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" ABSTRACT

With the 6nly agsumption that the up-down guark masé
splitting is a weak—electromagnétic radiatiﬁe effect, the proton-
neutron mass difference is shown to be finite. This happens in
a new representation where the mass difference can be completely
calculated (ne unknown terms} in very good agreement with

experiment.

..

_ihe.maiﬁ purpose'oﬁ the presént latter -is to announce -
{and show) that a consistent picture is emmerging in which the
proton—-neutron mass difference A==mpbmn is'fiﬁite, calculable
and in agreement with the experimental wvalue. It is finite in a
new representation where the coefficient of the divergent term
can be shown to vanish. &nd it is completely calculable under
the (mild?) assumption that the up-down guark mass spliﬁting.is
due to the electroweak interaction radiative corrections. After
that, a very good result follows.

The electromagnetic contribution to A  is given by

N .
" (k| k) .
b, = 1o | 2K L, (1)
Aq2m? 0 k® o+ e _ - . o

i e . Sy L :
in term of T g (Tuv Tuv) , ‘where Tuv is the forward
Compton amplitude for an off-shell phdton with komentum ku
scattering off a proton (neutron) with a momentum pul.

The standard procedure is, following CottinghamB, to

Wick-rotate Bg. (1) and obtain

. d*k_- .
A, = 2 E r(-g?,iv) _ (2)
el _(2_”)3- Qz : Lo

where d“kﬁ is the volume element in Euclidean moéentum-épace
arrived at by the rotation pk/M = v + v exp(in/2) = iv , and
0% = v? +K* with K = §§§ . The last relations hold, of course,
in the nucleon rest frame. . .
In the framework of a-unified electroweak Eheory we
will also havé.ébnfributidns-resémbiing—Eé. {2) but contaiﬁing
the amplitudes‘for nucleon-intermediate weak bosons ééétteriﬁé

(& Asg will be shown later on- Aeﬂ' and A are

weak)' weak
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separately. convergent and since- Aﬁeak'<£'ﬂeﬂsi' A = Aez is a
very . goad:approximation:.

‘For: T in Eg. (2) one usually writes a ‘dispersion relation

B . .2 {m Ay . . 2 .2 = d‘\J.'\J.'Wz
T-Q7,av) = P 4 B [8 Wl-v'W] s204v) L
: ST e il TR v 42

QM

where Tsu'.is-an.unknown subtraction term and the Wi =
=:W§—p-W§'n are the customary structure functions which can

be divided_aécording*to

W, o= WO 4wt . _ (4)

with: Wco containing. the contribution from coherent scattering

(essentially Born: terms): while: the _Win' are-related to the
incoherent_scatte:ing-ofrthg;gomgonentgtoﬁ:the;nuchaxx(esgﬂnially

deep inelastic scattering). . Thus, T can also be written as
T = T+ T 4T . (5}

I know. that more tham a few readers are impaciently
asking themselves: what about the up—down quark mass difference
contribution to A7 I am assumlng that the up-down quark
spllttlng orxglnates from electroweak radlatlve corrections and
as Such its contrlbutlon to A& is contalned in the b anplitude

Su

{and part also 90531bly in TVT) .

One of: the problems with the Cottlngham representation
is that the TI contrlbutlonxleads.to.the.lqgarlthmlcally

dlvergent part _
i - = .
o 2 )
Al < —-3:131[ 29 J.dx Fa(0% %) L e
a?
Q )

de

where ¥; 1is the deep inelastic non-singlet structure function
F, = F; P=Fo ™ . 1In order to arrive at Eg. (5) the Callan~
GrOSS4_relation 2xF, = F, has been usedz.

One of mine mairn tasks in the present paper consists
in showing that there are other representations for A in which
the coefficient of the divergent part in Ath vanishes. In
order to derive new representations for A let us rotate the
time like integraticu.') path in Eq. (1) according to v-+vexpil[(n/2)-6]

with B8 <<l obtaining

a @’k av{l-ig) TR, (1+8)V]
o (27)? [ C(L =~ 2ig)v? +8?] '
which has to be independent of B. The vanishing of the

derivative of this expression with respect to 8 leads, in the

8+0 limit, to

A = 20 a’k dv . 3T , 20 4’k dv R*T(R,iv) T
(211')3 QZ avz (2TF)3 Qk

Here we see that the v-independent components of T (as in the
subtraction function TSu for instance) can only cdntribute
to the second term in the right hand side of Eg. (8).

For integrals of the type

(99

. [ % av (&%) TR,V
1’1

e @k dv (1-B) (&%) T, (i+8)]
1
[v? KZ+Uﬂn+ J

[(2-218)v? + g2]*E

a similar procedure yields

a'k av(xk)® T(x,iv) _ 2 d’k vk , ar
(%)L T TzntD) o)L Y
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DL 1k, iv)

2(n+l) | A% avik®) L

2
{2n+l) Q%)
Applying Bg. (L0} N times to Eg. {9) we obtain
N

2a a’k av { 2 AT n! [21{2]“
b= —=—0 | 2= W = ] e [ 2]
(21)° J 0? gv? nmo (2RFDIEL L2

+

_(ame2yrr  (gE)L
T(2m+1) 1T

T(K,i“)} . (11}
Now,.the v-independent components in T have been pushed to the
last (N+1) term in Eg. (11)}. After a trivial angular integration

this equation can be rewritten as

o0 1

_2 ag? /—z'{ l:aT(-Qz,i\J)} () 1t 1"
b == . dy 1-y YZ z 0T +
2 [ Q? J av? v=y() n=0 (2rtl)
Q Q
+ 5%2%%?%§? S T{-erin)} . (12)

where the variable y = v/0 was introduced.
If the last term in Eg. (ll) were to drop cut in the
N>« 1limit, we would obtain
@ Q

_o a0t | e o dTiegi,iv) T (2n)!
g o’ J o? J v av? n£0 (2n+1)
o (=]

o (1-viQh)"
(13)

This representation for the mass shift was already presented in
Ref. {2). Since it does contain a logarithmically divergent
part of the type of Eq. (6), it wés assumed that something like
the Weinberg-'t I_-IooftS mechanism was in opefation intreoducing

- a regulating factor. Another problem [ﬁhich I did not notice in
Ref. (2)] is that the last term in Eq. (11) [or BEq. (12)] does

6.
not vanish in the Noeo limit.-;In fact, after the iﬁtegrafion

in y this term is given by

oo

o (N+3/2) JdQ

with 0sgy <1 and stubbornly étaying alive in the N-+® limit.
' " The problems mentioned above: the non—vahiéhing of the

term containing T {(instead of dF/3v%) and the-logarithmic

dive;gence, can both be sclved at the same time if the folldwiﬁg

way. Let us subtract Eg. (8) from twice Bg.(7) with g=0 cbtaining

3 2 ) ‘
A= 2% GRAVYT )92 asav?) T(x,iv) . (15)

(2my® Q"

The logarithmic divergence comes from the incoherent (deep
inelastic) part of T in Eq. (3) when inserted into Eé; (15).
As long as the Callan-Gross relation holds (as it seems Ed bé).:
the first integral in Eg., {3) is zerc. Thus, we are left with

the incoherent amplitude

In

2 2
T (-0, qvy = 2@ 20 )

o

. (16)
vIT o P

o /oM

Using v? =0?-K* and v'=0%/2Mx it is easy to see that
g

o0
J av' vt Wl

v'2 >v? as long as Q:’ZM . 8o, 'in order to study the high 0

behavior we are allowed to expand Eq.{l6) in powers-of (v/v')? as

1

in . _AM{Q%+2v?) 4M? %2
[T (—Qz’l\)):IQ>2M = —"-—-—u dx F, (Q X) _"“_4 +
Q ] Q
+ [2M’“’]+--]-—Tm £ P .17
o* B : SRR

with




Sy
. » 1
24 . i .
pIf 2 AM(Q +2V7) J dx F5 (0%,X) ; T}:I,n = o gn (18)
Qiﬁ

o]

i.e., the first term in the squared bracket expansion of Eg.(17)

is contained in Tin while the rest of the expansion gives T;n.
When TIn_ is inserted in the Cottingham representation

Bq.(21], 7

while T;:,n gives a finite contribution. With Eg.(15) the

is the culprit for the logarithmic divergence,

situation is much better. It is easy to see that when inserted
into Eqg. (15}, Tin_ yields the logarithmic divergence .JdQZ/Q2

multiplied by the coefficient
1
[dy Yi-y? (2y® -1)¥%= o, (19)
2 S . :
where, again y=v/Q . Then, instead of Eq.(15) we are
effectively left with

.r 3 2
o= 20 . d’kdvv (1-923/3\:2)[TS“+TC°+TI'“1 . (20)

(2zm)* ] " F

which is finite.
Since we still.do not know what TSu(_Qz) is, we have
to transform Eg.(20) into a more convenient expression. In
order to do that let us consider the integrals
Ek(3p+1IvavE) " T[K, (1+8)V]
[(1-2i8)v? + K222

a’kdwe? (K2
fui-g2)#in

g =0 J T(R,V) ==i [ , 21)

where, as before, the second form. follows from the first after
a rotation v->vexpi[(n/2)-8} with 8<<1 . &also as before,
the vanishing of the B derivative leads to a useful relation, i.e.,

{

Crav kH e 2 [dBkdv'uZ(Kz)n NEI 1)) akawv? (®?) 1L
@) Qnd)J %) 2 w2 Qnﬂ)I (Qt)3

;
(22}

8.

Applying Eg. (22) (N+l1) times to Eq. (20) we obtain

L] o] o, In _
HUT+T) [ N .
h= e 99y /e I TE L o (l_vz/gz)n__l]
u e av? Q* =0 L
[s] .
@rea)ir V2 (v Co In:] }
HAPTES R ) [1 ;;] LA + T . (23)

Now the last term, the only one that might coatain v—independent

parts as in e , is

a (N +3/2) maQ1 1.
Br TNIITNe3T J "52_ T(-0"/i vy Q) (24}

.
vanishing in the N-« limit and living us with the representation

. e} Co n :
5 BT 410 o 2
cn | L ey L G L ) g
m Q2 av? ! n=0 o o*/ _

e} o]

or, rearranging term,

o Q Co In
a(T + T)
A= |0 sy e g, L TR
T Q2 3v?
a o . " n
_ _wPl v (2n+2) £t v?
X {l 2[1 QZ} b — Z W [l - — - (26)

Q% n=1
The summation term in this equation can still be rearranged

according to

v:i§ (2n+2)11 [ vz] _ 8[ vz] T 2n)i AL
o n£1 TIn+D) Tt |t o) T3t Pry A n£2 (2o 17 [l“Q_z}
{(27)
This allows us to rewrite Egq. (26) as
* o co In -
A=%[szquz av ST+ T 7 (2n}!1“ [1—‘)—2—}Jn )
T ok av? neg. t2n+l) it o2
o .
o ° (28)
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which is exactly the same as Eg.(13) already presented in Ref,{2),
except for the fact that the infinity producing Tin does not

appear new. Thus, the representation (27) is finite, does not

depend on the unknown TSu and can be calculated completely. The

o (A(l)) and the leading contribution

6

contribution to A from T

(2)

from t;n (A } were already given in Ref. (2} as

A o o136 mev , o) - S o.0amev (29)

adding up to a theoxetical proton-nevtron mass difference of
A=-1.40MeV to be compared with the experimental A =~ 1.29 MeV.
A comparison of this work with that of Ref. (2) might
Vbe in order. There, I presented the representation (13) for A
which does not depend on the unkneown TSu but still contains
the logarithmic divergence. In models exhibiting the Weinberg-

't Hooft mechanism a regulating factor tames that divergence and,

in particular, the Tin term contributes to A with (.09 MeV.
Thus, in Ref. (2) the much better value A= -1.27 MeV was
obtained.

The results of the present paper are much more general.
It is shown that in representations like {28) obtained from
Eg.(15), A is finite since the coefficient of the logarithmically
divergent term vanishes?. Thus, there is no need to invoke
special features like the Weinberg-'t Hooft mechanism which only
holds in certain models. Except for the assumption that the
up-down quark mass splitting originates from electroweak
radiative-corréctions, the results of the present work are model

independent.

.10,

FOOTNOTES AND REFERENCES

1 - The parametrizations, normalizations etc. used for Tuv as
well as other conventions are as in Ref. (2) where citations
to previous work are also given,

2 - I. Kimel, Phys. Rev. D27, 2129(1983).

3 - W.N. Cottingham, Ann. Phys. (N.Y.) 25, 424 (1963).

4 - €. Callan and D.J. Gross, Phys. Rev. Letters 22, 156 (1969).

5 - 5. Weinberg, Phys. Rev. Letters 2%, 388 (1972);

G. 't Hooft, Mucl. Phys. B35, 167 (1971).

6 ~ For deﬁails of the caiculation see Ref. (2} .

7 - This is to be contrasted with calculations based on the
Cottingham formula where the logarithmic divergence is even
immune to the possible softening expected from asymptotic
freedom, See G.B. West, invited talk in Recent Develcpments
in High Energy Physics, Orbis Scientiae 1980, eds. A.
Perimutter and L.F. Scott (Plenum Press, N.¥Y. 1980); and

J. Kiskis and G.B. West, Phys. Rev. Lett. 45, 773 (1980).




