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ABSTRACT

Within the context of an Abelian Gauge Theory,
wer discuss phase transition driven by the spontaneous generation
of domain walls. We calculate, semiclassically, the critical
temperature. The results are very close to those obtained via

the effective potential approach.

RESUMO

No contexto de uma Teoria de Geuge Abeliana, dis
cutimos transigac de fase induzida pela geragdo espontfinea de pa
redes de Bloch. Calculamosg, semiclassicamente, a temperatura
eritica. ©s resultados sao bastante proximos dagueles obtidos

pela técnica do potencial efetivo.
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I. INTRODUCTION

Field theoties whese symmetry is'breken
spontaneously.et zero temperature are expected to exhibit
symmetry restoration at high temperatures. One expects then
that the system will exhibit two phases: the symmetric and the
broken symmetry one (the symmetry is restored for temperatures
higher ‘than a critical T, ) Each phase of the system will
be characterized, as usual by an order parameter é§> such
that for the unbroken (@S) and broken symmetry (@b) phaeee

one has
< > = 0 {(T>T )
c

<0, > alT) # 0 (r <)

The order parameter for theoriee wtoseubreakdewn
of symmetry proceeds via the Higgs mechanism is the vacuum
expectation value of a scalar field.

One approach to the study of the phase transition
in Field Theory is based on the behavior of the effective
potential at finite temperature. By looking at the temperature
dependence of the effective potentialz’3 one can convince
oneself that a model whose symmetry is spontaneously broken
indeed exhibits two pheses. At high teméeraturee the symmetry
is manifest, whereas for T <c¢lose to zero the symmetry is
spontaneously broken. from the effectlve potential one can
alse compute, for instance, the critical temperature2'3;

An alternative to the study of symmetry

- 4
restoration and phase transition was proposed by Ventura

Within this scheme the symmetry‘restorationttakeS'place as the




3.
result of the condensation of topological defecfss. This
picture of the phase transition is similar to the one proposed
by Kosterli£z.and Thoulesss. Actually this is just an explicit
realization of such a phénomenoﬁ in Field Theozy.

B ..This paper is devoted to a discuséion of the
basic iﬁgréaients of such an alté;native to syﬁﬁetry restoration
wifhin.the.éontext 6f an_Abeiiaﬁ ééuée Theory.”.We.present the
model and tﬁe.functionai integrétidn formalism of such a Field
theoretical model at finite temperature in sectioﬁ II. Section
IIT is devoted to semiclaséicél aﬁproximations to the functional
integral and to the computation of the free energy in the
vacuum sector. In section IV we compute the free energy in the
kink sector. The picture of the phase transition and the
coﬁputation of the critical temperature in the high temperature
limit, are presented in section V. We end the paper with some

discussions in section VI.

II. ABELIAN GAUGE MODEL AT FINITE TEMPERATURE

We will study the phase transition occurring in

the abelian gauge model defined by the Lagrangian density

_ 1 nv s .

L=-3T, F + Ipuﬂ - ule*s] (2.1
where Du =3 = ieAu, Au is a gauge field, ¢ a complex scalar
field and ' ' ' o

Fuv = Bu Au - av Au _ . (2ﬁ2}

N
ulers] = Fr [ -2 @3 . 0 2l
m

4.

By introducing the field variables ¢ and £

o » oilE/a) g+a

h
(2.4)
px » o-l(E/3) B ta
V2
where a = n/vY}X and defining
B = A - >3 & (2.5)
u ¥ ea ‘u

cne gets the following expression for the Lagrangian density

(2.1)

__1 uv 1 2. u 1 u _ 2.2 _
L = 1 Fuv F + 5 e'a BuB + 3 (3u¢)(3 ¢) m?d
- rap? - % 3"+ % e’¢(p+2a)B BY . (2.6)

This Lagrangian density exhibits the well known phenomenon of
spontaneous breakdown of the Abelian gauge invariance via the
Higgs mechanism. The Euler-Lagrange eguations which follow

from (2.6) are
Ol 6 + 2m’¢ + 3%ap® + 24" - e (pva)p B = 0 (2.7)
2 2 o =
] B,ve’(pra)® B =0 . .(2.8)
In order to investigate the effects of finite

temperature we couple the aforementioned systems weakly. to a’

heat bath at temperature T . Under these conditions the



5.
thermodynamical properties of .such a System should be inferred

from the partition function which, in the functional integration

formalism, can be written as

2 .
. { -Ld'r[d3x LE[Bu,qb:{
Z = DBU 1 D¢ e o (2.9)
o

where 8 = 1/T , LE is the EBuclidean version of (2.6) and the

.sums in (2.9) are over field theoretical configuratiohs

satisfying periodic boundary conditions

Buto.x) = Bu(S'X)

{2.10) -

0(0,%) = ¢(8,%) .

III. SEMICLASSICAL APPROXIMATIONS - THE VACUUM SECTOR

Here we shall develop the basic sqheme-needed
for the computation of the partition function within a semi-
classical approximation. In order'to proceed in this way we
denote by ¢c and Bﬁ a classical solution of'théﬁEuclidean
version of eguaticn (2.7) and (2.8). The interesting classical
solutions for our purposes are those which do not depend on
time.

As usual we consider as the classical solution -

of (2.8} the trivial one

B = 0 . . (3.1)

6.

) 24 4 2 P z 3L )
-V ¢c + 2m ¢c + 3la¢c + l¢c B 0 . . £3.2)

Let us congider fluctuations around a solution of (2.2} and

{3.1), that is, take the field configuration
b =¢,+1n = ¢, —-a + n. Sl (3.3)
B =.B§ +hbo.=b - . , . L (3.4)

where we write '¢c = ¢o-a' for simplicity. After substituting

into (2.9} and keeping up to quadratic terms in the fluctuations

one can write an approximate expression for the partition

function.

855 [¢ -5 -s_[b ]
e £lo] Dn e el Db e B M (3.5)

n10,%)=n(8,%) bu(0;§)=bu(s,§}

3 wher§ SE[?O] ,_SE{n] and SE[bu] 'a;e.the Euclidean version

of
s'c'[%] - J a‘x {% _,(au'%) (3%0; - .u'[cr»o]} | .:(3.6)
s[n) =_{ a“x {% (2,m (a”ﬁ} -z [¢0]n2} (3.7)
S[’_’uj =-J a'x {- 3 £ +- 5 .e-ztbébubu} 3.8)
and

' r 2 _
uls,) H-Ll-mlz ¢2]- : (3.9)



The prime denctes differentiation with respect.to the argument

and we write fuv = aubu - aubu .
For the free energy” (F =:'-.T .fn Z): one gets
formally
P=sClp] +5Ttrenf, +2Ttrtn by {3.10)
E-To 2 H 2 v

where the factors 1/2 and 3/2 are associated to the number of
degrees of freedom of the scalar field (1) and the vector meson

field (3). The operators 3] and ﬁv are given respectively

H -
by .

f ? 2 [o 1

= =) 87 + U | {3.11)
H i=1 i o

. 4 2,2 .
a _ 2 .
&, = z 3l + efd, (3.12)

.i=1

These are formal expressions because we have teo take inte

account forthe surface contributions (remember that we are

working at finite temperature). We also remark here that the
functional integration for the Higgs field is a trivia; one,
whereas for the vector meson field we have to take some care
in order to account for the physical degrees of freedom only.
In the appendix the calculations are shown explicitly.

In order to introduce some important eﬁpressions
for section V and as a simple application of the results just
6b£ained, let ﬁs computerthe ffee eﬁefgy up tozquadratic

fluctuations around the trivial solution

(3.13)

B
M

8.

In this case we are referred to the vacuum sector.
For this vacuum configuration one can write for

)
the operators ﬁH and v

4

6. = - 1 3% + 2m? (3.14)
H j=1 I .

8 E 2 2.2

6, = - 3% ¢ e%a® . {3.15)
v s 1

Due to the periodic boundary conditions satisfied
by the fluctuations and from the previocus expressions one gets

the following set of eigenvalues for the operators ﬁH and ﬁv

2
aﬂ(n,k’) = [Zlé&] +k + m? (3.16)
& 2mn)? Fa2 2_2
ﬂv(n,k) = { B } + k% + e®a (3.17)

The free energy obtained in (3.8) is then written as (we have

assumed that the cosmological constant is zero: V(a} =0)

.
7 £n Uz—gﬂ} + bz] =gb + 2 {n [l —e__Bb] (3.19)

one gets for the free energy in the vacuum sector
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3 f .
J (j Ts EH(k) + % J d k3 eV (k) +
n (27)

™|

Frac(T =

3. _a H 3 _..V
+w[ d'k En[l_—ese (k)2|+3'rv[ dk_ tn {l-e Be (k)]

(amy? {2m)’
' ' {3.20)
where Vv =-L3 is the volume and
ey = /Kiiom?
(3.21)

eV (k) /kTietal .

The two first terms in the above expression are divergent and

come from the zero point energy.contributions.

IV. THE -KINK SECTCR

‘In this section we will compute the partition
function associated to a non-trivial field theoretical

configuration referred to as the kink sector. Postponing its

‘physical implication until the next section we just recall that

the kink is a classical static solution of the form

$,(%¥) = a tanh{mx/v?) - (4.1}

With this solution (remember that B3'=0) one gets for the

operators QH and nv
. 4
Gy = - ) 3; + 2m* - 3m® sech? (mx/v2) {4.2)
i=1

.10,

§,=- 1% 3] + e®a® - e’a’ sech’ (mx/v2) {4.3)

For simplicity we will decompose the free energy
in the kink sector as the sum over the Higgs field contribution

2 . : : Lo W
(Fkink) plus the vector meson contribution (Fkink)

_H v
Frink = Tkink * Pxink -

(4.4)
The Higgs field contributioﬁ is a straighforward
caleulation and the result is just that quoted in the work of
Venturaq. Since the one dimensional'potential given in (4.2)
admits just two bound states8 {cne of which being the zero mode

associated to the translacional invariance of the theory) one

gets
2
a, = fZ%E] + w? + o {4.5)
Le k ] :
al
where
2 _ p2. 2
wK = k' + kz
0 for . &=0 . . - - {4.8)
z
YT, o
Fm for =1
wé = [% g + 2]m2_ in the continuum. -

Therefore, the Higys fiéld contribution to the free energy is



BN
5 1 ek a, 1 % @' H
F, . = AM + = e (k} + 7 e, (k} +
kink 2J (2m) ? 2420 em? *
H . o H

1 Be , (k) 2 ~ge (k}
s § |2 mji-e U lem 2L agmfiee €

=0 | (@Zm?. (2m?

(4.7
2

where &=L is the area and M is the classical mass of the

one-dimensional soliton

M o= 2/2n'/3% - ' ' ' (4.8)
and

elixy = xZeam?

H _ [ ] . - 7

sz(k) = wk-+m£ : (4.9)

sg{k} = /u?}z{ + (% gt +2)m?

The divergent terms are the cqntribution'of tﬂe iero point
energy. '

For the contribution in the continuum d%/dg
should be obtained from the phase-shifts of the one-dimensional

potentialé. One gets

%%=71?l'm_14_6_g__m+2 } (4.10)

bz (g2 +1) (g2+4)

After substituting (4.10) inte (4.7) and introducing the variable

.12,

pt = m?g? ' : ) - o (411

H
1 2 -Be H
+ TA } dk ln[l-—e 2] TV dk En{} e8¢ ]
=0 § (2m)* (2m)?
5 .
H
2 r -Be
-2/Znm | 2K SR { > ! } tn L-e P] (4.12)
(am)? p’+2m?® 2p?+m?® -
where
B _ AZarZaon?
Ep = kK +p +2m . (4.13)

We will compute now the vector meson f;eld
contribution to the free energy. The eigenvalues of the
opera?or ﬁv defined in (4.3} can be obtained analyticallya.
The resultiﬁg expfessions are simple oﬁly in the case in which

the coupling constants satisfy the relationship

e?

1 : =
X = 3 5(5+1} 5 = 1,.2,3 ;e (4.14)

and we will give the explicit.expressions for this case only.
The parameter § introduced above has a simple interpretation:
it gives the number of bound states exhibited by the one-

dimensional potential given in (4.3). Under these circunstances

one can write
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- 3 ' 1 51 2
Tink = 7 J I Vo + 3 ) 4 T o+
(2m) 1=0 {27y 2

v
s~1 2 -Be, {k} v
+ 3TA ¥ [-ii—znﬁ—e 2 1 +3ﬂl[ 4’k inE—eﬁe(kq_

=0 | (2m? {2n)?
dN dp v
2 D 5= - N 22 -Be "’ (k)
- 6Ta J dk fq. 99 43l on [1 —e @ ] . (4.15)
{2m)? N% + p? L
where
eViky = kTre’al =.v’£2 +%~ 5 (s+1l)m?
Eg(k) = /i2-+% (s+2s8-22ym? {4.16)
e:m) = /x? +% fg2+s (s+1) ]m?
and
s~b
2 n 2n+l
N= ] (-1" p_{s-1-2n) g“®
- n=0 s
(4.1
S—-a
2 n 2
p= 7 -1"p_(s-2n) g*"
n=0 s
with_
a=>b=1 for odd s
{4.18)

a=0;b=2 for even s

and Ps(l) is such that

.14.

]
]
]
=

PSID)

Psil) 1 +2+ 3+ ...+ s8 7 {(4.19)

P2) = 1.2+ L3+ ... 1.8+ 2.3+ ...+ 2,84 ... + (5~1s

]
=
t
w
N
.
Lz}

Ll
«
v

Ps(s)

The divergent terms are the zero point energy contribution to

the ' free energy ih-the kink sector.

V. PHASE TRANSITION - THE CRITICAL TEMPERATURE

One notes first of all that.the kink solution
repfesents a Block wall which separates the space into two
regions. 1In each.reéion of the spaﬁe theré leaves oné-bf Ehéi
two degenefate vacua (ta). Iﬁ the case of a condensate of
such walls being formed, one can predict that

<3 = % [ dx <®(x)> = 0

and consequently the symmetry is (globally) restored.

At first sight one might think that there is no
chance for a Block wall of_the form (4.1) to appeaf.spmﬂanaasly
in the system since it has infinite energy. However, as
emphasized by Kosterlitz and Thouless, as the tgmperatgrg

increases the entropy might take over the energy and hxxﬂggically
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non-trivial field theoretical configurations having infinite
energy might sprout in the system .

In order to see that explicitly in our case let
us analyze the difference between the free energy of the kink
sector and the vacuum sector per unit of area. We will compute
in this way

£ = 555355:—3339 | {5.1)
which can be interpreted as the free energy associated-to a
Bloch wall.
From the thermodinamical view point, the condition

for a Bloch wall to sprout spontaneously in the system is
CRann™® <0 | (5.2)

for,_uﬁder ﬁhis Eéndition, the §ituation in which space is
dividéd_by a Bloch wall ié favoured.

it is not difficult.to check that for low
tenperatures fwall > 0 and théfe is no chance for a wall to
appear in the system. Thus, one can introduce a critical

temperature Tc defined by

£oa11(Te) = O (5.3}

that is, just'the point where above it f changes sign

_ wall
and the walls can Sproﬁt spontanecusly in the system.

For our model, the full expression for fwall.

can be obtained from (3.20); (4.4), (4.12) and (4.1%). It is’

important to remark that in the expression for fwall some of

.16,

the zero point energy contributions will remain. These contri-
butions are divergent and come from the well known ultraviolet
divergences of the Quantum Field Theory. The way of getting
rid of them is the usual one: we just add appropriate countertems
to the Lagrangean in order to get a renormalized theory. One of
the effects of the renormalization scheme is just to introduce
a quantum correction to the energy per unit of area of the
wall4. In the semiclassical limit these correction are small
and do not affect appreciably the result of the critical
temperature. In this way we will neglect all these correction
in the following.

In ordér to be more explicit let us write the
explicit expressions for f_ ., in the s=1 and s=2 case.

For s=1 one gets

where

(5.5)

el = vkZ+pi+2m? ;e = vk #p?em?
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This expression can be further simplified if we rescale the

integration variables: s =k% , t=k% + %mz yu=k+ %mz .

r=k +p’+2m* and v=k®+p’+m’ ., After the integration
in. p one gets

(t)

b 1= M + 95 (T) + g {T) + 3g (5.6}

wa
where

o

« 1
gg(T) = %F [ ds Rn[l - e-B/;] - %F [ ar % arc tan[z[—z— - 1]2] x
o

2m?
om?
x In {:1 - e_BE] (5.7)
rn 1
g =T thn,l-es‘/E T ar 2 2 arc tan| |5~ 1 2 pnf1 - e BT
1 47 J J m?
é—m am®

« In [1 - e“”‘—’} (5.9)

Fellowing an analogous procedure we obtain for the case s=2 .

H o v v
fé;il = M4 go(T) * gi(T) + goz(T) * 912(T)

where gg(T) angd g?(T) are given by (5.7) and (5.8), raxxmthmbh

.18,
and
9, (T) = g | du ﬂnLl RO Il { dv = arc tantﬁ "
m? me "
XEn@ esﬁq‘ (5.10)

L
gy, m =T [ ar zn[l - e T T—J[mdv%arctan[i [—"—-1]]2 x
5
z

x £n [1 - e—Bﬁ:I ) (5.11)

In the high temperature limit (T >> m} the

integrations are simple and the explicit expressions for

£,a11(T) 1in the case s=1(?=1 and s =2 (e = 31) are
given by
(1) _ _" ﬁ .2 . . .
£fi211T = M-3m7T (5.12)
(2) _ . _5 2 : '
fral1(™ = M-Zz/2m7T R T3 X0/

By using the definition (5.3), the critical temperature are

given respectively by

i 2 2 m

N = 1.15 a _ (5.14)
VERRZN

pl2 . g.g9a . o - (5.15)

/X

0
™
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The above resulis can be compared with those
based on the behavior of the effective potential at finite
r

tem?erature2 3} By "adapting those results to our language one

gets

(1)

T = 12 m™ . 131 a {5.186)
o] 7 v/x

2 L /2 m 596 a (5.17)
c 13 V’-X

VI. DISCUSSIONS

We have extended to an Abelian Gauge Theory the
picture of symmetry restoration propesed by Ventura. Within
this scheme the symmetry restoration follows as a result of the
condensation of topologically non-trivial excitations. The
mathematical tool we have worked with is the functiocnal
integration formalism of Field Theory at finite temperature.

The temperature above which Bloch walls will
arise spontaneocusly in the system (the critical tewmperature)
is explicitly computed for some ratios of the coupling constants.
The results we get for the critical temperature are very close
to those cobtained within the effective potential approach and
give support to the present method.

We just want to stress that due to the rich structure
of the vacuum of the theory at high temperature, there are far
reaching consequences of this mechanism of phase transition.
Some of them have been reported in reference 9. The extension
to realistic models will fellow the lines indicated in this

paper and will be our next step.

.20,

We wish to thank €. Aragi@c de Carvalho for
a critical reading of the manuscript and A.J. da Silva for

useful discussicons.

APPENDIX

This appendix is devoted to the computation of
the determinant involving the vector meson £ield, in order to
justify the factor 3 in expressions (3.10) and {4.15).

We start with the computation of the determinant
in the vacuum sector. Up tc guadratic terms in the fluctuaticns

b one can write

n
- _1 MV 1 2 2 n
L = 7 fuuf +5e'a bub . (A.1)
The equation of motion is
- v 292p =
I:]bu 3,(37p,) + e’a’s =0 | {a.2)

and, if one takes the divergence of this expression, one gets

the supplementary condition
no_ S
aub 0 (a.3)

which ensures ué that the massive vector field describes spin
1 particles.

In order to compute the partition function
taking into account condition (A.3} one can use the Faddeev-

Popov method. . Since this method is easy to implement in a
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theory in Which the Lagrangian exhibit local gauge invariance,

one first use the Stueckelberg trick in order to gain gauge

invariancelo. The Lagrangian (A.l} is equivalent to the
Lagrangian
-_1 wo L ja.a. W o 1 v
L 4_fuvf + 5 e’a aua e aau(a n) + 3 (Bup)(a p)
(a.4)

if one defines

b, = a, -+ 9 p (A.5)

U u ea M "
and' imposes the supplementary condition

Buau +eap = 0 . (A.6)

One notes now that (A.4) is invariant under the

gauge transformations

w
= +
%y Byt oAy
{A.7)
pm = p+eaan
and one can use the Faddeev-~Popov method.
The partition function will be written as
Z = ( Da Dp exp;i 8 get | SE B {pr.8)
j u eff 8w

where F = auau + eap - f and the effective action is given

by

W22,

= 4 1 w _ 1 ez 1 2 2 i
seff [ d'x { 1 fuvf 5 (aua yT o+ 5 e‘a aua +

N

(3,0) (3¥p) - % ezazpz}' . (a.9)
U
Remember that we have to take periodic boundary conditions in

the imaginary time direction X, —-it .

One can write further

_ . . 8F
% = I Dau exp[l Seff(a)] [ Dp exp|i Seff(p)]dEt[FG] (A.10)

where

_ 1 4 v u 2_2|_V

Seff(a) -Z—[élxa |:3u3 +ea:|a

s {p} -1 e el a% + e?a?f p . (a.11)
eff 2 i :

In caleulating Seff(a) we make the substitution &, 7 i a, s

which change only the normalization constant7.

Therefore, the partition function is

Z = [det ﬁv} i:det- T ﬁv] [det'“;“ QVT (B.12)

and consequently

zZ = exp[3(— 1 Tr &n ?zv)] (A.13)
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where ﬁv = - -21 ai + ezar2 . This is the desired result, as
given in (3.10;?

In the soliton sector it is easier to get the-
factor 3 in the gauge b:=0 . 1In this case one gets, up to

gquadratic fluctuations

A | w 1 s 2 B
L = 1 fguf t5e ¢0(z) buh . : (a.14)
The equation of motion is
= WV 2 42, = 7 -
[:Ibu 3,(37p) +e® $i(z) b =0 {a.15)

and, by taking the divergence of this expression, one gets the

supplementary condition
2 u = .
au[&o(Z} b ] 0 . (A.16)
One notes first that in the gauge by;=0 every-

thing is analogous to the Lorentz gauge discussed previously.

In this gauge one can write

A = j Dbu exp[i Seff] . . (A.17)
where

s = - 1| avx p¥|s o 4 e2 2 (z) bb (a.18)

eff 2 u o T T

Remember that the desired expression is the Euclidean version

of the above one.

where

.24.

By recalling that b;3;=0 . one finally get

~ H _ . _1 a '
QVJ = exp[B( 5 tr in ﬂv)]‘

{A.19)
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