UNIVERSIDADE DE SAG PAULO

INSTITUTG - DE  FiSICA
CAIXA POSTAL 20516
01000 - SAG PAULD - SP
BRASIL o

IFUSE/P 374

IFUSP/P-374

THE VALIDITY OF THE CLASSICAL DESCRIPTION OF
NUCLEAR SCATTERING ' '

by

M.S. Hussein and Y.T. Chen

Instituto de Fisica, Universidade de S3o Paulo '
and

F.I.A. Almeida

Depto. de Fisica, Escola Federal de Engenharia
de Ttajubd, Itajubd, MG, Brasil

Novembro/1982



THE VALIDITY OF THE CLASSICAL DESCRIPTION

OF NUCLEAR SCATTERING*

M.8, Hussein and Y.T. Chen

Instituto de Fisiqa, Universidade de Sao Paulo.
C.P. 20516, sac Paulo, SP, Brasil-

and

F.I.A. Almeida:

Departamento de Fisica, Escola Federal de Engenharia

de Itajub&, Itajubd, Minas Gerais, Brasil

ABSTRACT

The description of nuclear scattering using

classical_trajectory concepts is discussed. Analysis of the

condition of wvalidity of this description within the N. Bohr

uncertainty arguments, is made. Applications. to the scattering

8 IGOfZBSi at E = 8.0 MeV and

28,
systems,  p+ 5i and oM

55.6 MeV, respectively are made,

*Supported in part by the CNPq.

November/1982

I. INTRODUCTION

The usunal. conditions cited in connection with
the applicability of eclassical mechanics-in the description of
atomic' and nuclear scattering, are related, .in. one way or
another, to the underlying WKB approximation. This approximatior
is valid when the de-Broglie.wave length of the scattered
particle. is much smaller than the range. over which the inter-
action potential varies appreciably.- Though this condition
results in-a systematic and controlable method of approximation,
one. nevertheless, ends up, in scattering situations, dealing
with trajectories. The final aim of this is the utilization
ofthe classical deflection function in‘the construction of.
the semi-classical amplitudel).

It wbuld seem, though, very instructive: to
express the validity condition refe;;ed to abeove, directly in
terms Qf the.properties of - the classical deflection function.

Tn fact N. Bohr back in 19482)

did exactly this for the case
of Coulomb scattering, in his discussion of the energy-loss
suffered by a particle travessing matter.

In the-presént paper we discuss Bohr's critericn

in a more general context of a joint-Coulomb7{ldng¥rénged) anc

nﬁclear ‘(short-ranged) forces. We then turn fto the consequences
of applying this criterioh~for_a heavy-ion and an bequivalént"'
light-ion scattering. )
The paper is organized as follows. In Section
Il a detailed presentation of Bohr's semiclassicai'criterién
is given. In Section IITI we present our application of the
~

criterion to nuclear scattering, and, finally, in Section IV

we present several concluding remarks.
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II. BOHR'S SEMI-CLASSICAL CRITERION

Conside_r: the "éxpe_rimental“ arrangement shown in
figt {I}.: A small aperture, is inserted in the path of
particles. The quantal diffraction of these particles will.
creategan,angular dispe;sion, 68D . which together with two
angular uncertainties: to. be-discussed below, will decide upon
.the:rtotal angular- dispersion. that measures the deviation from:
a perfect classical behaviour. We now-calculate this dia&xsﬂm;
in . details;-

. The: guantal diffraction arising. from theréssage_
of particles through the aperture, creates a dispersion

proportional to. the de-Broglie wave length, % , of the. particle,

$9, = x/d | | @

where - d  is- the diameter of the opening.. Further, the impact
parameter: {unchserved guantity!) is undefined within a distance

% , thus giving rise. to another uncertainty in 8 , namely

59, = L (20} 4
. F o 2 Bb- 

Finally, ow1ng to the anertalnty ln the 1n01dent energy,.AE,

one has - _ _
30, __(_e_g;_,l_;.-_ o

Combininé,thesé-three,factqrs;'one obtains finally the total

. angle uncertainty

(-2):

(58)° =(58) +(58,) +(8.)

The.cptimal angular spread is found by minimizing Eg. (4) with

respect to. the radius of the hole % . The following:valges_
. . 39
of dop# is then obtained. ((ga)dop = 0)

Ve |
g = __fﬁ___> | -
PN [0/

With dopt above one Fhen finds for 630pt_§he following simple

(32.)' =12 x +2jee)

Classical description of atomic and nuclear
scattering is applicable whenever. the above values of the
angle-gpread is much smaller than the deflection function-

8(b,E}, i.e.

To giée a specific example, we apply Eq. (6) to the pure

Rutherford scattering of two. point charges, e and 2

%8 2% -

The deflection function is then qlven by

8(5)&-).: ~Z fﬂq,(a/b) - . ‘. | ' (8




PN

with a being half the distance of closest approach for head-on

lezez
collision, .a = —S5g - We then obtain for Eg. (7), the

following

[(Jﬂt/a)m /- +(L‘ E) A ‘9]
B (he)

<_<.i 9)

Eg: (9) is clearly very well satisfied in the full angular

range. (09 g B < 180y , as long as

.la/% »:L and ,i__g <Lt {10}

The first condition, _2% >> 1 , could be easily satisfied in a
"~ given. scattering system, if the de-Broglie wave length, ¥ , is
very small, or eguivalently if the energy, E , is very high.
For a given. energy (given %) the above condition may alsc be

satisfied if the charges, Z.e and 2

1 ,& are large. HNote that
the ratio % is- nothing but the Sommerfeld parameter 1
Zzzle2
{n Eﬁmﬁg—— where v is the asymptotic wave number}. The
AE

second condition, 7 << 1 is almost always valid in present-
day nuclear experiments, and may be dropped altogether.

In figure 2 we show the results of applying
Eq. (%) to two nuclear systems that are -energetically eguivalent.

It is quite clear that for the heavier system 160+12C , 606

op
is much. smaller than @ over the full angular range. For the
light éystem, p+12C . the scattering in the angular range
<8 < 120° is clearly not classical in nature.
The point Coulomb interaction discussed above is

a valid approximation for the description of nuclear scattering

.6

at very low energies._ As the energy is increased to values
above the height of the Coulomb barrler,{both the nuclear inter-—
action and the modlfled-Coulomb.1nteractlon (for an extended
charge distribution) have to included ir the discussion

concerning &8 We first consider the changes in 6 (b,E)

opt”
and aeopt owing to the finjte size of the nucleus. The’

Coulomb interaction. to be used has the form

\/(r = Zl'&zea/r ) T2 R,

2 S (113
1":% er '
Vi) = 13 = ) s TLR,
where R¢ is a radiuvs related to theVSize of the system.
Typically one has R_ = 1.4 (Ai/ + A } [Em! where A, . is
the mass number of nucleus .i . The-deflection function,
defined by
S ®
b £ 'b'chr/rz .
(b, &) =z — 3
Ok, e) 2 (l' e ),/2 (123
- E -
Th'“‘(b:E)
with the distance of closest approach LointbrE)  identified
v(rmin] b2
with the largest root of the eguation 1 =0,
Tmin :
can be.obtained in closed form for the V(r) of Eg. (11). For

lezee
—® ¢ S(b}E) is just the Rutherford function,
c

E < EB
Eg. {(8) . For center-of-mass energies, E , within the range
E. 2 E ¢ % EB = V{0) , the deflection function attains the
following form
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_ - —@ - +2b2/R2
biee) = £ + r(a A ) bz o]k
t_[('z‘;‘") +22 2]

| e /E
[z &

-,z/n,u [ Ab/R. + Es/E

[4‘9 — (EB/E) ]

s> b < g, (1— E’g/E) (13)

—_ - {
G (hE) = .27'2/1_,@2/5) : 3_!9 > Rc. (1— EB/E)/Z

For E > % Ey s a .similar form of 8(b,E) as in Eq. (13} is

obtained except for the replacement of the second term of " the

(o2 f) /e
-RHS. by — A»u\ ((__Eg I) +22b:’ Eg_]/z J . It is

interesting to note that in this last- case the deflection

function attains & maximum.value at a.finite value of b ; a
' rainb_owi 7

The eguation that. expresses the validity of the
semiclassical description of scattering, Bg. (7), becomes rather
involved ror gt(b,E) of Zg. (I3). However we founc it tol_.
hold very well for heavy systems as in the case with.the pcre
point—Coulomh scattering.

A wmore realistic discussion of Eq. (7} in the

.B.

context of nuclear scattering at E > Ej should clearly involve
the short-ranged nuclear interaction. It is a common practice
to take for this interaction a Saxon-Woods potential of the
form VN(r) = —V0E1+(r-R)/d]-l with R slightly smaller than
R. . and d of the order of 0.6 fm. Unfortunately the
deflection function for this_general case cannot be evaluated
in closéd'form_and one has to;reéort to a numerrcal integration
of Eg. (12}..- Befcre turning to this discussion (see Section
irI), it would be interesting tq exhibit gqualitatively the
changes in é{b,E) that would occur due to the introduction
of the short-rangel attractive nuclear potential. This may. be
done with the aid of classical-perturbation theoryB).

. Cpnsidering-the form of 6(b,E)  at not toc
small values of b , a region in the impact parameter space
where the nuclear potential is small and may be approgimated

by. Vi (r) =—Voe"(r_Ryé . The deflection function, for these

* wvalues of b , may be approximated by

R 2 )
BbyE) = 2Tam -%- + A@M _ SRS

with AGN repreéenting the perturbation on the Rutherford

"angle due to the nuclear interaction. This perturbation,

(negatiﬁe), may be easily evaluated by considering 'the slight
change in the linear.momentum that will occur upon reaching a
distance close to thé-turning point. This change is basically .
due to the component. of the nuclear force perpendicuiar'to-the
trajectory .This latter may be approximated by a straight
line tangent to the Rutherford trajectory at the Coulomb

distance of closest approach g =2 + /a?+b2 . We thus find




. x ’ - -
AD o~ L \/‘_f_‘@. Twin Jt (15)
N me J. ol 7

with " =7, + vt N

Inserting the eprnenﬁial form for VN(r) referred to earlijier

3}

and owing to the fact that

r ..
—Egﬁ >> 1 , we finally find

A8N o _\ng_ (&__ zx;:(’gz f‘,,,,,,)_ (1)

which is clearly negative and decreases rapidly with increasing
b (rmin(b)]. The Bohr's criterion, Eg. (7) becomes, in this

case (neglecting %E r for simplicity)

]
X ¥ R'E} . Vo ( Y;;h(&}nlyéz B
A& [ A /g_ + 5 a - ces Bfy .

da
i £8) ] '
QXP[ J(ar 0 “)’ )
<L i‘)cb-,E)
where Viin (8) = a—'["f" Aifa/g]

Eg. (17) clearly shows, at.lesst in cases where it is wvalid,
that, as long as 4 < Zrmin(e) , the validity of the classical
description is guaranteed for VO/E small. The condition,

d < Zrmin(B) , is clearly well satisfied over the full ancular
range since d is almost always smaller than a fermi. 1In
the next section we present the exact evaluation of E—E—QE.for

two realistic nuclear scattering cases.

.10,

ITI. APPLICATION TO NUCLEAR SCATTERING

Iﬂ this.section ws dissQSS the vsliaisy of Eq.
(7} in two nuciear scattering'situatioss; a_light;iop system,
p+28 i and a heavy—ioh system, 166+2881._ The two systems are
energetlcally eguivalent, namely the. center of -mass energy per
nucleon* is the same for both systems. To make the comparlson
more consistent we have to 1ntroduce lnteractlon notent;als .
that are simply related through the single—folding Eormula to
be discussed below.

The nuclear potential for the 16O+2851 system

has been fixed to be the real part of the E-18 optical

potential4).' This potential has been found to reproduce rather
a

well the average behaviour of the ratic {0) , where

Ruth - .

6,7{8) is the elastic scattering differential cross section
and 2GRuth{a) is the Ruthsrfqrd cross section, Ruth(s) =
___EE_—_ . The parameters of the E—l& interaction are,
4sin 8/2 1/3
V, = 10.0 Mev , R = 1.35 E Aj and d = 0.618 fm.

i=1 ) . .

The interaction of p with 2881 is described

by a potential that we define to be such that when folded with

the 16O matter density, p,. , we recove the E-18 potential

referred to above. Thuss)

E-1% t

\/ (r} = J\JF\! f& '(‘F,).VF_!};S\- (FL?\) | (18)

We have inverted Eg. (18) numerically,.assumianfor simplicity

2 Saxon-Woods form for 016 The obtained numerical values

28 were then adjusted to a Saxon-Woods Dotentlal with

of V

the :ollow1ng parameters V_ = 85 Mev ,d = 0.6115 £m ’

*Measured from the Coulomb barrier.
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1/3

R- = 1.048 A fm. The value'of'v' is quite.’ large and should

be: contrasted with the umﬁd.aﬂnnabe)

based on_the'indepéndeng.
-particle picture of the,nucleus, Which gives vo.= 40" Mev .
Actuaily thé inversion procédure~ does not supply a unigue
v 28 .fF} in view of the fact. that several combinations of

o G

Vb and . d4: could glve rise to—the same: However, we

Vg-18 *
shall use the parameters alluded to above for definiteness
purpose. -

We have evaluated the deflection function 8(b,E),
Eq. (12), and its,derivation? %%_, numerically. The results
are shown in: Figs. (3} and (4). 1In the region of b near and
farther: out from the Coulomb-rainbpw, the deviation ﬁeopt is
seen to be smaller than & . However the I60-1-2851 system
shows-é.raﬁioz 52925 much smaller than that of the p+288i.,
. indicating clearly thag-the former sYstém is more fit for a

semiclassical deséription-than-the latter. This is, of course,

an. expected result. On. the other hand one sees that in the

b-reqgion. inside of b é , the glory impact parameter, and owing

to the: more compllcated -nature of B(b E} (presence of caustics},
' ——QEE varles apprec1ab1y in value from 901nt to p01nt, and in
partlcular attains an indefinite value (=/=) at by, ., the
orbitting. impact parameter. The above feature of ;EEBE-in
the-“internal?_region seems to be common to both systems. We:
should mention, though, that in realistic considerations of
heavy-ion. scattering, thisjinternal'region is irrelevant,
because: of strong absorption. The absorption in the light-ion
system.isiweakerh'rendering-the details of the deflection
fuﬁétion-in.thé_internal region for e.g. pszSi;more impdrtant
and pointing,again for what hag already bean concluded before,

160+23

namely that the heavier system ( Si). behaves more classi-

cally than the lighter system.

.12,

IV. DISCUSSION AND CONCLUSION -

The ccondition of validity of'theiclassiéal

description  of nuclear scattering, originally formulated by

N. Bohr for point Coulomb scattering, has been generalized and
applied to several systems. As expected the heavy-ion system,
is found. to behave more classically than the light-ion one..
The above considerations, basically based on simple uncertainty
arguments, are. quite general with regards to the nature of the
interactio responsible for the sca;ﬁer{ng. Clearly the final
aim of such a discussion is t§ suppiy a:simple check on the
widely used semi-classical description of nuclear scattering

and reactions.
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FIGURE CAPTIONS

FIGURE 1 - The experiméﬁtal set up discussed in the text.

58
The ratio ——%EE for the Coulomb scattering

FIGURE 2 -

160+12C and p+12C at E = 100.0 MevV and
Lab

8.0 MeV, respectively.

FIGURE 3 - The deflection. function, 8{(f,E) and the guantity
%g for the system. 1°0+%%si at Eqy = 55-61 Mev.
Notice that 6(0,E}. = 0 owing to the:fact that
for b=0 , the turning point rmin=0 for E>3/2Eé.
The particle passes undeflected through the inter-
action center.

FIGURE 4 - Same as Fig. 3 for p+2851 at E =. 8 MeV.
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