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ABSTRACT

The pion-rho exchange three-body forge is
derived by mneans of Lagrangians which are approximately
invariant under chiral and gauge transformations. The leading
contribution to. the potential arises from a seagull diagram,
which corresponds to forces that are dominantly repulsive and
comparable to those due to the exchange of two pions. The
gqualitative features of our results are analysed by means of

plots of the energy of the trinucleon system.

I. TINTRODUCTION

The problem of three-body forces (3BF) has a
long history. Neverthless, only recently one has achieved a
good undefstanding of the dynamical origins of the force due
to the exchange of two pions (nmE-3BF), which is the most

(1-4)  gnis success is

important class of forces of this type
é consequence of the application of Chiral syrmetry to the
problem.

The wnE-3BF is based on an intermediate N

scattering amplitude for off-shell pions that cannot, of .course,

be directly measured. It becomes necessary the use of a

‘theoretical amplitude which should reﬁroduce on-shell wN

data and also be suitable for off-shell extrapolation. <Chiral
symmetry allows. us to construct such an amplitude. This
symmetry describes the interactions of low-energy pions with
other hadrens by assuming that they. are approximately invariant
under transformations of the group SU(2) x SU(2). The symmetry
becomes exact in the unphysical limit in which the four-momenta
of the pions wanish.

A further advantage associated with the employ-
ment of Chiral symmetry is that we are entitled to use ;ll the
nice features of a covériant field theorfuwhén wé cﬂoose £o .
implement it by means of effective Lagrangians. In this case
a clear dynamical meaning is-ascribed to the. terms of the
amplitude describing'.a partiéular nYrocess.

In this-work_ﬁe study the -3BF.due to the exchange
of a pion.and a rho-meson {(wpE-3BF), which.involves an inter-
mediate off~shell amplitude for-therprocess TN+oN . The
interactions of rho-mesons with.other hadrons-.are approximately

gauge invariant.  Hence the intermediate amplitude is calculated
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by means §f an effective Lagrangian which is approximately
invariant under both chiral and gauge transformations. This
choice strongly influences our final results.

The theoretical amplitude for the process
mN-+p¥ c¢an be tested in several intermediate enerxgy ;eactions
such as  7wN>7T#N , NN>mNN , 7d*NN . and others. The assumption
that the isovector part of the hadronic electromagnetic current
is dominated by neutral rho mesons allows us to relate this
theoretical amplitude to electromagnetic form factors and
magnetic moments, as well as to photo and electro-production
of pions from nucleons. These last two reactions are somewhat
simpler than the others and allow a more direct test of the
amplitude wN+pN . In this work we rely on phenomenclogical
parameters extracted from these two processes(5_7}.

The theoretical amplitude for the process
TN+pN i3 derived in the next section. This. amplitude is
employed in section IIT in-order to construct the 3BFE. In
section IV wé study the features of this force by means of

diagrams and in section V¥ we summarize .ocur conclusions.

II. THE =N-pN AMPLITUDE

The- anplitude’- for the process T (k)N (P} » pﬁ {ayN-(P*) .
involving virtaal bosons isidenoted’ by Tﬁb-; The dynamical.
content of this amplitude, as testédlinithe_reactions YN+TN
and” " eN+eni ', is depicted inﬂFig.-l."The!nucleon—pole, seagull
and pion-exchange diagrams are not gauge invariant when considered

in isolation. When they are' taken' together, however cancellaticns

of "large’ texrms occur and:the symmetry is achieved. In the

4.

caloulation of 3BF, on the other hand, a cancellatien of this
type does not occur, since here we need only the part of the
first diagram describing backward propagation in time. This
contribution is negligible as we show below. The pion-exchange
diagram has already been included in the wrE-3BF and it
should not be considered in the 7wpE-3BF 1in order to avoid
double counting. So, out of the first three diagrams, only the
seagull contributes significantly to the wpE-3BF. In fact,
this contribution is so large that to some extent the short
range of the force is offset. Finally, the last diagrém
corresponds to the excitation of the A-resonance. Recently
it has been claimed(S} that this diagram would be responsible
for the leading contribution to the wpE-3BF. Our study of
the trinucleon system, however,shows that the excitaticn of
the A amounts to ‘about 10% of the total force.

In the remainder of this section we evaluate
the diagrams of Fig. 1. For the sake of completeness we
consider even the pion-exchange diagram, which does not con-
tribute to the wpE-3BF. The vertices in'these diagrams are

extracted from the following terms of a Lagrangian which is

approximately invariant under gauge and chiraLtransﬂnnaths(mﬂ
Lan = %ﬁ Nt [YuYsapél N (1)
Lown = :_o N7 E’“pu + EE;—UE i o¥V(a py - vau)J N (2)
Looww = 3w Yo N 7T - [Y“Ysau * 5] N (3)
Lig = Yo 0y » B x93 (4)



LnNA = gAAu M . L}g“v - % Yuvv)8v$]N + h.c. (5)

o v TR gMY B uovy A > a7
bowa = 1 Y8 (g 3 Y Y 08,0, SUOA)JN . (6)

The symbols $ ’ 3 , N and Au correspond to
the fields of pion, rho, nucleon and delta, whereas T and ;\
are matrices that produce isovectors when sandwiched between
two nucleons or a nucleon-and a delta. The parameters n and
£ represent the peossibility of spin 1/2 components in the
off—pole delta wave-function. The universal rho coupling
constant is denoted by Yo whereas up and u, are the
proton and neutron anomalous magnetic moments.

The 7N +pN amplitude can be decomposed as

. + A - :
= 3

T, $b Tyt i fohe e Ty . _ (7)
. . .

The amplitudes T; receive contributions from the diagrams of

Fig. 1 and hence they are written as
+ + +

+ T + T + T 8
u) Tu) u) . (8)

where the subscripts N , S , m and A stand for nucleon-pole,
seagull, pion-exchange and delta-pole. The evaluation of these

amplitudes produces the fcllowing results:

.

R - B ) 1 1y
1'1‘u)N = - @ uYs M_m(lwfu“) {s—n{" + u-mzl' +«P—-—2m J (Yuq - mun
Cip+k) (P+k) 1
+ By “!2m+(u—u)q;u (9)
Pis=m®)  (u-m®) [ pom

f
Y9
f L. 0T — _ 1 _ 1 _
iT )y * g~ U Y5<‘m(l+up um)[sﬂ_m.2 u_mz] (v g - dy) +
L ) .
' (P+k) (P=k} Tp+k) - (B4K)
+ (u_-u )|- 2y + LI “lq_zY +2m — uo_ uil g,
P 'n u sem? am? J u ! gem? el
. 5
(10}
+, -
iTu)S = 0 (11}
Yod _
lTu)S = Y Ys Yy " . e T . .(12)
;s mt _
]_TH)_" = 0 . (13}
Y9 2m(2k_-q_ ) :
TR, = g Vs |t ' (14)
uhar m t-].lz

YaGp . -
ity = b A Ty, [{_L__ + 2] [ma+(q2-2m2)8 + 3M3(k2—q.k—'2m2-2rmﬂﬂ)]+
s

-m?2

& u-M

A

+ [—-1— - ——l——] do + amman) + 2.xl1 - %] (1-5) + 2K2(1-E) + 2q2{1 - 121] -

S—ME u—M; {

s-M2 u-M2

A_v N SR
B Pok

- 4 [1 - gﬁ] + am M, (1) (1—£)J LA+ smyg) {(——151— + (—)}
A )

_k\J Y
+ GME{-I + —l——1 Kk pY + 3M3(m+MA)TA {}P ) + B2k 1 +

2 M2
S-M; u-My s-M} u-M;
: ( AV
+ 2[1 - %] Phq’ + 2E"i_l - EE] ~ Mpl1-n) (1—5)]\’ 3 I (9,3, =~ G (15)

J



!
Yd, _
it = 28y, [1 -2 Nm+(f4ﬁ}-ﬂ%¥ﬁ@hmhmml +
oA 1802 s u-MZ) i A A
A LSy A
) : A A
s + ] do + 2q.P [1 - ﬂ}(l—i) ra .
LeME  u-Ml 25, 2
A Iy
v \v)
+ 8{myt-g E_(PH{} - (P—kih[ + ﬁmz{ 1 - - 1 2] x* pV &
1 a2 - | =]
L os-ud u-u? | s-Mi  umM}

3 v v
+ 3M3(m+MA)YA (p-k) ° _ (P+) + 2{1 - %] k* qv +
s—Mz u—Mi

]
+ 2(H&MA) quv + ZE%[I - %é} - Ma(l-n)(l-g;}ylkvr (gulqv - guvqk)u (16)

In the above expressions we have used the

following variables:

s = (ptk)* = (p'+q@? '(17)
u o= (K2 = (p'-K)? ' (18)
€ = (k-g)? . : ' | (19)
P - {p+p') . (20)
@ = (m%ﬁAY(ME;Aé).+ kZ(m+2Ma)' ' - .21
B = (2M] +mM, - m® + k%) {22)

It is worth noting that the gauge invariance of

the interactions requires the amplitudes to be conserved, that

ig, to satisfy the condition
™ = 0 (23)
q T .

The amplitudes T:)N and T:)A are individually conserved.

The gauge condition for T;)N . T;) and T;) , on the other
L T

S
hand, holds only when these amplitudes are taken together,
since the seagull and picn-exchange coatributfions cancell the

last two terms in eg. {10).

IYI. THE PION-RHO EXCHANGE THREE BODY POTENTIAL

The three-body potential is extracted from the
scattering amplitude for three unbounded nucleons, which
corresponds to permutations of the diagrams of Fig. 2. In this

figure va and vﬁ represent the #N and pN vertices and.

izb denotes the amplitude for the reaction 1wN+pN in which

we have suppressed the diagrams corresponding to pion-exchange
and nucleons propagating forward in time. This suppression is
required since the former process has already been included in
the nnE-3BF and the latter corresponds to the iteration of a

two—-body force.

The amplitude for the process depicted in Fig.2

mp

is denoted by T3N

and is given by

7P o >l g 1 [+(2) =(3)at o (1) 2(2)  >(3) -
:LT3N {U(Pz)k YS u(pz)J m kﬂ_uﬂ L’l‘ T T].l +irT T % 1_-. Tu

Y, [ {u_=~u) 1
L »° 51(5 o+ B M g u,| (24)



The momenta of the nucleohs bound in nuclei are
assumed to be of order of the pion mass. Thus we use the non-
relativistic limit of eq. {24), that is given by

gy, - - [ - - > -
gw.\pf:iwz—o L L S g RO 0 gy 30 300 300 j“:I

Rt g w? u

t

(25)

+
wheres t& and ju denote, respectively, the non-relativistic
limits of the amplitudes fﬁ and of the isovector nucleon

current. This last four vector is

5 = {}m; -1 (l+up—un) g x 3(3) + ga] . {26)

: receive contributions from
nuclteons propagating backward in time, seagull term and delta

The amplitudes t

pele. The first of these contribution is obtained by means of
the fallowing decomposition of the numerator of the nucleon
propagator:

1

BHm) = 5z | (B+p )4 (B)ulp) - <E—po)‘6(—§)v(—5)} (27)

]
!
[

—

where Py is the energy of the propagating nucleon and
E = /m*+p? .

A backward propagating nucleon is thus described
by the nucleon pole amplitude in which the nucleon propagator

is replaced by

®m . Yo _ _(gm)
po-E’

ETEG 28
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Using this new propagator we obtain the contri-

bution of nucleons propagating backward in time, which is

‘denoted by T- and given by

N

L L PR Lo f_-b—)-(lj—\- —>+++(1}+.'+ + >

=~ 4 07 _ L - 2 2 i
Iy 152 yur {jo(l+up u,) t; ¢k + (K-gklo' g+ ik x g | +
SECER AN PR A T N AL S a3} o9

i

TR Sud S - LA Sy I N o ) () 2 (1) 2
Jety T - Ly e {30(14-11? Ln) E;.Plc g+ Zrakoo g+ q.ko .PJ +

+ 2 [a‘.a-“&“’.i R 3 L p ) F L R« g.zslj} (30)

The seagull contribution is obtained from egs.

(11,12}

Yod

S =i [}joé(‘).ﬁl + 2m E(‘).ﬁJ . (31)

Finally, the delta-pole corresponds to the

following non-relativistic amplitudes:

2,9
it Pl {jozm [mﬁ+mma-cmz-m2)(1-n/2)(1-&))&.i N
M2 ME-m?
A AT .
2y SR 23 49 "*21'*(1).4 - [z >
+ (3M3+2mM,+m® - (ME-m®) (1-£))k%| o '.a +.302m |—6MA q.k +

2 2 far2_ 2y pd ra (1) > [oed 2 20 L3 -
+ (2MA+mMA m®= (M -m®) (1-n/2} }q ]c _.k + L?MA+5mMA+ m°M,-m

0 (1 /2) - vy @) -2} [ 8.8,50 8 v sk 2]} @2
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- . Y9 { . B . (1)
. Sy JATA L 2 o M2emy (1 - T+
e {3 (2 4P ) jim M ~ (M) (1mn/2) (2 s}]o g
MA MAH!_ . . . . . -

1
+ [3M3rmom?m, 4mt - (2 -0%) (m(1=nE/2) = M, (1=n) (1)) |

BEREEARIE R R A R~ A e 35 L] SR EE
Uéing'the form of ju given by eq. {26) we see
that the nucleon contribﬁtion is of order p?/m? smaller than

the seagull one, for one has

— - — - u_
Ity Ity Yor9H =
Jotg Vo IM .

These results allow us to neglect the contribution of backward
propagating nucleons.
The three-body potential_in momentum space is

defined as
Fa, ' -+ - { : > - T . )
<P1P£P§|W1231919293>= “zm 82 (Pepy) t3§ ) : (34)

In this work we consider only the local part.
of the potential and therefore the velocity dependent terms
in egs. (31-33) are neglected. Moreover, in order to apply
_this potential to the trinuéleon problem we evaluate its
expectation value be;ween totally antisymmetric spin and

(10}

isospin states < Denoting this expectation value by {..),

we have

.12,

T, kil - > 2m 3 - - m™w
(<pipip! Wity [PyP,Py>) = - {55] 8% (pppy) (tag)
2 (1+p_-u_}
_ 3 a1 - _+ 9-_ 1 1 3 P T +.+ +
= (2m)° 87 (pg pi){ZmJ it Fiam &Y 19-k
+ P Fara *a> —;l
*(6:+82) (G B2 + 85 K23% + 5, K2Q.K (35)
i

where
2 Y29 m
- . 2 _m 36
8: 3.v,9 Ky (36)
) CH m” [m- (M,-m) (1-£)]
2 = -3 STy 37
Yo¥ up My MZ(MA—m)
2 — —_— - — —
o2 Y59, ml2mM)-m?- (3, -m) [m(1-ng/2) -4, (1-n) (1-£)]} (38)
9 y.g 2y
o MA(MA m)
) Y9, m® [3M +m+ (M +1) (1-E) ] (
8, = = — 39)
YT g Yog(l+up L) M;(Mﬂ+m)

These expressions allow us to assess the
relative importance of the seagull and delta confributions to
the potential. In order to do so we need the numerical values
of the parameters entering the egquations above. We adopt tﬁe
following values for the masses: u = 139.57 MeV , mp==776JLMeV,

m = 938.28 MeVv , MA = 1220.0 Mev(7). The . coupling constants

are g = 13.39 , g, = 1.84 por T Yo = 6.00 , v, = 2.00 u”'.

The value of Yo has been extracted from the relation Yo

(11}

= mp/v2Z £ ; where fn is the pion decay constant whose



.13.

value is taken to be Em = 91 MeV. The 'pNA coupling constant

is related to the yNA form factor C by YA = CYO . The

value of the parameter <€ can be extracted from electroproduction
~1(7

amplitudes and in this work we adopt the value C = (.34 u 1().

The study of electroproduction processes also yield the values
n=2 and £=3 for the off shell delta coupling constants.

These experimental parameters produce the following
values for the strength of the delta relative to the seagull:
§y = =0.10 u~° , 82 = —0.01 p"% , 8 = =0.06 u ° , & < 0.0L 2.
These figures show that the delta contribution is rather smaller
than that of the seagull. Hence in the remiander of the work
we consider only the latter contribution to the 3BF. Using

the above menticned relation between Ya and fr we obtain

our final form for the potential in momentum space.

2 m (Lbp_ —p)
= (27} ¥82 (p -5_){9& 1 _1 ¢ 1 “pAa IR (40}
_ £ 717 2m B2ep? G24mp? w2 £0? am

In this work we are mostly'concerned with the
qualitative features of the mwpE=-3BF . Hence, before going to

“coordinate space, it is worthwhile to éompare this potential

with the #w7E=3BF, that is given by(3'4}
S, T o+ > -+ o
(<P1p1P31W123 1?1?2?3” -
2
_ 33,0 _F fﬁE 1 O SR { .k o+
(2m) 8" (pempy} | 2m B2ppt Be2gy? 2 Gy *-
I H e
(1+u -4} 4g TR 2
+ _l'_ p + A - 3 ‘[(-]E.il)z - 3
Leg2 2m 9(MA—m) g F

(1w -u) o 871 R
+ {2 p_n +_0J R _ (41)
; _

where .f and k' denote the pion momenta. The parameters o
and B0 describe the 7N o¢-term and their role in the wrE-3EF
is discussed in detail in refs. (3,4).

. Comparing both potentials one notes that the
mpE~-3BF has the same structure as the term proportiopal to:ac
in eq. (41}, which corresponds to S-waves in the intermediate
"N system and is mainly repulsive, as we will see below. Their

relative magnitude is displayed@ by the ratio

+p -

m,2 (1 M, un) )

2 2 2 Tre g2

g*+mg f1° 2m - l+k'/w* 0 0.82 (42)

=
Q
,_.
+
O
™
~,
g
kel
w
p
[=)
(8]

where we have used the numerical values of refs. (3,4). This
ratio shows -that for low momenta beoth potentials are ax@ﬁrﬂﬂe{

since the short range nature of the TpE~3BF - is offset by its

magnitude.
The potential in coordinate space is given by
s
(<§{?;§;[w?falrlrzr3>) =
a3, a3 BE Bh[ |
2 . =P, -y EREE 2
= Lo 3 (Bi+...mBy) e | L.e - L0 @Iy -
(2w) 3 (2m*®

(2m) ®

[ o o -ikr,, -igr,[ g

- L = -

8% (F1=T1 63 (T, 8% (E Ty | Gk da o 12 e B AJ =
j2m? 2m?

i

= 6% (F,-r)]) 87 (F,~T}) 6% (F,~T w"P(1,23) (43)
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where we have used the notation

(44)

Ak
il

Ht
|

H

i3 i 3

Using the explicit form of (tgﬁ) and replacing

momentum variables in the numerator by derivatives we obtain

z z2m (3 -
ki e 1 n .z his
W'P(1,23) = - (z_n] [%] £l _”%_n__ [vm.vn u (ru)Up(r“)] (45)
. o el fw : e
where
[ —-3F. x -
T 4 G ik.r e ur
U (ry = T > T o _ (46}

Jo2m? ke op

¢ - L =m
dm | 89 e - . (47)
1 (2ﬂ}3 qz +u

o (r)

The potential in which the intermediate -mN-+pN

reaction  involves nucleon 1 is given. by

wiP(1)y = wP(1,23) « w'P(r,32) . . . (48)

Evaluating the action of the derivatives con the functions U

we obtain the following expression for wﬂp(l)

. 2 2 M (1+u_-u_}
mp - . |H gu o 1 P 'n
w o [4w] [Zm] u2 £n? Zm cosd, w mp
L ) ) P o 1 R
10 () ) U (Eqy ) + U5 {2 )0 (r;l)j (49)

.16,

where
> >
r . .r
12 3l
3] = —_— (50)'
costh iz g
-ur
m _ lie .
U,(r), = [l + ur] T (51)
) ( -m r
p - - 1|e 52
ujlr} = [1 + a2 TmE {52}
The final form of the wpE-3BF is given by
w'? = c]Pl{cos &, [U?(r”)u‘f(r“) + U?(rlz)UTlr(r“)] +
+ cyclic permutations} . ) (53)
The coefficient <P 1is
2 2z 2 T4y -
ciP = - [EE] [%m} T, L i__fg_fﬁl o (54)
2m m ut £n? m p
and its numerical value is
ciP = - 118.7 Mev . {55)

This is a huge number compared to the corresponding

(3:4) o™ = 5,92 mev.

coefficient of the wnE-3BF which is
Both potentials are comparable even for internucleon distances
of order of pnl', whereas for smaller distances the wpE-3EBF
dominates. These remarks bring the problem of assessing how

realistic are the results of -the present calculation,
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The most obvioﬁs'non—realiétic aspects of the
above results éoncerns the behaviour of the functions UT and
U? at short distances, since their diverge as 1/r?. This
shortcomming could be avoided by recalling that there is a
short distance repulsion between nucleons which could be
- simulated by a hard core of radius L This would amcunt to
. setting o ir) = Up(r) =0 for r<r_ . making the poteﬁtial
discontinuous at this point.

A more éopular choice for the solution of this
short distance problem is the introduction of form factors in
the boson-pucleon vertices. In the case of the wwE-3BF , for
example, the inclusion of form factors modify the function

" (r} as follows %)

¥

=

u"(z) =

-+
& -ik.r 2_.,82v2
47 dK e {A 0 ] (56)

H (2m) 3 E2+u2 A24§2

.where A is a phenomenclogical parameter. This integral is
well behaved at the origin and apparently we are left only
with the task of finding suitable values for A . This use of
form factors is not, however, unprcoblematic from a thecretical
view point, since realistic values of A are of order of the
nucleon mass. Hence form factors intreduce corrections which
are of the same order of magnitudé as those due to relativity,
which have been neglected throughout the calculation.

The real problem associated with the functiong
Uﬁ(r) and UP(r) is that the non-relativistic nature of bound
nucleons haﬁ not been implemented mathematically in egs. (46,47).
This fact makes it disputable, for inétance, the result of the

action of the momentum operator cn Up(r), for we hawve

.18.

H[H4

(%) LR 17 o) = im0 L L (s

operator
This operation shows that derivatives correéspond té momenta of
order of - m, , which are not compatible with the non-relativistic
assumption that pefvades this work. This example suggests
that, if this assumption were properly implemented in eq. (47),
the last factor_in eq. (54) would be replaced by another of

order 1y , producing the value CTD = -21.3 MeV. The preblem

of the mathematical implementation of the non-relativistic

assumption inte egs. {46,47) will be discussed elsewhere. In
this work we limit ourselves to the use of a hard core, since
here we are mostly interested in the qualitative aspects of

the wpE-3BF , which are discussed in the next section.

IV. GRAPHICAL STUDY

In this section we study the gualitative features

of the wpE-3BF by means of energy diagrams,.following the

(12}

work of Brandenburg and Gldckle The trinucleon energy

due to two-body interactions is given by

2
(<EYELELT i?|¥1r2§3>) =
pairs
= 83 (F ~FN 8% (F,-EN &N (F,-F WwPB L o (58)

The two-body energy wi? is assumed to be well described by

the Reid soft-core potential. Using Reid's notation, we have

wPB o= g : {%(IS) +-v(3sl)] - (59)
pairs
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where V(SSL) receives contribution from the central potential
only.

The energy diagrams are constructed by fixing
the positions of two of the nucleons and using the third as a
probe. The coordinate system used to describe the positions
of the nucleons is represented in Fig. 3, where' x 1is the
distance between the fixed nucleons. In Fig. 4, we show the
equipotentials'derived from egq. (59} fér-the'value x = 0.88 fm,
corresponding to the minimum of wi? .

" Phe TrE-3BF is usually divided into two pieces,

associated to the s and p waves of the intermediate wN

Ui}

amplitude. These partial contributions are dencted by wg

and Wi
P

and their energy diagrams are given in Figs. 5 and 6.
The figure describing 'wzn is rather different from the
corresponding one in the work of Brandenburg and Gléckle.
Indeed, the s-wave potential displayed in that work contains an
attractive region which is comparable to that due to p-waves,

" that is

whereas in our calculation we have obtained a wg
mostly repulsive and at least one order of magnitude smaller -
than the p-wave contribution. The corigin cof this discrepancy
can be traced back to the way the contribution of the N
o-term has been treated in both works.

In the paper of Coelho, Das and Robilotta, which
serves as basis for the present study,.the c~-term contribution

has been parametrized in such a way that its contribution to

the 3BF is proportiocnal to

Lxy g q
w - e . 0
s ° K2ap? k'24p? (o) o

In the work of Brandenburg and Gléckle, on the other hand, the
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results of ref. (1) are used, and the term corresponding to

eq. (60) is given by

ks g g Faggre } 61
Y )BG o {§2+u2 §|2+u2 [é + elki+k )] (61)

This term can be rewritten as

wT”TA)BG [ {_9‘_ —d . [a-2u%c] + C]:g g 9 g]} . (62)

= E2+u2 i;2+u2 §.2+uz E2+u2

The first bracket this eguation is egquivalent

to eq. (60} since

(63}

where ¢ 4is the N o-term. The second bracket, however,
describes a 3BF in which the propagation of one of the pions
is replaced by a contact interaction that corresponds to a
§—function in configuration space. This situation does not
change much when we allow g to become the 7N form—factor,
for this term would represent "contact" interactions between
nuclecns that are not point like. These "contact" interactions
afe not realistic because very small internucleon distances are
presented by the repulsive core of the two-nucleon interaction.
Contact terms should, therefore, be neglected before cne goes
to configuration space.

The combined contribution of two-body and n7E
forces represents the background for the wpE=3BF and it is

displayed in Fig. 7. Inspecting this contour plot we note that
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the introduction of the wrE-3BF favours the triangular
configuration.

We show, in Fig. 8, the equipotentials for the
TpE-3BF derived in this work using the value of C?p given
by eq. (55). This value corresponds, as we pointed out above,
to a 3BF that could be unrealistically large because the non-
relativistic condition for the nucleons has not been properly
implemented. This fact does not prevent, however, the possi-
bility of a gualitative study. The main characteristic of the

TpE=-3BF 1is that it is mostly repulsive, acting in the oppesite

T
p
effect of all the forces considered in this work we display in.

direction of w In order to have a feeling of the joint
Figs. 9 and 10 the total potential for C)°=-118.7 MeV and
CTQ = -21.3 MeV. The latter value is motivated by the hope that
the non-relativistic consistency of the calculavions would be
roughly simulated when we replace p for the last m, in

eq. (54}.

V. SUMMARY

In this work we have derived a pion-rho exchange
three-body potential using effective Lagrangians that are
approximately chiral and gauge symmetric. This approach allows
a clear identification of the dynamical origin of the various
terms of the three~body force. The leading contribution to the
potential comes from the seagull term, which is a typical
product of a gauge Lagrangian. This term is one order of
magnitude larger than those arising from the excitation of the

A-resonance.
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The three-body force derivéd here is comparable
to that due to the exchange of two pions, having the same
structure as its component related to s-waves in the intermediate
TN amplitude. The pion-rho force is mainly repulsive and its
contribution tends to cancell that of the two-pion force. The
extent of this cancellation is difficult to assess since it is
related to the use of hard-cores, form factors and the delicate
problem of how to implement mathematically the non-relativistic

condition for bound nucleons.
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