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1. INTRODUCTION -

Questions relating tu- phase transitions in the wvery
early universe have attracted a great deal of attention- racently.
This ‘interest arouse chiefly because of the recent afforts aiming
at the unification of the theories which ars beliaved to account
.For the basic-FﬁrCEs of nature—-namely, Qu;ntum Chromodynamics [l];
ﬁ%ich dascribés the strong intgréctiohs, and ‘the Weinberg-Salam—
Glashow. model [23 for the slactroweak forces - into a sing;a Grand
Unified Thaory.{3,ﬂ] . Eandidatas'Fnr such a.theory must - much’
as the wginberg—Salag—Glashow model'itssif.—_undergu a.spontaneous
- symmetry breakdown in- order to rapfnduce the "low"™ snergy phenom-—

enology observed in the laboratory.

It is a general featurs of theories with a symmetry

which is spontansausly broken at zero temperature that, for tempe—.

raturas above a critical value, th;s.aymﬁatry' is restored [5].

~ The physical system under study‘mill thus possibly exist in one of
two different phases: the unbroken and the broken-symmetry phases.
Since £ha tamparatuge at the very early stages of ‘the universe
‘was exfremely'high-nne aspects that phase transitions would ocour
as the universe. gets older and cooler. Their study. should play a
relavant rale.in understanding many aspects of aur-universe such
as it is today. Among these ws shall'meqtion-ths preéent dansity
.oF monopoles, walls and strings which are gxpected i have been
produced in these phase transitions,[&] and the so-called flat-
ness and harizon preblems which might: be understood if  the conjec

ture that the upiverse has undergone a supercoeling is correctf?].

The most popular way.of studying such phase trénsi
tions is the analysis of the effective potential [?J a; finite %em
peratures. Figure (1) shows the typical bshaviour of the sffecti-
ve potential af a gauge theory as the temperature is lowered. The
phase transition pictured is a first-order aone. The picture we
have of the evelution of the system is the follewing {?J: at high
_tempsratures, the symmatry is unbroken; the corresponding effec—

tive potential is. shown in fig.(la). As the temperature is lowered,

“the potential acquires local winima for values of the fisld diffe—

rent from. zero (Fig.{1b))}.Therewill be a critical value. of tha tem

perature for which these local minima wiil be degenerate with the

symmetric minimum (fig.{le)); and for still lower temparaturas-tﬁey
will have lower ensrgy,.thus rendering the symmetric vacuum metas-—

table (fig.(1d}}.

Two mechanisms compate pu drive the system From the
symmetric, false vacuum, ta .the aéymmatric real vacuum. Thefe.are,
an the one hand, the classical thermal Fiuctuatinns, and, On the
other, the ﬁuantum tunneling thruﬁgh tha barrier separat;ng_the
two vacua. Tha balance between these two mechanisms will depeand
upon the details of the barrisr. When the system begins to overcome
the barrier, a bubbiz of resl vacuum will form. inside the False
vacuum {9]. Radiation will uccagionally fill this bubblg, if not
all of the ensrgy difference betwesn the two vacua goes into axpand

ing its wall,

In this work we will study a model which exhibits
a phase.transition having the sams features of the more realistic
models described by the effective potential approach. Besidas
finding the bounce solution {which is relevant for the cémputation

of the decay rate af the false vacuum).,, we will be able to compu—



te also. the detarminant associated with the fluctuations around
the bounce in fhé two gxtreme situations of very high and vary
iow tambe:at&res. We will get in this way a closed expression
for the decay rate due to tharmal fEuctuations and tunneling.

The paper is organized as Follows. In secktion II,
we praesent a brief review of the Functional Integration approach,
satting the stage for the following sections. In section III we
introduce the model and study its decay at zero temperature (sug
sectian a); its subsection b gives an account of the finite—tem—
perature decay amplitude of the False vacuum and finally a summa-—
ry {Section. I¥) closes the main body of the paper. Im an Appendix
we. apply thae formalisw of the generalized zeta function for re-

gularizing and computing the pre-exponentail- facter.

11, FUNCTIONAL INTEGRATION FORMALISM

We miii bfiéfly review in this seqtiun.tha func-
tinnéi inteératiun Fﬁrmalism?appliad to Quantum Field Thearies
at’ finite tamparatura'and with a single scalar fiald [;0].

o To define a field theory at finite temperature the
partition functiun as;oéiatad with its canonical ensemble must be

spacified. The partitien Function is Qiuen by
Tt
F =Tr e (1)
whare _is the inverse of the temperatura and H the Hamiltonian
{(units are such that o=k=l). We can writs this partition Function

in the Feynman path-integral reprasentation [ii]; it is a func-

tional integral over all periodic (antiperindic for Fermions)field

configurations with period ]g , with the sxponantial of minus

‘the Eucl:dean action as the integrand*. For models invelving jusﬁ

one scalar field we have

¢ o afmee "

Here N - is a normalization factor, to be defined later, and SE

is abtainad from the expression for the Euclidean actiang

Sl8]= (da [4(P+ 479+ V[4)) o

through the formal substitution l‘fhfh Z, with the understand=-

ing that the Field (p obeys ‘the periodic boundary conditian

d)(O)T) = 45(‘15#){) ' 4.

and that the integral in {3} extends fram {0 to T= i . We

thus write

S
SO el 22 460 ]

]

* For the sake of conveniences, we shall adopt a terminolegy which
is quite widespread, although inaccurata: the T"Euclidean action¥
defined in eq.(5) below is not really. an "Euclidean® objact,
What we are in fact doing in the case of finite temperaturs is
to work it the Matsubara representation LIZ}, where temparatura -
replaces time out from the start as the relevant parameter in
following the evelution of physical abservables,



I'n thé semiclassical limit, where -ﬁ -0 N the
dominant -contribution to the partitian function in {2} will come
Fram those field configurations which miniwmize the classical Eu-
clidean action and therefore obey the fuler-bagrange equations
of motion,

24 = V0T 3

% 1 Ll - ] [+

t=i
where V)’% and (bc must satisfy the boundary condition (4).
Moreover, for high temperatures, the integrand in (5) is peaked
arﬂund statiﬁ (i.e.-, G -independent) solutions, since tﬁe term
P will otherwise lead to much: larger values faor
ES [ib So, the configurations relevant in the semiclassi-

cal limit must verify
2 A
V ¢ = \' . 7
3 < .
and the classical action will be given by

- 3 2152 (3
Se = h Pl LGP NI} = pS?

mhére 3(3) is the three-dimensional classical action. Selutions
to the classical equations of metion such that Q(IL?- too) =¢;
whare ¢F is the field configuration which correspands to a
False or metastable vacuum as discussed in the Introduction, are
called "bourices" [13]. .

The r:ﬁrrecti_cms to the partition Function arising

from fluctuations around the classical solutions may be evaluated

hy making & functional Taylor e.xpan.siun of SE in ‘z: Ct’ - ¢c

If we keep the guadratic t_erm in ? only (there is no term li-
near in VZ’ because Ci)c is a soclution .tm the equaticn of motinn)
SS /Sd) =D }, then the resulting expression for Z involves

Z=ne _smlh g%? ex[:['—gd‘lzl_-—},,a + L Ylj[‘k ])Z}
= ll’dei-i(' E.:g + \]" [d) ] ) ch/‘b‘, (9

For finite temperature, 'L" ""h C y theftime" integral goes

om0 w B e 700,3)= g(0p,T)

Te compute the functional integral (or, equivalen

tly, the determinant) in (%), ws choose a sat of orthonormalized

eigenfunctians ? (1")1) of the operator —L‘ aL .\_\}'}_¢ -’ such
n
that

h -, L
(*4 9&' + \]“‘_éc] )?‘1 (1_,.;1"')-: .en IZ“ (1,'” i") {10)

and then make the expansion

‘2 () = %, Qo ‘lﬂ(]') (11}

The measurs of the functicnal integral betomes then

q f.w\o-n _ {12)
n
whare is a measure-normalizing factor., Integratien over the

¥ will lead to the following expression for the partition
o,

function



Sagy - Setfy

f.#hfrlg\*d“weJ e
1] (i 7S

But not all eigenvalues of the aperator

i

it

— l;:a,_ &-\l"[d)]ara positive-definite. In fact, there is a set
of zero eigenmodes Fﬂr (PE nentrivial {that is, not constant).
Thay are tha Functlaﬂs 2- —-9 (bc . These .zaro exggnvalues
reflect the space {or space-time at zero temperature} translation
invariance of the solutions to the eguation of motion (6)}. To take
into account thie invariante we Lntegrate over ail passible luoca-
tions of the bounce, thus gafting a volume facter V {or YT at

zaro temperature}. This is of course eguivalent to integrating
gver tﬁe Q4 which corresponds to the zero mode whils dropping
the zera eigenvalue From tha ﬁetarminant, and multiplying the
Flnal result by a Factnr rL(ﬁké) for- sach zero mode in order to
match the normalizations of d‘{_ and Cia_,,, .

’ this is not all, hnwauer. As the zero quas will have
a node at the point where 9 (b =0 , they are not tha lowast-
sigenvalue solutions: the aperator —L.a +\’ Ld)]has at least
one negative eigenvalue. This sxtuatlan slgqals the existence af

a matastable state. The imaginary part of the functional integral

{2)y in the presence of this metastable state is given by [14 ]

Int® S0P LN TOD «qsm o g

whare the prime indicates that the zero egigenvalues must be omit-
ted farm :he determinant. 7o get the final answer, we must still
sum over all possible configurations which are relevant in the
decay of the false wvacuum, that is bto say, over all configurations
containing any arbitrary number of bounces. This sum may be easily
done in the dilute-gas approximation, where the bounges are sup-
posed to be Far apart and non-overlapping. The important result

is that

IE ~J Q,'J(F (b Jm '-Zo,,e m,me) | (1s).

The decay probability of the metazstable vacuum per

unit time per unit volume will then be given by L}4,i5]

1= JderEot AT s Sl .o

where a repormalization constant has been absorbed in N.

IIT. THE MODEL

Consider a model where the potential depends-bn tha
temperature in the way described in the Introduction. Such a situa

tion might be simulated by taking

\ [d),TJ = “ﬁ"”zd’z + B0 O I 912.4— A ¢ (an
o :



and by choosing- an appropriate function B(T}. At high tempera-
turas, the potential should look like that depicted in fig.{2a).
For T lower than a critical temperature T_ , and for B{T)
adequately chosen, we have the case shown in fig.(2b). For B{T)=0,
the ground. state of the system corresponds Lo the field configura
 tion d_): Q.

' Ifi order to compute the decay rate of the metastable
vacuum we shall make twe approximations. First, we assume that
after the system has reached the situatinn_ in which we are inte-
rested, which is that depicted in fig.{2h), the dependence of
B{T)} on the temperature is sufficiently weak %o be neglected.This

assumption is inessential but it simplifigs. the computations; the

potential will have in this case the same form as the effective pg

tential in some two-dimensional wodels [16].

. Secondly, since the decay of the False vacuum is
controlled, in the WKB approximation, by the .potential barrier, we
neglect the 7\¢[' term in {17}. A similar approximation made by
Witten in ref. [17] gives results which are in good agreesment with
nurierical computations [lB].

. Qur model will thus be given by the Bialynicki-Bi-

rula-Micielsky patential [19],
1
V[g1= ¢ (- W8 as

a) -ZERD TEMPERATURE

The potential defined in the equation (18) has a

maximum for ¢1‘1 = C. with value

\![CPH] = e ' s

Z ; )

It has two zeroes, at (i):o and at
4= o

and the Euclidean eguation of mdtion reads -

(91 + 7 )C,b+ mc,;.?,"( ) =0 e
At zero temperature, we will lgok for a solution
of this squation which has an 0{4} symmetry, so that the fielid
will be a function of the variable F"('L +1 )il anly. This
solution will have no nodes, so -that we axpec_t it to lead to the.
lowest action among the possible non-trivial snlutiuns.or‘ (20}

[13]. Under this assumption, eguation {21} becomes

dﬁb wi A . w20 In ( ) — O (22)
et e dp | |
where we allowed the dimension of space-tims %o .be fi. We are in—

terested in a solution with the following boundary conditicns:

(P(F:*-CO)_:O - (23

which means that the particle is sitting in the false vacuum ¢=O
at ()-_-_- +0os (this is required of the solution is to have Finite

action), and

= O (24)

do
4f



The valug of the field at this point is §u;:h that ¢F'é ¢(O)(¢_r
where (‘ff)"‘ is the configuration which cor'rsspﬁ.nds to tha "true"
vacuum, and (b,_. that currespunding, to the false or metastable
ane. If we interpret 4) as position and P as time, then the
equation {22} with the boundary conditions (23) and {24) can be
viewsd as the asquation of motion of a classical particle under
the action of the potential \}- -""¢1 (L eﬂi )and a dissipative
forcae n-d dsé E.U] this partlcle is relaased at the point
({)(o} at the instant f‘ = © . § then it siides douwn the potential

and,. slowing: down because of the dissipative. force, it rea’cﬁe'z's (b.-:o

at t’:w .

. The Functiom: B ' _
- ~f & 0z hi% -
(bﬂ = .(‘. CxP(.Emff * 5—) | (25)

is a salutign of this problem. The action for this bounce is

it {288+ 4]

— S (26)

ch(O) = ¢ E‘»XP(h/Z) _ | & (27)

w
3 -f)e
we have \“_d%_] = - 91—-—12,1— mlCz . The difference betwean the

energy densities of the two vacua is
-4 to2.l
Ae = ——¢&m ¢ (28}

The bounce in this problem is gaussian; this situation is te be
compared with the one studied by Coleoman [l3], where tha false
and the true vacua are separated by a small enerqy difference. In
the latter case, thse bounce is canstant .in F within a region of
radius R and drops exponsntially to zero outside it.

In order to compute the determinant of the opsra-
tor -~ -Elal;l'\' \j“[(k,], with the second decivative of the potential

(1}

\J“Ech] = m? ["ﬂx f'z - (“*Z)] (29)

we must solve the SchrBdinger equation for the harmonic ascilla-

tor in n dimensions,

R -_9—%. s n 2 _ 1
B L LT N W

The eigenvalues 6,1&’} depend on n intesger guantum numbsrs

ot = G-

There is a single negative eigenvalue, &

joo-r o 7 €

computed with the technique of the generalized zeta functien.Ths

00--- 0 » and n zero

algenvalues, € s ete. The determinant may now be

Ho-—- o

details are given in the Appendix.



The decay rate for n=4 can then be read fromt eq.

(18} :
| ._ _Selh
7 = A (Sce)z e / (32)

where

A= f\] ¢ X.’P (—ii- &?:(Oﬁ): | (33)

) and the measure-nocrmalizing factor P has been -defined so as to
ahsorb the factor ZW* in the sigenvalues as well as the 25#15

cuming from ths gaussian integration.

b} FINITE TEMPERATURE

We shall now examine the behavicur of the model de
fined in the beginning of this section at finite temperature. We
must look for soivtions of the equation of motion {21) which are
périadic in ‘14 with period T’)P . Leat s try an ansatz exhibit-
ing an 0(3) symmetry:

..'mz'i"'/z

d)(h)‘") = Cf@ € (34)

. 3 _
with 2z -], 'Lz' . The. function S(x,‘): is periodic in X, and
=1 -

-

satisfies

@

_2£ —-. mz. 5"'&1 2 (35}
- {(3-tf?)

The problem is then réduced to the classical-mecha

nical problem of a particle of unit mass méuing.in the potential
2 b
U(g) = - ‘f,zn_fl (lq- eng ) _ {36}

with & its position.

The action is thus given by

,, P |
L1 a2 1 7rdEN2
S, = 70 Lda, [L(45) - U(5) ¥
n . X, '
[+]
The sclutiuns_tu {35) are charactefized by a2 num-—
ber E, which is a "constant of motion™: it is in fact the ensrgy

of the classical particle in the mechanical analogy,

df \2 :
=%(a;§)+0(§) . - 38)

and it is bounded:

3
wre :
- mECE<LO SR

The upper bound corresponds to the solution with infinitg period
{zero-temperature case), while £E= -E%?f for the solution with
periocd zere (infinite temperature). We can invert the equatiaon
(38) and integrate to have the period as a functien of anergy.

One finds



.15 le

o
df
hpey=2) ——=y =
, S LZ(E—U)] IR : 5@ L. o
. | | Sce-:" —-_F' = 2 e ‘-Y‘n——’hﬁ (44

_ Lo D{:F .

-

z ' —
[-m2§ (i - f%£2)+ _.C_}jlz mation, we musi precise what "high temperature" means. To do so
; oy |
"

Now to Fix the domain of validity of this approxi-

let us in\reétigate the behaviour of the system when the function

3z
f oscillates very near its minimum {: [ it Expanding the po

tential around this point, we find

.7 : ~ .
where { and f are the turning points for a particle with 2 3 7
° ¥ U(.g) o oW (—e + ij (45)
anergy £ moving in the potential (36); they are the pasitive roots - 2 )
. 3,
of the squation . where g‘-: f—el . We then paramseirize the enargy £ as

(46}

U(_g)_—: E _. | (41) E-—-'—-mz_e-z(iné)
To- have the period, put, §‘=’D , g" :’{(P) and then just in- e

vert the equation (40},

with & very small for small oscillations around the minimum of

the potential. Th fod P(.e will be a aximately ind

In the limit of very high temperature the’ decay P a & per -h ) ¢ sppraximately indepan
. . dent of & (because the oscillations are almest harmenic)} and
will be controlled by the static bounces.. The classical analogy ;

corresponds to a particle sitting at the bottom of the potential ﬁ(e) ~ ‘Tf J 3
' - {47)
{36}. The statie solutiom to eq. (35} is c . : _ ‘t_'. m

g("-&) : e3/2 h : (42) . This expression, w_ith ﬁﬂj/f y Fixes the meaning

of "high temperature". The tunneling mechanism dominates the decay

and the field [_l[) 1) has the  form ) ’ X
( m2 2 amplitude when T<<E%n. . For T?,J m only the thermal fluc-
3 =™ _ ) ST
. —_— e e : tuations given by the static sclution are relevant.
. for temperatures. near Em y the function Ff is
The classical actior is given in this limit b;_f the squations {(8) , given by n’{’z—
13
and (25) with - n=3 or equivalently by {37) with d.;___o and U:‘- -me,
b, ' ‘ 2

We have




. L7

g(x,,,); & [i + -F Sm (c;u)z,t -i——;—f)] e

with W= miZ . .
Now ta have the pre-exponential factor, we must
'"’g da, 80’«31 2 o ‘2

ccumpute

(49)

{@pe”

whare B is the operator

i -
~ [, 88 +m (mir2 -5) —J'm e’ sin (C»Jz,'+ -12!) (50)
=

Thezqﬁependant part of this operator is related to Mathiauts

aquaf;iﬁn . In the static case where &~ and the time deri-

vative is droppad in the uperator, its gigenvalues are given by

Eopn = Zm“‘(’&+e+m -.4) (51)

The spectrum has three zero and one negative eigenvaluas, as
should be expected. The imaginary part of the free-energy dansi-
ty is St.a)/
) - i
4 (5

5
The.é’/fin-the pre—exponential Pactor comes about because of the

normalization of the zero-mode eingenfunctions. The factor A is

given by

p =N Gt exp ($46)

18 .

é; (CO - 3. here taken far thg three—dimensional oscillator,
has been calculated in the Appendix. We thus finally end up with

the decay probability Llu,m,ls] :

g AT (S ST
- H -1;]—; e S s

The exponential factor in {54) above can be writ-
ten in terms of the height H and. the width W of the potential,

dafined by egs. (19) and_(éﬂ).résﬁectivély:
\Jl;{pf|] i '":f_'
Jod oo o e

One gets

. 1 L
F ~ E‘XF\. @‘e / 4_:]'1;2 i (56)

IV. CONCLUSIONS.

_ sz Hﬁve #fuﬁia& in this éaper kﬁé:tﬁﬁn;linéﬂpfubéa
ties of a system for which it is possiblertu find exact solutions,
Explicit expressions are given for the static bounce which exhibi
ts an 6(3) symmetry and is relevant in the high-temparéture
1imit, as well as for the 0(4)-symmetric solution which controls

the rero-temperature behaviour of the decay rate. At nigh termpera
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ture, the decay is purely due to thermal fluctuations as should
ACKNOWE EDGEMENTS

be expected.

One very interesting feature of the model is that

it allows an exact calecuelation of the determinant in both the It is a pleasure to acknowledge fruitful disgus-—
zero~temperaturs, Four—-dimensional case, and the high-temperature sion with D.J.P.Ebali‘ A.A.Natale, B.M.Pimentel and I.Ventura.

Limit. In this limit the determinant goes: as

~ exp (~'é’(o))'T 60,

Another:guticaabla»Faatgre of the model studied
in this work is the stfqng.debaﬁdeﬁﬁa of the decay rate on the
height and specially the width of the potential (eq.(56))This
Peature. is net shared by other models which ssem to imply that the
height and: the widht do not play é sigﬁificant role in the decay
process. Alsoc, an importént_lasgan to be learnsd fFrom. the mﬁdel
is that the intuition gqiggd.in'NuﬁfrBlativistic Quantum Mechanics,
where the decay is éunffdlled by the area under the potential
_barrier, cannot be generalized to Quantum Fisld Theory.

We believe that the model.discusssd_in'this paper
might play a reléuant role in understanding some important aspects

of realistic. thearies and of cdSmolagical phase transitions.’




APPENGIX

In this appendix we apply the technigque of genera-

iized zeta functions }:20] to the computation of the functionsl

‘detarminant for the n-dimensional {in Euclidean space-time)} har-

manic oseillator.

The determinant of an operator is the product of
itsd eigenvalues, _lui"ti:ch in general diverges. The generalized-zeta-—
fumction procedure for this determinant consists in defining a
functian t'(s‘) which is the sum of the inverse powars of the
eigenvalues,

. _ 5
é, & = [.e&, (a1}
i (¢
and then analytically continuing .it down to  s=8, which is in ge-
neral pussibla.. .

The iaverse of the sqguare root of the determinant
is easily shown to be formally identical to CKP( -é»é"(o)) M
where é"(o)is the derivative of é.CS) at the point S=¢0 . In
the é‘ ~function method, we taks this formal identity as a def‘iﬁi
tion. The series {Al) must not contain, of course, negative or zero
eigenvalues.

With the aid of a table of integral transforms, we

. -5
find that the inverse Mellin transform of {’l(s) ey, is

_ - €,

Z‘q (0() = € ' {az)

We thus have

w
e“\

N - __-f—___, '5_1' JERR-';
6 &) de « L.

(a3)
o

The eigenvalues for the harmonic oscillator are
those given by the formula (31) ( remember the factar 4w
has been absorbed in the measure of the functianal”integral). En

this case the sum under the integral sign in {A3} above is

L? e-— O‘{eii-t,_ -+ ?.n —i)

_ _ (ad)

where the prime means that the negative and zero eigenvaluass are
not included; this sum reduces to a preduct of n  identic geo-

metric progressions. We have then:

.i G4 o o :
C(s)= e gdo( « ;_F:?; —een | s
) ) (1-e7)

This integral defines the gensralized zeta func-
tion For g{e (_S))ﬂ , but this function is meromorphic and may be

cantinued faor %(5)<n .

Te express &.(5) as a single infinite series of
. ] -
inverse powers, develop (i-e"d‘) in a Taylor series of £ =

then integrate term by term. The result is:

Lo =L



This sum converges for R&&Q)'ﬂ .

We now see that the generalized zata funcition for
the harmonic oscillater in p- dimgnsions may be given in terms
of Riemann's zeta funciion, éR(5) . for n=3, for example, ws

find: -

&)= -;:- [éa.(sf?.)* 5%&,,_(5-4)# éé.&(_s) ] @n

£ - LIS D] e

For the thHres-dimansisona¥ harmonic escillateor and

é-(O) = é—[tﬂﬁ-.ﬁ) + 64, (D) 484,(-4) 4.6&,2((;)]; a9

in the four-dimensional case..
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FIGURE CAPTIONS

Fig.l - 8ehaviocur of the effective potential as a Function of
temperature. At very I.1igh temperatures, the ground state
correspun.ds to d’):.o (2). Symmetry is unbroken. For low
temperatures, the true vacuum will be at C})#’.-O and sym—

metry will be spontaneously broken (d,z} (see text).

- Fig.2 — Potential for the model discussed in this paper (see text)
(2) is the high-temperature case, {b) shows the potential

at low temperatures.
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