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ABSTRACT

We show, in the context of non-relativistic

potential scattering, that the appropriate scaling variable

for the deep inelastic region is not the usual Biorken cne,

*B,
3

2 22
. 2mv-—
g%; but instead, the var;able y = ——Eaﬂu .

The y-scaling is shown to be cobtained in a

natural way by using the WXB approximation. WNumerical results

are presented comparing the approach to scaling in terms of

*B

i

and y .

I. INTRODUCTION

The deep inelastic scattering of leptons by
hadrons is one of the most powerful tools for testing the

hadronic structure. Since 1968 a great deal of experimental

‘results have met in evidence a composite picture of hadrons.

The data are compatible with the view of hadrons as being
composed of point-like {structureless) constituents. One of the
most important evidences for this is the so-called Bjorken
scaling, which may be interpreted as reflecting the fact that,
in the limit of large momentum transfers (very short distances),
the point-like constituents behave as quasi-free particles; as

a consequence, the cross-sections for deep inelastic scattering
appear to be independent of any scale of mass.

However, there is another striking feature
coming up from these experiments: the constituents have never
been cbserved in final states, in which only ordinary hadrons
are found emerging from the scattering. So, the data confront
us with an apparently ambiguous situation, i.e., the constituents
when tested at short distances behave as guasi-free particles
although they seem to be permanently confined in the interior
of hadrons at large distances.

More recently Quantum Chromodynamics (QCD)1 was
proposed as a candidate for describing strong interactions,
whose predictions have been shown to be in good agreement with
experinent. Among the results that can be understoocd in QCD
we mention the precoclous scaling, reflecting the smallness of
the QCD fun@amental lenyth parameter, A , and scaling violations
in the deep inelastic scattering of neutral and charged leptons
by hadronsz. However it is still not perfectly stablished that

QCD confines the constituents to the interior of hadreons, as it
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would be expected in accordance with the experimental :esults3

Deep inelastic scattering processes may be treated
in a non-relativistic Quantum Mechanical framework, since there
is a complete analogy among the variagles that describe the
processes in the relativistic as well as in the non-relativistic
treatment. Making use of this analogy we may consider deep
inelastic scattering in a non-relativistic framework as a
"laboratory" for testing the hypothesis of permanent confinement
and see if the latter would destroy Bjorken scaling. The
permanent confinement is simulated non-relativistically by the
assumption that the constituents are confined in a potential
that increases with the distance.

It is clear that the mentioned non-relativistic
framework is not indicated to be applied to high energy processes
since these are strictly relativistic. However we find its
applicability in nuclear physics, more specifically, in inelastic
scattering of electrons by.nuclei4.

Many authors have focused their attention on the
proklem of deep inelastic scattering treated in a non-relativistic
framework. Among them we find the work of G.B. Wests, which
sets up the formalism for the non-relativistic treatment and
obtains the analogue, in this framework, of the Bjorken scaling
(x-scaling). He also introduces the so-called y-scaling by
keans of this formalism. The work of P.M. Fishbane and M.T.
Gri&um§ analyses some specific examples of confining potential,
obtaining the analogue of Bjorken scaling for them. J. Bellandi
F:f.lho-Jr treats the problem of deep inelastic electron scattering
by a two spinless bound state (whose interactions is supposed
to be of the harmonic oscillator type} and observes the scaling

behaviour of the structure function in the Bjorken limif, .

Another work, by G.C. Margues and C.F. Wey Jr.s, studies the
scaling laws of Many Body Systems in close analogy with the
ralativistic case, taking recoil effects into account. Finally,
vz should mention the recent paper by J.D. Bjorken and H.S.
Orhachg, which is closer to the spirit of our present work,
approaching the y-scaling behaviour of the structure function
in a semi-classical way.

We should briefly mention the different roles of
¥~ and y-scaling in the pon-relativistic framework. The former
is reached when we consider_the Bjorken limit of the structure
function VW(v,q%) , v and g° ‘beiny, respectively, the energy
and sguared threemomentum transferred by the virtual photon
{using the Born approximation). In this limit, the x-scaling
is obtained in the form of a delta function whose argument
depends exclusively on =x = EZ/ZMv and in this case X is equal

to the inverse of the number of constituent55'6'7.

The problem
with this non-relativistic version of Bjorken scaling is that
it gives no information about the initial momentum distribution
of the constituents in the interior of the target, differing
considerably from the relativistic version which explicitly
associates the scaling variable x =-g?/2My (g is now the
fourmomentum transferred) to the fraction of hadronie momentum
carried by its constituents. This is precisely the difference
which will favour y-scaling in the non-relativistic limit.
What we observe then is that gW turns out to depend only on
y = 2&%&§i (m. is the constituent mass) and this scaling
behaviour is obtained in. terms of a Fourier transform in
momentum space of the ({initial) ground state wave-function.
Being so, it is possible for us to know the initial momentum

distribution of the constituents inside the target.
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This paper is organized as follows. In section
11 we compare the roles of x-scaling in the rglativistic context
and y-scaling in the non-relativistic framework. 1In section III
we show a procedure which enables us to obtain y-scaling in a
natural way, by considering the WKB approximation for the wave-
function of the final state. We also compare this procedure
with the result obtained for an exact case - the harmonic
oscillator potential. In section IV we show the numerical
results for two specific examples of confining potentials,
comparing the approach to scaling in x~ and y-variables.

Finally, in section V, some comments are presented in conclusicon.

I¥. x-SCALING VERSUS y-SCALING

In 1969, R.P. Feynman, J.D. Bjorken and E.A.
Paschos introduced the Parton Modell0 in order to describe the
hadronic structure as manifested in high energy collisions.
This is a model inspired on Field Theory in which, whenever it
is possible, all complications inherent to Quantum Field Theory
are duely neglected. The gquanta of the fundamental fields are
simply called partons and the conditions assumed in this model
are such that the interaction among partons is switched off
Wh_en they are tested by leptons in deep inelastic scattering.

The hypothegses made in the Parton Model are
equivalent to consider as relevant for the inelastic lepton-
nucleon scattering only the handbag diagram, as shown in Fig, 1.

The cross-section obtained by means of this

diagram is given byll:

.6.

[dzc) _
Gz

oma? feZen?) . t 1
L [ss;‘}deiZeixfi(:c)ﬁ[{gru+x}(s+u)_! (II.1)

where x 1s the fraction of the momentum carried by the struck
parton; e; is the squared charge of the type i parton (g is
the fine structure constant):; fi(x) is the prcbability to find
a parton with momentum fraction between x and x+tdx , and
finally, s,t,u are the Mandelstam variables.

The argument of the delta function in (II.1l} may

‘be written as:

<

2
sps 6% - o (X1.2)

Mt + x(s+u)] = 6{g? + 2Mv-x) = >
where we have considered the values assumed by the Mandelstam
variables in the laboratory fiame;' 0? = -'g? is the squared

fourmementum transferred by the virtual photon and "M is the
nucleon mass. Remembering that in this frame P.g=Mv (P is
the nucleon fourmomentum), the argument of the delta function

may be rewritten as:

8(g® +2Mvex) = §[g® +2Mv-x + (xP) 2 - m?] = §{ (@ +q)% - m?]

{IT.3)

where m is the parton mass.

Equation (II.3) exhibits the condition that the
struck parton remains on its mass-shell after the interaction.
With the aid of eguation {(II.2) we may conclude that the fraction
x of the momentum P carried by the parton, before it interacts
with the virtual photon, is equal to the Bjorken wvariable

Qz/ZMv . This shows explicitly that Bjorken scaling in the
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relativistic framework gives information abhout the initial
momentum distribution of partons inside the hadron.

We now show that the analogue of Bjorken scaling
in the non-relativistic framework is y=-scaling. This is derived,
as before, by supposing only the handbag diagram to be relévant
for the scatte:ing and by imposing that the partons remain on
their "non-relativistic mass-shell" before and after being
struck by the virtual photon.

In the non-relativistic framework, in the Born

approximation, the structure function is written aslz:

N i&.?i ,
% faw :ELFi(q)e [ > 28 (BE_-v)

Wv,@ = ] 1. (D) |26(EE -v)
£

(IX.4)

where . wo_ is the {initial) ground state wave-function and ¢f
is the (final) excited state wave-function to.which the struck
parton jumps after interacting with the wvirtual photon. The
delta function imposes energy conservation (Eo, Ef are the
target initial and final energies); Fi(a) is the constituent
form factor which is egual to its charge in the structureless
case.

When we write equation {II.4) in momentum space
we cobserve that we need scome knowledge about the potential.
Supposing only that it does not depend explicitly on the
constituents’ velocity, it is possible to find a general form
for (¥I.4}. Due to the presence of the squared modulus in (IT.4)"
we ﬁill find some interference terms which will not contribute:
in the limit of large. g°. if the spacial ground state wave-
function is well behaved at the.originlz. Being so, in the . -

Bjorken Limit, the structure function iz reduced to:

.8,

tee = -+ -
- vy 12 r (k;+q) ®=k}1
Lim W(v,q%) = m [ [Fi @) | ak, Pk, e T
>y +, 1 ] z z 1
q o q oo —_—00
(I1.5)
a%x,
S PR E: (17.6)
with P,{k, ) = £k, k.0 .
13, (2my? 1 REL,

where ki andé ki are the components of the constituents'
z 1

threemomenta along and perpendicular to the direction of the
virtual photon, respectively; the factor ]fi(ki 'ki 1% is

L z
related to the squared modulus of the ground state wave-function

in momentum space, integrated over all momenta, except ki Pomy

is the i-th constituent mass.

Applying to the argument of the delta function

the definition of the y-variable>:

2mv - g2

¥y = 2q

(I1.7)

we find

a2
[ 2k:i.zq *tq } m, [Zmiv - gt 1 m, :
) -— | == § | - k, = —= §{y~-k, )
2m q - 2q 1zJ g i,
(I1.8}

Putting (II.8) into (II.5) and assuming that the

constituents are point-like, we have:

fim gW(v,q?) = Joim By . o (1I.9)
1 . N

-
qzv-)noo
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It should be noticed that the same equation (II.5)
would be obtained had we considered only the non-relativistic
analogue of the handbag diagram as relevant for the scattering,
together with the condition that the parton should be on its
"non-relativistic mass-shell“13 before and after interacting
with the wirtual photon.

By means of equation (IT.8) we notice that the
y-scaling variable is the same as the component of the struck
constituent initial momentum along the direction of interaction.
And, finally, by equations {II.6) and (II.9) we see that the
dependence of the structure function on the scaling variable y
is related to the initial momenta distribution of the constituents
inside the target, in close analogy with the relativistic

version of Bjorken scaling.

IIT. WKB APPROXIMATION AND y-SCALING

We now show that the structure fupction qw
scaling in the variable y , may be obtained as a Fourier
transform in momentum space of the ground state wave-function.
As we shall see we get this result simply by isclating that
part of the excited state wave-function which oscillates rapidly
and by incorporating it into the factor eiqx - the nonrelativistic
electromagnetic current.

For simplicity we restrict our analysis to the
one-dimensional case and look for the effects of the potential
over just one of the ceonfined particles.

Being so, we consider a spinless confined

particle with mass m and unit charge which interacts with

the electromagnetic current, jumping from the (initial) ground

.10,

state to an excited (final) state n . BAs we have seen before,
the structure function is written in terms of the squared modulus
of the transition amplitude IEO , according to (II.4). In the
special case of just one confined particle the transitien

amplitude is written ag:

H
i

—
]

oo
‘o no de bx (x) o1 v {ITI.1)

-0

As the Bjorken limit involves high excitations,
i.e., the fipal state level n is very high, the excited wave-

function may be approximated semi—claSSicallyG:

X X .
¢n(x) = —~£ _ gin J plx')dx’ +% {IT1.2)
p(x)
b . L
_ 4m . _ 2m . _ _ /s
c = T(x) 7 Ti(x) = [ W dx ; pix) = I:Zm(En V(x)):l
a (III.3)

where a and b are the classical turning points.

We assume that wc is effectively confined to a
region -c<x<c , dropping rapidly to zerc outside this interval:
¢ 1is a characteristic number of the potential (could be, in
some cases, the classical turning points corresponding to the
ground state level) and is supposed symmetric for simplicity.

We now suppose that the potential parameter is
small such that the semi-classical approximation can be applied

o3 %!

and consider x >>

o (this approximation breaks down for

the square well case). With these hypotheses in mind we may

expand the particle momentum, keeping only the first two terms:
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p(x) = (/3mE,) ,/1—";3—") = /mE_ - /3R T (III.4)
n R n

where ¥(x) is the maximum value of V(x) in the interval
~c<x<Cc.
Assuming that the excited level n is very high

and that xﬁl »>¢ , then Vix) << 1 in the interval -c<x<c.

n
Therefore we may approximate p{x) by the first term of the

right-hand side of (III.4)14. With this approximation, the
excited state wave-function given in (III.2) may be rewritten

asg:

1]

0

4 1 s ) Il‘.

b, = /—T(x} . —-———m sin [ JZmEn dx* + ¢
n

= /-T(xz—)En sin[/szn x+¢] i ¢ =/ImE, b+% .

By energy conservation we write En-Eo =Yg
assuming that Eu >> EO ; then En_=u . Substituting this and

(EII1.5) inte (TII.l), we obtain:

4o

igx . : . s
. 2 e i _iv2my =i¢ ~ivZ2mv
Tno ™ /TTOE], [ & g0 oy [e ¢ Te e } '

-

(EIX.6)
When we take the Bjorken limit (g,v+w) the first
term in brackets in (III.6), multiplied by eiqx roscillates
rapidly giving a vanishing contribution to the integral,
according to the Riemann-Lebesgue Theorem. But the second term,

multiplied by equ, may contribute if g =~ vZmv . This factor

.12.

may be rewritten as:

S = (q - v2mv) (g + /2mu} g? - 2mv

5 = -y (TII.7)
{g + v2mv) !

q -
according te (IZ.7).

With the above considerations and the result
(III.7), the modulus of the overlapping integral (III.6) may

be written as:

F g pp—

+x
. dx wr(x) e ¥YE[ | (I11.8)
o
no JZTix)En

-0

As we have said at the beginning of this section,
the y-scaling behaviour of the structure function gW may be
obtained by the procedure adogted.ahove, i.e., by isolating the
rapidly oscillating terms cang.fnunthe excited state wave-function
and by incorporating them to the factof eiqx + We see by
(III.8) that the momentum wvariable is ¥ + The y-scaling is
reached in the form of a Fourier transform in momentum space of
the ground state wave-function, making the linkage of the Y
variable to the constituents' initial momentum distribution in
the direction of the virtual photon. .

In order to make clear the correctness of the _
above procedure, it is illustrative to analyse a particular
potential for which the above result, (III.8), is obtained
whithout the WKB approximation.

The confining potential in case ig the three-
dimensional harmonic oscillator %'mmz(xf~kx§-+x§)( where m
is the mass of a spinless confined particle which is supposead

to have unit charge; is the oscillator proper. freguency.
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The n-th energy level is given by g = M(n-P%) where n =

=n, +tn, +n3 : the corresponding wave-function is giwven byt

. 3 ' 3 -0’ xl/2
¥ (ry = 0 ¢ (x.) = T ¢_ e H_ (ox,} (IFL.9)
1Py i=2 40t i=1 M4 i

n. -1/
- (mm/w)’/“[z i nil] . (III.10}

a
H
2]

(9]
|

where

The structure function is obtained by means of
the sguared modulus of IfO {egquation (III.l}) provided we sum-
over all possible final states consistent with energy oonservaticn.
In terms of the wave-functions given in (III.9%) the transition
ampilitude will he given by the product of three identical

integrals of the form:

+om
_ ~a?x? igx
Ino = cho J dx e Hn(ax) e Ho(ax) =
bl
1
>in 2 2z 2
= (l)n I:—an} e a3/ . (TEL.:1)
270 nt
The structure furction may then be written as:
22 2
W = E nt ‘q2n1 l:izn_-g qzng e 9 /20 3 .
= ———r &
nyn,n, n;in,in,t ! 2 ¥ nt2lt n‘*%?%
(EI1.12)

Noticing that the above sum is a multinomial sum
and including the density of states factor dn/dEn , we get the

following result for ‘EE!W;

.14

- Zzn ) 2
lglw = iigTi [q—] e d /20 (ITI.13)
* lag?

The right-hand side of the above eguation is a
poisson distributionT. When we take the Bjorken limii, i.e.,
>2

f%? >> 1 (and, consequently, n = % >> 1)} and use the Stirling
approximation for n!, this distribution approachs a Gaussian

one, with half-width o =/g%/2a? :

)
Qi ~ L VN W exp |- 1 ] _E:___ifi_ .
w /? 2 qz/zaz
2w (g /2a%)

Rearranging the argument of the exponential
function into a suitable form and remembering the definition of

the y-variable given in equation (IE.7), we finally get:

g -~ iexp[—yz/oﬁ] . (ITI.14)
wyYyw

The result (II1X.14) is egual {(except for a factor
1/m} to the sguared modulus of the Fourier transform of £he
ground state wave-function, in terms of one of the momentum
compeonents - for example, along thé z-axis. This exhibits our
earlier result {eguation (IIZ.8)) in a direct way.

It should be mentioned that the same result was
obtained for another particular po£entia1 by making use of a
slightly different procedure. We have considered the linear
cne~dimensional confining potential {(V(x}) = for x<0 and
V{x) =ax for x>0) and made a similar, but less dramatic
hypothesis about the excited state wave-functicn. Once more waking

use of the fact that Bjorken limit involwves high excitations,
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we have approximated the excited state wave function, in the
overlapping integral (III.1l}, by its asymptotic form. In this

way y-scaling was cbtained for qW.

IV. NUMERICAL RESULTS COMPARING x- AND y-SCALING

In order to numerically study the approach to
scaling in x- and y-variables we analyse in this section two
specific examples of confining potentials: the harmonic oscillator
and the sguare well., We begiﬁ with the former, since some
?elations referring to this case have been shown in the last
section. l

AsS we have seen, the structure function qwbhaz)
is given by equation ﬁIII.13) and we must look. at the way it
approachs y-scaling. The non-relativistic version of Bjorken
scaling is obtained by looking at the behaviour of the structure
function VW(v,g?) in the deep limit gZ+e , vee , with x=qg°/2mw
finite. Its dependence on v , g° is obtained by the same .

procedufe adopted previously to obtain gW , and is written as:

Fayn 2 2
W= o [L]F a2 (1v.1)
* ‘2a?

. ) LN 3
with n given by n = m 5

As commented in.the Introduction, the structure
function vW(v,&z) approaches a delta function in the variable
x = EZ/va , as we take the Bjorken limit. With vW in the form - .
given above, for only one confined particle, we would chserve

the approximation to one branch of the delta function when

.1e6.

considering progressively higher energies and momenta, since x
varies in the interval 0 ¢x ¢l . For this reason it would be
retter to consider the effect of the potential on two confined
i articles instead of one. In doing this, however, as we want
to observe the approach to scaling, we should consider the
interference terms appearing in the structure function (sucﬁ
terms come from the squared modulus of the transition amplitude
in {II.4)). However, as discussed in section II, as we take
the Bjorken limit the contribution from these terms drops out
rapidly to zerclz, only remaining the individual contributions.
For this reason such interfereﬁce terms will not ke considered
from the beginning.

- In order to exhibit the form used on nuﬁerical

caleulations we write vy , vW(v,Ez) and qw(v,EZ) in terms of

the Bjorken variable =z = (52/2Mv) , where M=2m:
2mv - §2 my
vy = Tm = — (1 -2x) ‘ (IV.2)
d
>z 2
; 2o 3
22 2 (9_£____ }
oW = 32/20.2 ) e q°/2a [-iz] 2X (1v.3)
2x +2/2u2 _ E , 2a
Zx 2f°
pat ] 2
2 3
G et (TR
qWw = K; g 7 +e [2 2] . (1v.4)
24 2 /92 _ 3}, a
2x 2]
The factor K, = (¥2m/a) has not been considered

in numerical calculations.
The approach to scaling is investigated by
attributing progressively higher values to gq?/2a® , with x

varying in the interval O0sx <1 and by observing the behaviour
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of VW and gW . The results for VW versus x are shown in
Fig. 2 and for gW wversus v/a in Fig. 3.

' We clearly observe from Fig, 2 thét the structure
funection VW approaches a sharp peak. By comparing figures 2
and 3 we may conclude that y-scaling is reached ﬁore rapidly
than the non-relativistic analogue of Bjorken scaling, as would
be expected.

Another numerical example may be considered. Now
we suppose that the confining potential is simuiated by a one-

dimensional square well:

vix) = . (Iv.5)

By solving the Schroedinger equation we obtain
the following wave-function for just one spinless particle with

unit charge and mass m:

_ 2 o0
wn(x) = /3 51n[w— x) {Iv.6.a)
' _ n2n?
and En = Smat (IV.6.b)

is the energy of the n-th level.
Using the same procedure as before we find for

the corresponding overlapping inteqral, the form:

1 (o7, cos[(%—n)ﬂ/ﬂ 1 (Hen)m, oosr(%m)Tr/z]
e —_——a —_——
1-(F-n? 1= (F+4n)?

3+
e

n1

(IV.7)

W18,

As we are supposihg this level to be very higﬁ
{n »>>1) and, for the sguare well potential, very high levels are
very near, we may substitute the sum in the structure function
by a density of states factor.

Now, considering as before that we may analyse
the effect of the potential con twe confined particles in the
same way as in the one-particle case, we write the corresponding

structure functions as:

2

2 cos[% (u—B)] Vcosi% (u+8)]

[+

v = - {(IV.8)
TEE )y L (gep) 1= (a+B)° |
m o 2
" Cos[f (a-B)] COSEE (a+8)]
o = K, o% e - - 5 (Iv.9)
1 (x=B) 1 (a+8)

T = jo?
o = 5 B % + 1 . {IV.10)

In the above relations we have applied energy

-
conservation which relates n to g® and x by:

The constant X, = if? was not considered in
numerical calculations.

Proceeding as before, we have attributed
progressively higher values to o = ag/%® , with x in the
interval [0,1}, obtaining the corresponding wvalues for W ,

gW and ay . The results are shown in figures 4 and 5. 1In
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the latter, aiming at a better resolution, we have plotted the
curves for gW versus ay only for ay <10 . For ay > 10 the
curves present oscillations with procressively lower peaks
compared to the central one {(at ay=0).

7 By comparing figures 4 and 5 we observe that the
same conclusions made in relation to figures 2 and 3 aré valid:

y-scaling is approached more rapidly than x-scaling.

V. CONCLUSIONS

In section II we have shown that y-scaling may
be obtained by the non-relativistic analogue of the handbag
diagram éupposing that the struck parton remains on its energy-
shell before and after interacting with the virtual photon.

We have also shown that the y-scaling behaviour of the structure
function explicitly displays some dependence on the initial
momentum distributicn of the constituents inside the target.
These results show that y-scaling is a more suitable non-
relativistic version of the well-known Bjorken scaling.

.In section III Qe have shown a natural way of
obtaining y-scaling using the information that the Bjorken limit
involves high excitations, allowing us to approximate the excited
state wave-function by its correspondént WKB function. As a
result we obtain the y-scaling form of the structure function as
a Fourier transform in momentum space of the ground state wave-
function, in terms of the variable y . This result stresses the
fact that y-scaling gives us information on the initial momentum
distribution of the constituents. We have alsc compared the
result obtained in the general case with that for the harmonic

oscillator, for which no semi-classical approximation was needed. .

.20,

Finally, in section IV we have analysed the

numerical approach to scaling for two specific examples., Based
on both of them we can see that y=-scaling is reached more rapidly

t 1an the non-relativistic version of Bjorken scaling.
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As a matter of fact, in the non-relativistic case we have

"an energy-shell, given by the condition: .energy = (momentym)?/2mass.

This approximation is eguivalent to supposing that, in the

interval -c<x<c, the excited level n  is identical to

the excited level of a simmetric sguare well, which is

infinite for x| >e.

FIGURE

CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Handbag diagram for deep inelastic electron-nucleon

scattering.

The plot shows the structure function VW versus X
for the harmonic oscillator. The curves have been
obtained for the following values of q2/20% :

——— 10 .

50 ¢ ——500 .

The plot shows the structure function oW versus y/o,
for the harmonic oscillator. The curves habe been
obtained for the following values of g2/2a® :

—~+— 10; — 50; --- 500,

The plot shows the structure function VW versus x
in the case of the infinite sguare well potential.

The curves have been obtained for the following values

of ag/m 1 — +— 10 ; 56 ; =--- 200.

The same as Fig. 4 but for the structure function gW

versus ay .
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