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ABSTRACT

A new formula is presented, allowing the
coemputation of the proton-neutron mass difference without the
knowledge of the substraction function in the dispersion
integral. The Born terms contribute with the correct sign.
The integral over the deep-inelastic region is finite whenever
the Weinberg-'t Hooft mechanism is operative and gives a small
value. The net result is in very good agrszement with the

experimental wvalue.

I. INTROBUCTION

The proton—neut;on mass difference, A % Mp;M; '
is one of those subjects that remain latent most of the time
while surfacing to the literature every so often whenever a
development in a related area revives the hope that the problem
might, finally, be solvedl

The simplest way to tackle the problem is to

assume that the mass difference is a low energy effect and try

to compute it in a Born approximation. Feynman and Speisman2
were the first to notice that the.Born approximation (in a
Feynman diagramatic sense) could, in principle, even yigld the.
right (negative) sign. |
Later, it was realized thaﬁ the Born ﬁﬁpnwdnﬁtkm
leads to a situatién where the proton is about 1 MeV heavier
than the neutron3'l. When calculating Feynman 6ié§rams,_ﬁmﬁwer,
different parametrizations of the nucleon electromagnetic vertex,
lead to different results when taken off—mass—sheil. Thus,
even when scme possible ways of writing the Born abpfoximation
might lead to the right sign4 ; the result is at best ambigucus.
A new formulation of the & problem started with
Cottingham's work5 . Also in this formulation the simplest
thing té do is to keep.the Born te?m (now in a aispersion
relation sense) only. But here again, there are ambiguities.
One can talk of an unsubstracted ﬁorn term as in thtingham's
original work or a substracted.Born term as in, for examp;e,
Elitzur and Harati's paper® . And both things are quite different,
In any case, it is clear aftér Harari's work’ that tﬁeré mast
be a substraction function in the dispersion relatious and.in
spite of somé interesting speculatiﬁﬁés there is no reliable

way to estimate what that substraction should be.



The main motivation for Cottingham's work was to
relate the high energy contribution to 4 , to the deep inelastic
phenomenology. Unfortunately, that contribution seems to be
divergent. This divergence discouraged many people from trying
to solve the A puzzle. Besides, with the advent of the guark
model, it became less clear that £ should be calculable as an
electromagnetic effect since (intrinsic) mass differences between
the quérks wmight he'responsible for A .

. B ..A juétification for believing that mass differences
withiﬁ.a hdltiplet should be calculable as . radiétive effects
was provided by the work of ‘t HooftB and Weinberg9 . AS
these authors pointed ocut, ih.a unified renormalizable theory
the symmetry might be brcken spontaneously in such a way as to
keeﬁ tHe ﬁasses equal in‘zéfo order.' They went on to show that
then,liﬁ'second order radiative correction the'exchaﬁges of the
various jéuéé.veétbré are related in such a way as to make the’
whole.cdhtribﬁﬁién finite; Unfortunafeiy, elabora£ioﬁs.on
Weinberg's ideﬁs in the frameﬁork of pure weak-electromagnetic

10,11

models have shown that, more likely than ﬁot;. A would

come dut'wiéh the wroné‘sign. Thus, more realistic schenes
incorporating stroﬁg interactions have to be coﬁsidered.

o .in the present work I incorporate the 't Hooft-
Weinberg mechénism in its simplést'form inio.a phenomenological
frameﬁork where the stfong interaction effects enter in the
guise of form-factors and strﬁcture.functions. fhe calculations
are basé& on a new.repfeééntatiéh for A that ﬁakes umuxﬁssafy
the kﬁbﬁledge of the,(unknown) sﬁbstraction function in the
dispersién relations for the off-shell Compton amflitudeslz.
Thus,..ﬁ is completély célculabie and a quite satisfactory

result is obtained.

-

In section II, I comment on the ambiguity in
defining what might be called the Born approximation to the
Cottingham formula for £ . This ambiguity is one of the
unpleasant features of the usual formalism. Another unpleaéant
feature, which is discussed in section IIT, is the divergence
of the deep~inelastic contribution. This divergence does not
appear in models exhibiting the Weinberg-'t Hooft mechanism
which is discussed in section IV.

The new formuia for & is presented in section V
where the (now unambiguous) contribution of the Born term is
also calculated. The contribution from the deep-inelastic
region to tﬁe new formula is studied in section VI while section

VII contains some last remarks,

II. COTTINGHAM FORMULA AND BORN APPROXIMATION

To second corder in the coupling e , the nucleon

electromagnetic self mass can be written ast3

2 u i1 o
oM ie d kH T(iki, k) , (2.1)
2 (2m) KZ+iE
where T = g““‘I‘u\J and Tuv is the forward Compton amplitude

(for an off-mass-shell photon) defined by
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where pu(k”) is the nucleon (photon) momentum, M the nucleon

mass and v = pk/M . An average over nucleon spins is understood
in Eq. (2.2) and I have explicitly written the two most usual
paramétﬁizations of Tuv i in terms of the Ti which are simply
related to electron—nucleon scattering structure functions by
Im Ti = mWi; and in terms of the ti which are free of
kinematical singularities.

As we can see from Eg. (2.1) the self mass depends

on the combination

TORLRD) = (1-v3/& T (k)49 - 3 T, (1K],x%)

== {3}:2 ty (k) ,k%) - (2v2+k2)tz(“€i,ko)} .. (2.3)
From Eq. (2.1) we can get to the Cottingham representation by
performing a Wick rotation in the ko plane (ko + iky) , which

in the rest frame of the in {or out} going nucleon is equivalent

te v » iv. . The rotated counterpart of Eg. (2.1} is

I8
o [ dth
M = 7 | T(-Q*,iv;} (2.4)
zm)” | @
with @ = /—k? This equation leads, after an angular integration,
to
o rQ
1) det FE S 2 2 ; — (020l 2
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The next step taken by Cottingham was to write

(unsubstracted) dispersion relations for the i

2
1 (=0%, v ) = 28 /TS (2.6)
nQ2 v Byl 02
Q' /2
3 _-n2
tz(-0%,1iv;) = 2% dv y Wa =0 ,v ) (2.7)
T v oo+ vl

For elastic secattering, the structure functions are

WT(-0%,v) = (QP/4M2)GE (%) 8 (v-0%/2M) (2.8)
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leading to the Born terms

. e’ {62 (9?) - 62 (02)]
£} (-0%,iv) M E . (2.10)
T(QMAMP VD) (0% +am?)
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Tam2e? rey2 242 ;A2
4Ma [4MPGL(0%) + @ Gy (Q )]

t?(-—Qz,ivI] (2.11)
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With these, the elastic contribution to the contracted Compton

amplitude turns out to be

(2vi+Q?) [arPcl (0% + 0°Gu0™] - 30%(G) - &)
; I
TB(-QZ,J.\)I) = aM ——— "t — .
O +4M*V2) (QP+4M7)

(2.12)

which, when inserted into Eq. (2.5} yields the Born. approximation

to the mass shiftl
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Actually, the situwation is not that clear cut
and other ”Born.approximation§'can be found in the literature.
This freedom (or ambiguity) in choosing a “"Born approximation”
is mainly due tértwo facts: first, one can either write dispexrsion
relations for the i , or for the 7Ti ; or still for the
contracted T . And second, as originally pointed out by
Harar17 , most probably Eq. (2.6) does not converge and a

substracted dispersion relatien has to be used instead,

20 v? Wi VW
B1(-0%,1vy) = £ (-Q%,0) - I[ & |:—- ! ;o (2.14)

TP v 2+u;) v o2 J

ot/

which contains the substracted Born teérm

saMivifek (@®) - 6(0?)]
2. oM B . (2.15)
107 (Q°+4M*v 1) (Q*+4m?)

This, together with Eq. (2,11}, leads to a TB different from

Eg. {2.12), namely to the substracted

_ (2V2+Q2) [4M2 2 (QE) + QZ 2 (Q2)1 + 12M2'U2( 2 2)
T = |- GE 7 1'% ., {2.16)
Q" +aM*V7) (0+4M?)

whose contribution to Eq. (2.5) defines the substracted Born

approximation

S = 2

1T2

- o

du_ vQF=u? 12M%

ag? 1 I — L [G2eh) - ci)]
G Gg
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)
+ L+ /0% [arel ) + ofgih]r . (2.17)

It should be obvious that the "Born approximations"
{2.13) and (2.17) will give very different results and it is
not clear which one, if either, should be favored. Still other
possibilities were considered like, for instance, the use of

an unsubstracted dispersion relation for TlS leading to

. amo? [G2 (0% - (i/2m)c2 (o))
02,10 ) s ——F M , (2.18)
oY+ 4MZ\)]Z:

and to & third "Born approximation"

m o
av. Vp2=u? 2
P = 22 g0 | L X g7 - 2 _g2(07)] (2.19)
T o% + 4M2u; am?
0 [}

The main purpose of the présent section was to
emphasize that there is no way of knowing if the "Born term"
contribution provides by itself a good approximation to Cottingham
formula since there is an arbitrariness in the choice of that
Born term.

Whatever its form the Born term is, of course,
the contribution from the nucleon pole. It can be shown that
the contribution from the resonances, hesides being much amﬂierl.

than the Born term is also subject to the same kind of arbitrariness.




ITI. HIGH ENERGY REGION AND DIVERGENCES

The main ingredient in fhe calculation of mass
shifts is, as we saw, the off-mass-shell forward Compton scattering
ampiitude. This amplitude can be.naturally divided into two
part;: the first part describing the coherent scattering of the
nucleon and the second part the incoherent scattering of the
constituents (partons, quarks, etc.) inside the nucleon. The
coherent scattering contains the contributions from the resonances
and the nucleon pole and was discussed in the last section.

The incoherent scattering starts to be important
at some Qo and is directly related to the deep inelastic

phenomenology according to

1 plRccherent r w?.eep Inelastic (3.1)

3

In the present section we will always have Q 3 Q0 in which

case the whole Compton amplitude is practically incoherent since
the coherent part is negligible above a suitable Qo . The
incoherent scattering contribution to the mass shift will be

called GMIn .

In order to obtain the dominant part of GMIn
it is convenient to write the ti's with one more substraction

each according to

ka1 (-0, dvy)
(=%, iv.) = £1(-0%,0) + V| =
I I By 2
I vi=0
20 v2 (7 W W
- L —dv [—l 2 2} . (3.2)
mo? (v +p2y LY Q2 '
o/ 2m I
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2a v% { dv v Ws
£ (0% ,iv.) = £, (-Q*,0) - — - (3.3
TQ? v (v +v§)
ot/

The new substraction term in Eq. (3.2} can be easily obtained by

2

taking the derivative of Eg. (2.14) with respect to vI o

[EE_J _ 20 &E-‘”ﬂ
vi=0 S i

Bvé 2 02

= —--'S— [ dx [2X F1 (QZ,X) - FZ(erX}j

1]

=2 o, 3,00 - Ha2,00] (3.4)

n

where, as usual, x = Q*/2Myv , Fy =MW, , F, = wW, and
Mi(j,Qz) is the j Cornwall-Norton moment of FilG .

The substraction term in Eq. (3.3} is obtained
from Egq. (2.7) as

1

tz {-0%,0) = i‘—”—f J dx Fa (Q%,x) = 5—”"—‘: 2 (2,0%) . (3.5)
[

o mQ

Thus, the incoherent cont;ibution to T can be written, in its

full glory, as

2v dv v W,
It = (20;+Q2) i Mz (2,0%) - —= sl B
Q" Q v T Ted)
0¥/

12Mu;

2
- —3ZQ ty (~0?,0) - (2 4.(3,0%) -42(2,0%]] +

Q'vl
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2
+ 6”1 { dv [Hi - Y Wz] (3.6)
T (v 2+vi)\) 2y o?
QF /2
sut s obtained by inserting Eq. (3.8} into
Eg. (2.5). It is easy to see that the substraction terms in

Eg. (3.6} give the dominant contribution which is

= Q
vy VO*-i {3 03/0%) [M2(2,0%) - 241 (3,0)]

g
o)
I}
B
1
8
L
o |2
% |.o~
S—

+ (1+203/0%) M2(2,0%) - 3Q“t;(-Q2.0}} . (3.7

Once the vy integration is performed this expression reduces

to

2 .
d%{m-z(z,qz) - 21, 3,00 - o'y (—QZ,O)} . (3.8

Q

adn o 2

v

Ty

In spite of some interesting-work6 , no reliable
way for estimating tl(—Qi,D). is known. Besides that, the.
terms. in Eqg. (3.8) containing the moments are legarithmically
divergent. The divergent contribution to &M can be found in

17 in a somewhat different ferm obtained from

the literature
dispersion relations for the Ti instead of the ti .  Both

forms though, reduce to the same expression when the Callan-

Gross18 relaticn 2xF, = F» 1is used; namely to
In 3oM {w dp? 2y B g 2
gM = = | == [, (2,0%) - = 0%, (-0%,0)] . (3.9)
) & a? g )
fa)

2
a
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A possible sclution to the divergence problem

will be considered in the next section.

IV. WEINBERG-'T HOOFT MECHANISM

From what. we. have seen up to now the situation
with the mass shift can be summarized as follows? i} There is
no unambiguous way of'defining the "Born approximation” which
contains mest of the ccherent contribution tor M . 1i) There
is a vompletely unknown contribution depending on the substraction
function t;(-Q%,0). iii} The part of the incoherent scattering
that is known seems to give divergent contributions to individual
mass shifts, and to the nucleon mass difference A .

In order to overcome the divergence just mentioned
I will invoke the interesting Weinberg-'t Hooft mechanism for
generating finite mass differences within a isotopic multiplet,
in the framework of rencrmalizable unified gauge theories. In

8,9

the type of models propesed by these authors the spontaneous

symmetry breaking is such that it leaves the masses equal in

‘zero- order radiative correction. This can be acomplished, for

instance, by the absence of Yukawa coupling to thé-scalars that
break the symmetry. In such a case mass differences are computable
as second order effects in the gauge couplings.

Since the models are renormalizable due to their
group representation content, the couplings of the various gauge
bosons in the radiatiwve corrections arrange themgelves in such
a way as to make these corrections finite. In the simplest model
considered, that of 5U{2} x U(li for example, instead of having

just: the photon propagater in &M as in BEgq. (2.1), the heavy
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neutral gauge bozon z radiative contribution combines with the
photon contribution in such a way as to produce, inside the self

mass expressions, the change

1 N 1 1
k2+ig k2+i€ kz—m;+i6

' (4.1)

where m, is the mass of the heavy neutral gauge boson z that
will be taken as m, = 90 GeV. 1In more complicated (or realistie)

models more propagators appearlo'll

but \we can assume that the
net effect is as in Eg. {4.1) where m, is certain effective
mass.
In the following I will assume that something
like the Weinberg-'t Hooft mechanism is operative in nature.
Also from now on, all mass shifts I will |[write down contain
radiative effects only (nc zero order contributions which drop
out in mass differences anyway). In these mass shift expressions

I will accordingly introduce the change (4.1) which, for instance,

transforms Eq. {2.1) into

u -0%  ;
oM ow 2 e : (4.2)
{2m) Q? (1+0%/m2)

Eq. (4.2) leads to expressions which are no
longer divergent at high momentum. The problem of the unknown
substraction function, however, still remains to be solved and

will be tackled next.
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V. NEW REPRESENTATTON FOR MASS SHIFTS

In this section I will derive a formula for the
mass shift in which the substraction function t,{-0%,0) of
Eq. (2.14} does not enter. The derivation will be based on a
generalization of Cottingham's rotation. I will consider first
an expression like Eg. {2.1), obtain from it the new representa-
tion and afterwards, discuss the'féquired modifications whenever
the Weinberg-'t Hooft mechanism is in operation.

For the maSS'shift fermala {2.1) rewritten as

ig a%k Qv T(K,v)
(2m) ® vI-K2+ie

M =

(5.1)

where K = (k| , Cottingham's original proposal was to rotate the
v integration path from the real to the imaginary axis in the

in/2 Given the

v  complex plane in accordance to v > v e
necessary conditions for the validity of that rotation 6 , other
choices are possible. Let us, for instance, consider the

integration along a straight line at an angle (n/2}=-f with the

real axis. In the rotation involved in'going from the real axis

to that path, the integration wariable changes accerding to

v + y el (1/2-8) and, whenever R<<l , Eg. (5.1) changes into
Moo O d°k (1-iB)av_T[K, (i+8)v] (5.2)
{2m)? C(1-218)v2+kY]

Since the result has to be independent of B8 (as
long as B<<l), we set the derivative with respect to B equal

to zero and obtain



.15.
o [ a% av Tk, G+8)vI _  2a [ @'k (1-18)av v2 Tk, (1+8)v]
2zm? ;o Taezidyvi+ kT 2m ) o [-2isyvier®]®
5 3 .
. _ d’k dv v 3 m[x, (i+8)v] =0 (5.3)
(2727 . Ci1-2i3)vi+k?] Cav

The. 3*0 1limit of this expression yields for the mass shift

f k] . 3
o G a’k dvp T(K,ivp) _a [.d k dvy vy 3 T{K,ivp)
(2m)°® (vI+k®) 2m? (VE+R®) BV,
[ @’k av_ k® T(K,iv.) o .
e j_ L g (5.4)
{2m) (VEHE®)

where, as in Sect. II-VI, iVI _is-gsed_whenever vV is taken on
the imaginary axis. . 7

The procedure just describéd;can be applied to
the integrals )

D orix,v)

! d*k dv (k?)
. S Rans

Dv?-K?+i€]

,In_.= i

ol @ka-imav @)™ 1K, (148)v]
-n" | ey '
) C(1-2i8)v?+k?]

(5.5}

which should aiso be independent of 8 . The vanishing of the
derivative of Eqg. (5.5) with respect to £ followed by the £-+0

limit leads to the relation

@’k av (k)% T(K,iv) a'k av (8" )P v aT(R,iv
n+]

1 )

(2n+1) |

J (\};-!-Kz) E\)Iz__}_szn'l'l B v

.16,

a’x duI(Kz)n+l T(K,iv,)

n+2

+

2 (n+l) J (5.6)

(2n+l) (v§+K2)

From Egq. (5.4} and repeated use of Eg. (5.6). it

is a simple matter to obtain the expansion

dik dv. vI  3T(K,iv_} 2
M - —22 { L.z g [} + % K +
3 2 2 2 2 4
(21) (vI+K ) avI vI+K
2 2 2 2 -
+ 222 { K ] v 2238 [ K ] SRS (5.7)
. v;+K2 : i v}+K2

where knowing that T is.an even function of v I have used

I r
v (AT/3v.) = Zvi(BT/Bvé) . In terms of the Euclidean 4-momentum
squared Q? = v;+K?, Eqg. (5.7) can be rewritten, after a trivial

angular- integration, in the form
3T(~Q°,ivy)

Q
2
M = e [ g'Q_ [ ,/_QZ_\Ji \)i av -—:.l-:.-.-—

a(v;)

] ' ' At 2 n
x { R - — 2[1 - —E] } ) (5.8)
n=0 (2n+l)!! | Q?

Thié expression for the mass shift, depending as it is on

BT/B(v;). will not contain contributions from unknown, v%

independent substraction functions like £, (-0%,0) in Eg. (2.14).
What happens now if we start from an expression

for 6M incorporating the Weinberg-'t Hooft mechanism? In such.

a case we will have to deal with derivatives like
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kR 1
98 2 {L-2iB) vi+K?] B0
Ci1-2igyvi+g?] (1 + SxmelBl VAR
- mz -
3
_ 2iv? " 2iv? (5.9)
Q% (140 /m2)  m (1+0%/m2)”

Since m, is a very large mass (compared to thé nucleon mass,
fér instance), we can adopt the criterion of neglecting, in the
second line of Eq. (5.9), ;he second term in comparison with the
first. 1In such an approximation, the Weinberg-'t Hooft mechanism

modifies Eg. (5.8) into

w Q
2 aT(—Qz,i\J ) .
M o= & | 490" Qz'”i vE dv, - V'
w? 0% (1+0?/m?) 3 (vl)

ao 1 \)2 n
x { A — . LA 2[1 - —x] } . (5.10)
n=0 {2n+1)!! Q?

For the Born term as well as other possible
rescnant contributions the factor (1+Q2/m;) ‘in the denominator
of Eg. (5.10) makes very little difference. On the other hand
this factor is necessary for the convergence of the high energy
incoherent scattering contribution to 6éM. The approximations
leading to Eq. (5.10) are reasconable but are not essential for

the obtentien of a convergent formula for 6M. Starting from

§M = o d'k dv T(K,v)
(2%) ¢ (vz—Kz)[l-(uz—KZ)/m;]
) { I
= 3% | 4% dy T{K,v) l oo -1 ] ,
J

22 2 wlo zJ
vk vo-K mz

.18,

and following the procedure leading to Eg. (5.8) we arrive now

at

BT(-Qz,ivI)

o 2 7 ] 2
& = Z_ -
M 2 [ dQ Q VI vI dvI
0

a{vi)

{ b n'2?

Q7  (1-v2s0h) " - (szz)“(l-vz/gzmz)“-,} .
n=0 (2n+1)!! [ T z I 2

{5.11)

rather more cumbersome than'ﬁhe approximate expression (5.10).
It is now convenient to separate &M according
to 6M = GMII)+5M(2) with 6M(I) (SM(Z)} containing the
contribution f£rom coherent (incoherent) scattering. By far, the
largest contribution to 6M(I) comes from the Born term. A
nice feature of our new formula is that the unsubstracted Born
terms (2.12) and (2.18) as well as the substracted (2.16), when

inserted into Egq. (5.10), all yield exactly the same SM(‘) r

namely
o & ]
[2m%GE (0%) ~:0%G2(0%)
omth = - B ag2 FTE wrau E M- -
w? ! (1+Q2/m;)(g“+4mzv;)
[ 0 .

2 w2 g2 2.4 2 g2y 2 2.4.6 2 sn2y 3
{l 3 (=vy/0%) + T (I-vp/Q%) + == {(1-vi/Q%) 7+ n.}

(5.12)

This, of course, is not what is’'commonly called the Born-
approximation to the mass shift; it must also contain part of
the contributicn of the substraction term to the customary

Cottingham representation.
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The usual dipole fit for the form .factors,
*y/q = 2y /u = 2 /m?) 72 5.13
Gp(Q%)/q = G, (0%)/u = (1+Q7/m) . ( )

in terms of the nucleon charge g in units of e , its magnetic

moment i and mé = 0.72 GeV? , will be employed. With these
form factors and calling v, = YO ., 0?=4M?t , Eq. (5.12) turns
intoe . '
o |13
(1) . - ay y'/1-y*[gf-2ut]
5M = - T dt 3
A 2
ol b e By ey (e
mZ
-4
2 2 2.4 . 2 2 2.4.6 . _ 2,3
X {l 3 (I-y") + 3% (1 Yo+ T (I-y“}  + ...},
(5.14)
where R = 4Mz/mé = 4.90: . Since the integral in Eq. (5.14)

decreases quite fast with t , the factor (l+4M2t/m;) makes
little difference and can be safely supressed.
Keeping only the first term in the expansion of

Eg. {5.14) (the 1 in the braces) I was abkle to perform the

integration analytically. . So, the result to first order in that

expansion is

oty = - M {q?‘[% R(5R*~6R+16) { = ~ tan /(R-1)7 )
127 (R-1) 2 _

+ % (3682-—8R—33):] - u2!-3(R2—2R—4},( 5 - tan” Vr-1)TH) +-(2s—3_1a)}} .

(5.15)

This part of the radiative shiffs contributes to the proton-
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neutren mass difference with
Ay = amél)(l) -l ) = - 1035 Mev . (5.16)

This is to be compared with a numerical integration with the
four terms written explicitly inside the braces of Eq. (5.14)

and leading to the result
a0V 5 a0y = - 1.36 Mew . (5.17}

This is the wvalue I will take for the Born contribution to the
mass difference in the framework of the formalism presented in-
i
A( }

thisg paper. This is to be added to A(z) calculated. in

the next section.

VI. INCOHERENT SCATTERING CONTRIBUTION

What remains to be computed is A(z) the con-
tribution from incohefent scattering to the mass difference A
In order £o make this section a little more self contained let
me repeat a few things already stated in Sect. ITI and III where
for the incoherent scattering I have used the usual notation
x = Q¥/2Mv , Py = MWy , F» = VW, and the Callan-Gross relation
2xXF = FQ . With all that, the contribution from incoherent

scattering to the contracted Compton amplitude is

e =02, ivp) = (L-vi/Q¥)Ty-3Ty =
2 dv v W, )
= - 3T 4 (20%,0) + 2(1+2v2/Q%) J .
o I 2
. vi+y

2
ot/ T
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1
_ 3mg? dx T2 (0%, %)

o

£1(=Q%,0} + 4mM(Q2+2v2

. . (6.1)

[
Y| —
J (Q”+4M2x2v§)
0

What enters into the mass shift equation (5.10),

asg we can see, is the derivative of Eg., (6.1} with respect to

dx (Q*-2M*x*)F,
(6.2}

f
]
3 (v1) é (Q“+4M2x2v§)2

The lower limit of the integration in 0% in Eq. (5.10) should
be a Qé where the incoherent scattering starts to be important.
Let us make the simplifying cholce Qg = 4M® = 3.5 GeV® and use
the variables t = Qf/4M’ and y = V/Q keeping in mind that
1<t and O0<y€l . Then, Eg. (6.2) can be expanded according
to

1
a1 (07, 1v ) [ ax(2t-x2)F,

I
3wl am3es J (L+x2y2/t) *
0
I
1 2
= dx F, (2t-x2) {l—(2x2y2/t) + 3{x?y2/t) 0+ ...}
4M3ES3 -
3
2
= 1 M, (2,02=4M2t) = (1+4vy2}) M, (4,02=4M2t) + ... , (6.3)
M2 . 4M3L?

where the Cornwall-Norton moments 16 naturally appear.

The incoherent scattering contribution to the

22 2 5Méz) - cMéz) , will be a function of

the nonsinglet moments M?S(j,QZ) which, to leading order, are

nass difference,
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given by - 13

M3°(3,02) [entgz/a] %

: , ‘ {6.4)
(2n(n?/a2)]4

WS (5,07

where for simplicity Qg here will be taken the same as the
lower limit of integration in 7 (Qé = 3.5 Gev?). Inserting

Eqg. (6.3) into Eq. (5.10) we get

FCO
A2y ﬂiz) + A£2) + .. = S?M J dat .
Tl g By
m;

1
. 2
{ V1-y*? yzdy[yz(2,4M2t) - 1l%é¥—l M, (4, aM7E) + ...J

0

2 . 2 2.4 . 2yt 2.4.6 o 5.3

x {l + 3 (I-y*}y + N (I-v*) + 57 {(1-v°) + ...} .
(6.5)

where 0;2) contains the coﬁtribution from the M, (j,4m%¢t)

moment.

Other parameters used in the computation were
A =0.2 GeV and, for six flavours, dz = 1/2 and &, = 1
M2(2, 3.5 Gev?) and M> (4, 3.5 Gev®) were obtained from .

integrations of

PSP - ¥R = 0.4 x"z[(l-g)a - 0.4(1-x) /0% + 1.7(1-x)/Q“] ,

(6.6)

a parametrization of experimental data given in Ref. 20. The

results were . M, (2, 3.5 Gev?) = 0.018 and M, (4, 3.5 Gev?)=0.0043.
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vumerical integrations of Eg. (6.5} keeping the
Zour terms expiicitly written inside the braces vielded

(2)

282 2 CgloaMev L, a't) = 0.09 Mev

P L 0,13 Mev

(6.7}

This, together with the Born contribution of Eq. (5.17), gives

for the proton-neutron mass difference the value
po=at e a2l 127 Mey (6.8)

to be eompared with the experimental Aexp =-1,29 MeV . One
could hardly ask for a closer agreement.

A guestion that can be asked at this point is the
following: how come that on the basis of.the same type 0of con-
tributions that in Cottingham formalism give a positive sign,
here using the new representation (5.10) the sign comes out
negative? The difference is that.in Cottingham formula besides
the Born and inelastic contributicns we have the contribution
from the substraction function. One can imagine that it should
be poésible ﬁo find ways to alléw us to relate the substraction
function to the Bern and inelastic terms. Then, the whole A
could be expressed in terms of elastic and inelastic data which,
however, will enter in 4 in a different way than in Cottingham's
formula. Elitzur and Harari6 for example, tried to do precisely
" that thréﬁgh finite energy sum fuleg.that, unfortunately, involwe
unproved assumptions of superconvergence of certain amplitudes.
With the use of Eq. (5.10) we short circuit that procedure. If
Eqg. {5.10)'is éofrect it automatically takes into account the

contribution of t1(¥Q2}0) " to Cottingham formula, but written

.24,

in terms of 3T/3(v2) of the new representation.

VIX. CONCLUDING REMARKE

A new expression for the mass shift, Eq. 15.8) or
(5.10), was presented. With this new expression, mass shifts or
mass differences within a multiplet can bhe calculated even without
a knowledge of substraction functions like £, (-Q°,0) . A nice
feature of formula (5.10) is that substrécted and unsubstracted
Born terms lead to exactly the same result: a contribution to
the proton-neutron mass difference with the right (negative)
sign.

It is well known that the contribution from the
deep-inelastic region léads to a divergent integral in the usual
Cottingham formalism. Here, we have resorted to the Weinberg-
't Hooft mechanism which, while providing a justification for
the idea that mass differences within a multiplet should be
calculable as radiative effects, also introduces a convenient
convergence factor into the integrals. The resulting deep
inelastic contribution is positive.

on the whole, the theoretical mass difference
obtained from the formalism presented in this paper, Eg. (6.8),

is amazingly close to the experimental value.
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