The meshpoints curiously do not
include the optimal variational values of the generator coordi-
nates (eq. (4.2)). In general, the grouﬁd.sfafe éneréy ﬁés found
to be less sensitive to changes in the values of £ than in the
values of the other two coordinates; and the wvalues of § were
found to be profitably chosen as rather densely clustered near
the optimal variational value’ 60 ;. an expected result in view
of the considerable stability of the internuclear'separation in
H; . In view of the results of Table 1, and of thé general
trefid of the results of many small dimensidnality runs involving
different spacings and posifions of meshpoints, we choose
b = 0.20 , AB % 0.20 and A8 = 0.06 as typical adegiate values
for setting up the Generator Coordinate mesh in larger calculations.

From test runs involving the various combinations
of two "active" generator coordinates we have been able to conclude
that the most relevant coupling, in the sense that it leads to a
substantial lowering of the ground’ state energy, occurs between
@ and § . Results for a typical caleulation inveolving o —and
§ as active coordinates are shown in Table 2. It may be noted
that, as in the case of Table 1, the dimensionality of the
overlap matrix S corre5pohds“to'all the possible coimbinations
of the different values of the twé generator coordinates. The
hamiltonian matrix which was diadonalized has a lower dimen-

sionality, however, in view of the adopted truncation parameter
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E;;(see section 2} which led to discard three eigenvectors of S.
We also found that the inclusion of still more values of o
and & in a calculation such as that shown in Table 2 was of
little help to further reduce the ground state energy. We
therefore turned to calculations where all three generator

cocrdinates o, 8 and & were allowed to become active.

6. FINAL RESULTS AND DISCUSSION

6.1. THE GROUND 3TATE ENERGY

In order to obtain further improvement in the
ground state energy without substantially increasing ALD effects
or computing time we have added just two additional values of B8
to the mesh given in Table 2 above, leading to an overlap matrix
of dimensionality 75 = 5x3x5 (see Table 3). We kept the
truncation parameter fixed at =107 12 . and this produced in
this_case a4 Hamiltonian matrix of dimensionality 49. The
truncation effectively reduces ALC problems for the first few
excited states while affecting_the lowest eigenvalue in the
eighth decimal place only. .

The improvement of the ground state energy, with
respect to the calculation shown in Table 2, is clear. The dots
in the last decimal places of the excited state energies given
in Table 3 correspond to the figures affected by ALD problems,
as evidenced through the test mentioned in section 4.4. As
shown, the noise contamination of these results grows progressively
as the energy increases. Its level in the presént calculation
suggests moreover that still larger calculations would not be

particularly effective in further improving energy values, so
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that better values should rather be scught by more scphisticated
techniques (see section 7 below on this point).

In Table 4 we also report on a calculation of the -
same maximum dimensionality as that of Table 3, but involving
different meshpoints. This calculation, in fact, can be seen as
done on a mesh which simply adds some extra generator coordinate
values to those given already in Table 1. It is remarkable that
Takles 3 and 4 give equally good approximation te the "exact”
value of the ground state energy. This can be qualitatively
understood in terms of the following features: (i) the values of
¢ have in both cases the favored concentration around the
variational minimum; (ii) the ground state energy appears not
to be too.sensitive to the adopted values for a and B8 ,
provided they fall in the ranges 9.00 ¢ o £ 2.000 and
0.600 ¢ B £ 1.300 ; (iii) the ground state energy appears to be
rather more sensitive to the sEacingsfbetween meshpoints in a

and 8 , ideal choices being Ac = 0.20 and AR = 0.20 .

6.2. THE GROUND STATE EIGENVECTOR

The most salient feature of the eigenvector
associeated with the lowest energy eigenvalue is conveniently
brought out by expanding it in terms of the eigenvectors 5k of

the overlap matrix (see eg. (2.3)):

_ (o) =
Y, = E a e $y (6.1)
In fact, for the calculations reported in Tables 3 and 4 {as
well as in all other examined cases, in which the values of §
were concentrated around § ~ 2.000) it has heen found that the

expansion (6.1} is strongly dominated by the single eigenvector
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50 of S with largest eigenvalue {(typically aégé z 0.98). At
the same time, of courses, the expectation value <$kﬂ0|H|$k=0>
is already guite close to the lowest energy eigenvalue as obtained
in the calculation. For the first excited eigenvector, a similar
result holds for the eigenvector of § with next-to~highest
eigeavalue.

for higher vibrational states this pattern is
progressively lost as more and more vectors $k give important
contributions to expansions of the type (6.1). The increased
relevance of states %k arising from the small norm content of
the generator-state base accounts gualitatively for the increase
of ALD problems as onhe goes to higher excitations. On the other
hand, the dominance of eigenvectors of § with large eigen-
values in the case of the first few states corroborates "a pos-
teriori" the adequacy of the numerical procedure for these
states, at least.

In order to check more specifically the degree
of similarity of the ground state eigenvectors given by the
calculations of Tables 3 and 4 respectively (as is well known,
the variational energy is not an appropriate criterion for
comparison of wavefunctions) we have also computed two different
averages involving the electron nucleus distance r, s viz
<r;l> and <ra> in each of the two wavefunctions. Results are
given in Table 5. They show differences in these moments at
about the fifth decimal figure. A comparison of the values obtained
from the generator coordinate calculations of Tables 3 and 4
with the best adiabatic and non-adiabaric results given in the

literature(27)

suggests moreover that any of the generator-coor-~
dinate wavefunctions has already incorporated a substantial

amount of non-adiabaticity.
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7. FINAL REMARKS AND OUTLOOK

We reported in this paper on a non-adiabatic
calculation of the simple H; molecule using the general frame-—
work of the Generator Coordinate Method as a tool to take maximm
advantage of the information already contained in good analytical
approximations te the adiabatic wavefunction. The calculation
was performed in an exploratcry sense, and we think that the
results obtained are encouraging: not cnly was the value obtained
for the ground state energy extremely accurate, but it was
associated to a state having an excan51on heav1ly domlnated by a
single term in the most natural basxs suggested by the formalism.
These results were achieved in terms of the dlagonallzatlon of
matrices of only modest dlmen51onallty (typlcally cf the order
50x50) .

We are presently trying to improve: on: our calcuf
lations by introducing still better adiabatic wavefunctions‘as
generating functions in the place of eq. f4.lj. The use of more
sophisticated techniques for setting up the Generator Coordinate
mesh (see section 2} may also be considered. Our basic aim will
be to obtain better accuracy for.the ground state energy while
keeping within the bounds of a Generator Coordinate basis of
dimension less than about 75, as done in the present work. More
attention will als¢ be paid to the energies and wavefunctions of

excited {vibrational) states.



TABLE CAPTIONS

TABLE 1 -

TABLE 2 -

TABLE 3 -

TABLE 4 -

TABLE 5 -

The "best" 8x8 .calculation. Chosen values for each of
the three generator coordinates are given on top.
Resulting energy eigenvalue (for ground state) and
dinensions of overlap and energy matrices are given

below. Energy values are given in atomic units.

Calculation involving only o and 4§ as ";ctive“
éenerator coordinates., Table arrangement is similar
to that of Table 1. Alsc given is the adopted cut-off
value for the eigenvalue i of the overlap matrix,
and the order of magnitude of the smallest eigenvalue.

Energy values are given in atomic units.

Calculation involving three "active® generator coordi-

- nates. - Table arrangement is similar to that of Tables

1 and 2. "Exact" results for the energy eigenvalues
are also quoted from the literature (ref. (21)). Energy

values are given in atomic units.

Same as Table 3, with a different arrangement of

meshpeints.

Values of -<r;l> and <r > for the ground state wave-
functions resulting from the calculations of Tables 3
and 4 (in atomic units). Also given Born-Oppenheimer
(BO), Adiabatic (AD) and Non-adiabatic (NAD) values 

for the same quantities from the literature.

TABLE, 1
1.480 1.680
0.800 1.000
2.020 2.080

~ 0.5970432

Matrix dimensions

S: 8x8

H:r 8x8




TABLE 2

TABLE 3

0.946 1.146 1.346 1,546 1.746
0.913
1.963 2,003 2.043 2.083 2.123
- 0.5971091
- 0.5870473
- 0.5767862
-12 . \ .
= 10 Matrix dimensions
. 10—14 5 = 25x25
min ~
H = 22%22

0.946 . 1.146 1.346 1.546 7‘1.746
0.713 0.9213 1.113

1.963 2.003 2.043 2.083 2.123

- 0.5971379 (present work) - 0.59713905 ref. (21)
- 0.587108. (present work) - 0.58715562 ref. (21)
- 0.576861. {present work) - 0.57775179 ref. {21}
- 0.56166., {present work) ~ 0.56890857 ref. (21}
10_12 Matrix dimensions

~19~15 = 75%75

1]

49x49




TABLE. 4

TABLE 5

@ 1.280 1.480 .  1.680 1.880 2.080
3 0.800 1,000 1.200 Table 3 Table 4 | BolteE-2T}  ppef]) o (ref.27
8 1.980 2.020 2.060 2,100 2.140

<r;l> 0.84251 '  0.84250. | 0.84282 0.84269 0.84249
E, - 0.5971379

<r_> [1.69289 1.69292 1.6925 1:6928 1.6930
E, - 0.5871187
E, - 0.576922.
E, - 0.56599..

-12 . )
E 10 Matrix dimensions
. 10-15 _ S: 75x75
min -
H: 46x46
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