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SUMMARY

The symmetry properties of one-dimensional hypersphe-
rical harmonics components have been investigated. For a
system of three identical particles moving in one-dimension it
is shown how to construct solutions of definite parity and
definite transformation properties under permutation of any
particle pair. General qualitativé featufes of the spectrum
of the one-dimensional system are deduced for particles

satisfying Bose-Einstein, Fermi-Dirac and Boltzmann statistics.

I. INTRODUCTION

(1,2)

The hyperspherical harmonics. (or, K-harmonics)

method has recently been extensively used(3'4)

for solving the
time-independent Schrédinger equation of few-body systems.
This method alleows, in ?rinciple, for a systematic treatment of
the few-body problem but it has tﬁe_drawback that the high
Gimensionality of the hyperangle makes its visualisation rather
difficult. 1In order to gain @ better insight of the method,
there has been a few applications of it to one-dimensional
systems. Moszkowski and Strobel(S}, for instance, used the
K-harmonics method to determine the ground-state energy of one-
dimensional many-boson systems with .attractive two-body &-
interaction. Amade and Coelho{S) considered the case of one-
dimensional three-body system, .interacting via a general two-
body potential, and obtained an infinite set of coupled ordinary
differential equations. (see equations- (9) .and (10) of reference
&) which were then solved in the particular case of three
identical particles interacting via an attactive 6-potential.
In both of the above mentioned works, the two-body
interaction was chosen to be the attractive §-potential because,
in this case, the one~dimensional problem of N egqual mass

particles is exactly solvahle(7}

and the accuracy of the
K-harmonics solution cén be eésiiy tésted. o

In this paper we investigate the symmetry properties,
under the permutation group, of the K-harmonics (bound-state)
solutions for the one-dimensional system of identical particles

interacting via an attractive two-body peotential —v([xi—xjf}.

As the one-dimensional preblem of N identical particles
(7)

interacting via an attractive §-potential has a single bound-

state solution which is totally symmetric under the permutation
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of any pair of particles, this particular case will not be
considered here. We shall restrict ourselves to the three-
particle system for simplicity. The three-dimensional problem
of three interacting particles is considerably more inwﬂxedw’x
and we believe that the solution given here.is of considerable
pedagogical value.

In Section IT we make a brief exposition of the hyper-
spherical harmonics method for the case of three identical
particles; the time independent Schrddinger equation is reduced
to an infinite set of coupled ordinary differential equations.
In Section IIT we discuss the effect of the action of the
permutation group on the K-harmonics components and construct
functions, of definite parity, that ﬁrovide a basis for irreducible

representations(a)

of the S3 _symmetry group. In Section IV
these functions are used for constructing eigenfunctions of
definite parity and permutation properties. Concluding the
paper, we present some very general properties exhibited by the
bound-state spectrum of a one-dimensional system of three

identical interacting particles obeying Bose-Binstein, Fermi-

Dirac and Boltzmann statistics.™

II. THE HYPERSPHERICAL METHOD FOR ONE-DIMENSIONAL THREE-BODY
SYSTEM ' ’

The Schrddinger equation for a system of three iden-
tical particles moving in one dimension, interacting via an

attractive two-body potential V(|xi—xj|) , is

342 42 _ _
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where
V(X XyrKg) = V(|x1—x21) + V(lxz—x3i}?+ V(le-x3l} . (2)

In terms of the Jacobi coordinates

no= A xxy) (32)

N

/2 (X1t
E = i [ 7] - X3] {3b}

R = ——gg— r (3e)

the Schrddinger equation (1}, with the center of mass removed,

can be written as

ﬁ2 32 32
- 5= [——5 + ;;5] + VIEM) [VEM) = B $(E,m) (4)

where

V(E,n) = V(¥Z|n|) + Vh/zg E + %% nl] + v[[//§-5 - %% nl] .

(5)
Now, introducing the "hyperspherical coordinates", the hyper-
radius p and the hyperangle 8
n = pcosd B £ = psing , 0<0 <2 ' (6)

the Schrddinger equation (4) can be written as
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5.1 a2 :
] ET + ;j —gg vip,8) + Vvip,8)wip,9) =E vip,8) . {7)

i
i
Tl
Q)[QJ

o3

Q?

where -

V{r,0) = V{(v¥Z plcosd|) + V(/2 p[%g sind + % cosd]) +

+ V(/i-p|%§ $ing - % cosf|) . (8)
The hyperspherical (or K-harmonics) method for solving the
equation (7) consists of expanding w(p,8) in terms of a
complete set of angular eigenfunctions. Following reference &,

we use the set {elKe/(ZW)ljz} ; K integer, so that

g iK6
= = .
vip,8) = Kz_m Ry (p) praev AL {9)

Substitution of the expansion given by egquaticn (9)
in the time independent Schrddinger equation {7), obtains the

following infinite set of coupled ordinary differential eguations

2 2 o
n“ {14 d K J . :
- 5= |= 3= p 3= - =5 R, (p) + <K|V|K'>R,,, (p) = B R,(p)
2m |p dp dp p2 K Kéhw vl RK K !
(10)
where
IZK
N 3 1 —_—
<KiviK'> = %F J JLEITKI® G yas L (11)
Q

III. THE SYMMETRY PROPERTIES OF THE K-HARMONICS SOLUTIONS

As iz well known(sl, the invariance of the hamiltonian

under any symmetry group implies the existence of eigenfunctions
exhibiting the group transformation properties. We shall, then,
explore the symmetry invariances of the three-body hamiltonian
E for 6btaining eigenfunctions with definite symmetry properties
labelled by the K-harmonics components {equation {(9)). Under
the action of the parity operator, (xl'xz’XB) goe onto
(=x;r—%5,~%3} , (E,0) go onto (-g,-a) (see (3a) and (3b)} and
(p,0) go onto (p,m+8} (see (6)} so that the potential V of
the three-body system is invariant under parity transformation
{see equations (2}, (5) and (8}}. Thus, there exist eigen-
functions of H that have definite parity and we shall now
determine the set of K-values that enter the hyperspherical
harmonic expansion (eguation (39}} for an eigenfunction with
definite parity.

Due to parity invariance of the potential, the matrix

elements <K|VfK'> , given in equation (11}, have the following

properties
<KiV|K'> = 0 for (K'-K} odd , (12a)
<K|V[K'> = <K'IViK> = <-K]vi-KR'> . (12b)

Selection rule {l2a) decouples K-even and K-odd
equations in the system (10) and we are left with two infinite
sets of coupled ordinary differential egquations: one for even K
and one for odd K. 8o, the eigenfunctions of H naving positive
(nregative) parity will contain only even(odd} K components

when expanded in terms of the hyperspherical hamvonics (equation (9)).
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Now, using property (12b), the differential equations

for components R_.{p) and Ry (p) (equation (10)) are

- g; [% g_p o gp - I;_;] R (0} + sz_m <k}viK'> R, (p) = E Ry(p)
22 (La & _ K Iy
-5 [E &G oE - F] R_p(0) + K.E_w <k{vixr> Ry (P) =E Rglp)
so that,
R_{p) = =Ry{o) . {13}

The invariance of the potential V under the group
53 (group of all permutations of three objects) is evident from
expression (2). We shall now obtain the transformation properties
of variables {p,8) and (£,n) under the group 53 .

The permutation of any pair (i,3)} of particles leaves
¢ invariant. As for the angle 8 , under the action of the

permutation operator P,. , it transforms as follows

11
Pig ® 8 - ® -6 - (14a)
Pl3 3 6 -~ 5%/3 -8 (14b)
923 : ] +. /3 - 8 - {L4c)
Using egquations (l4a), (l4b}) and (l4c) in egquation (6)
we obtain the well known(z) transformation properties of §
and n

.8,
£ 1 0 £
.Plz = r (15a)
n | 0 -1 n
r_ 1 V3
£ -3 -3 £
P = ' {15h)
13 - ﬁ l
0 j 3 7 n
and
1 V3
£ -3 T g .
T = . (15¢)
23 AL

In terms of variables o and 8 , the invariance of
the potential V under the action of the permutation operator

Pij is expressed as -
Vvi{p,8) = V{p,57/3 -0} = v(p,n/3-8} = V(p,m-0} . {16}

{Relation (16) is obtained by using (l4a), (14b) and (l4c} in
expression (8) for V(p,8)).
Using the invariance property (16), the matrix elements

<K{V{K'> , given by (1l), can be rewritten as

m/3

NPJ
=2

<K[vV|K'> aa ei(K"K)SV(ﬂ,B)[l + e'i(K'_K)ﬂ] .

o

% {l + e LE-K)T/3 e-i{K'—K)zw/{}

from which it follows that (remember that parity invariance



requires K'-K even)

[n/3
[%F | as el“<_K}eV(D.B) for K'-K=6n , n integer
i é from {-= to +=)
<K[VIK'> = 4 (17}
!
iO otherwise .

Theérefore each of the two infinite sets (K even and K odd) of
coupled ordinary differential equations {190) splits into three

infinite sets of K values

K even : 6n , 2+6n , 4+6n
(18)
Kodd : 1+6n , 3+6n , 5+6n .
with n , integer, running from -« to +® .
Notice that
2+ 6n = - 4 + 6i{n+l) .
and (18a)
I +6n = - 5+ 6(n+l) y

i.e., the elements belonging to the sets (4+6n) and {5+6n) are
minus the elements of the sets (2+6n) and {1+6n) respectively.
The invariance of the potential V under the action

of the permutation group 8 implies the invariance of the

3

hamiltonian H under 8 so that there are eigenfunctions of

3
H that have definite transformation properties under permutaticn
of particles, besides having definite parity. We shall show

that these sigenfuncticns can be obtained by including in the

.10.

K-harmonics ‘expansion (11) the appropriate set of K-values
{equation (18)).

Equations {15a), (15b) and {(15c) -show that the wvectors
€ and n provide a basis for the two dimensional irreducible
(mixed) representation of the permutation group S4-  An cbject
that transforms as £ will carry the index MS (mixed symmetric)
as it is symmetric under the permutation of particles 1 and 2
(see equation (15a)) and mix with the corresponding 70 under
permutation of particles 1 and 3 or 2 and 3 (see eguations (15b)
and (15¢)). BAnalogously, an object that transforms like 1
will carry the index MA (mixed antisymmetric) as it is anti-

symmetric under the permutation of particles 1 and 2 (see

equation (15a)) and mix with the corresponding £ under

-permutation of any cother pair of particles (see equaticns (15b)

and (15c)). An object totally symmetric (antisymmetric) will
carry the index § (a).

Using equations (l4a), (14b} and (l4c), the transfor-
mation properties, under. 83 , of cos{KB) and sin(X0) . are
easily obtained. We find that for each set of K-valués given
in (18) the functions Vcos(KB) and sin(K6) exhibit definite
symmetry properties under permutation of particle pairs. Thus,
cos(6n8) (sin(6ne)) is totally symmetric {(antisymmetric)
providing a one-dimensional symmetric (antisymmetric) irreducible
representation of 53 ; with positive parity. The function
cos[(2+6n)6] is MS and sin[(2+6n)8] is MA thus providing
a basis for the two-dimensional mixed irreducible representaticn
of S3 (also with the positive parity). Another positive parity
mixed irreducible representation is provided by cos{(4+6n)6] (MS)

and sin[(4+6n)8] (MA). BAs for the negative parity irreducible

representations, sin[(3+6n)8] (gos[(3+6n)e]} provide the one-
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dimensional;ﬁotally symmetric (antisymmetricj”irreducible
representation. The odd parity tﬁo—dimensional mixed irreducible
representations of S, are provided by sin[(1+6n}8] (MS} and
cos[{1+6n) 8] d&m and also by sin{(5+6n)8] (M5) and cos[(5+6n)8]
(MAY. These properties of . sin{K8) and .cos{Ke) allows.for
the construction of twelve functions. {six with!positive‘parity
and.six with negative parity) which.will be used in the
&onstruction-of'the eigenfunctioﬁs {expansion (1l}} in the next
sgqtion;“wfth parity explicitly indicated by (+) or (r) super-

script, theése functions are

8 0,00 = ng_m R, (p) cos(énd) (19)

¢2§_+f(p,e)-'=- RZ_;, Rgqp) simtend) . ' (20)

‘bs(-) (0,0) = I Ry, (0) sin[(3+6m0) (21)
T ;

08,8 = T R (s) cos[(3+6n)8] (22)

- no—w 3t6n: = . '

s o8y = T R, :

Mg (Pe8) = 246 P) cos [ (2+6n) §] . (23}
n:—oo

86 (00 = T -

va (PeB) = ) Ryien (0) sin[{2+6n) 8] . (24)
n:—oo .

and

.12.
J¢'ﬁ§+) (p,8) = i__m Ryyen(®) cc.'_s[(”4+6n)9] ' (23a)
‘éﬁé+)(p.9) = ni_m R4+6n(p).sinttf+6n)9] o (24a)
442 (0,8 = nzm Ry,q (P sinl(1+6n)e] '(’2‘5)"7 ‘
by (048) =:nzqw R, (9) cos[(Lrémo] (261f
%é"’ (9.51 = ,,E_m. Ry en (P} sin[(5+6m18] ' (25a?
rb;ﬂ(\’) (p,0) = nz-m Regn (@) cos[(5.+én-) 8] . - (26a)

Notice that not all of the above mixed symmetry
functions are independent. Using (13} and (18a} in (23a),

(24a), (25a) and (26a), we find that

{+)

- (')
Ma

i o0 = sl 0,0, epit e e = (p,0) (27a)

and

T

#

57 (0,0) = 0.0 . 4T 0 = w00

(27b)

Functions (19) to (22) will be used for constructing
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the totally symmetric and totally antisymmetric eigenfunctions
and functions (23), (24}, (25), (26) will be used for constructing
the eigenfunctions of mixed symmetry. This will be dqne in the
next section.

We conclude this section with a comment about the
usefulness of mixed symmetry eigenfunctions. Systems of
identical fermions (bosons) must be described by totally anti-
symmetric. {(symmetric) wave functions. If the particles have
only one degree of freedom then only the totally symmetric (for
bosons} or totally antisymmetric (for fermions) eigenfunctions
are admissible. However, if the particles have an extra degree
of freedom, for instance, spin, using the well known(s'g)
prescription of multiplying mixed representations, we can cbtain

total eigenfunctions that are totally symmetric or antisymmetric.

IV. CONSTRUCTION QOF EIGENFUNCTIONSE WITH DEFINITE PARITY AND
PERMUTATTICN PROPERTIES

We shall first construct the eigenfunctions that are
totally symmetric or totally antisymmetric. BAs we have seen
{equations (19) to (22)), these eigenfunctions are associated

with K=6n and K=3+6n sets (positive and negative parity

respectively). For these X sets, expansion (ll) can be written
as
{+) : PRI 16n6 -i6né
W \’0,3) =;l/2 z §R6n(o)e + R_6n(p)é ] (28)
(2m) n=0 -
and

.14,

=) _ 1 - C L i (3%6n) 8 _ -i {3+6n} 0
¥ (p,8) ——1/2 z [R3+6n(P]E - + R_B_Gn(ﬂ)e ]
{2m) n=0
(29)
respectively.
Introducing now the notation
R, (p) = RE_(p) if R, (o) = R_ . (p)
6n 6n 6n -6n
(30)
= w0 ; - -
R6n(0) = R6n(p) if RGn(p) = R_Gn(p) , n#Fo

the eigenfunctions wé+)(p,8) and ¢£+)(p,9) are obtained from

(28) by comparison with (19) and (20)

), 2 5 S 1 3
¥ (p,0) =—=—— ¥ R‘é (D) cos(én®) = ——— | RE {p) cos{6ng)
8 @n 2 o o (2m ™2 pe-e oM
(31}
+) 2i T 0 . i T 0 )
Yo (p,B) = —ne T {p} sin(enf) = ) {8) sin(6nf) .
a 2n 72 oty Fen a7 i Ten
(32)

. . \ E o}
Analogously, introducing the eigenvectors R, . (p) and Ry . (p),

E E

R3+6n(p) = R_3_6n(o)

(33)
o} _ .0
Rignip) = BRI _gpn o) .

the eigenfunctions Wéﬂ){p,e) and mg“)(p,a] are immediatly

obtained from (29) by comparison with {(21) and (22)

(=) _ i s (0] L .
by (p,8) = ?E;?T7§ ng_m R36n (P sinf(3+6n)&] {34)
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0

$;*)(?,ei = R§+6n(p) cos£(3+6n)9] . (35)

— 75 4
(2172 picw

As we have seen (eguations (23) to (26a)), the mixed
symmetry eigenfunctions are associated with K=2+6n and K=4+6n
sets, for positive parity, and with X=l+6n and K=5+6n sets,

for negative parity. Expansion (11} for the K sets are,

respectively,
zb;;') (e,98) = -(-zﬂ_)ll75n§_w R2+6n(p}{cos€(2+6n)ej + i sin[(2-+6n)e]},
] o (36)
vt a,0) = 1 cf R { )rcos[(4+6n)B] + i sin[c4+6n)e]}
meom (2“)1;27n=—m 4+6n°F { ' '
(36a)
and

- 1 by s
"’ri Yio,0) = o172 ng_w Rl+6n(p){cos[(l+6n) 8] + i sm[(1+6n)e]} .
: (37

(_ o

v L

)(p,e) = W n[?m R5+6n(p){cas[(5+6n) 8] + 1 sin[(5+6h)e]} '
(37a)

(%) ()
¢Ms ’ EpMA

(243, (25}, (26}), using {(27a) and {(27b), are given by

which, in terms of the functions (eguations (23),

{+} = L (+) , ;o ) '
Yy (g,8) = 7;;717?_{¢MS (p,8) + 1 bua (D:e)} (38}
* .
ot (0,0) = ¢ ﬁﬁ {82 0.0 - 5 ol 00} = ot o) 38a)
T ’ . B

.16,
and S
{-) NS s
by (0,0) = =517 {@MS (0,8) = 1 ¢ (p,e)} (39)

=) ! =) RIS S Y SR b
Yy lo,B) =3 -——7175 byg 0.8 + 1 & (048 p = Uy {ps9) . (3%a}
{2m) o

In order to exhibit the mixed symmetry character of

the eigenfunctions (38) to (39a), the simple and elegant method

{2)

devised by Simonowv will be used. The following complex

conjugate vectors are introduced
Z = sing + i cos8 and Z* = ginf - i cos6 . (40)

Their transformation properties under 'Pij can be obtained from

those of & and n (equations (15a), (i5b), (15¢) since
Z = {E+in}/p (equation {6)). The transformations are

w e-iZw/3 e1217/3

* = "
z - P,a% ; (4la)

and

2% = %, P..2% = = e12m/3 5 | (awy)

12

Likewise, for any given mixed symmetry basis (MS, MA), complex

conjugate vectors of the form (40),

"M, = MS + iMA and My, = MS - iMA {40a)

can be introduced (they transform, of course, like 2 and Z* ,

thus the indexes).
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50, using the mixed symmetry vectors given by equations
(23) and (24), for positive parity, and by (25) and (26}, for

negative parity, the following complex conjugate vectors are

introduced
57 0.0 = 08 0,0 + 10 00, o0 =4 w0 -1 6 0,0
(42)
énd
by ) =400 + 1050 0,0 L 05 00 = 0D 0.0 - 1 85 0,00,
{43)
_ The mixed symmetry character of eigenfunctions
wét](p,e) {equations (38) and (39)) is now evident. Using
8,7 (0,0 142 ana o[7) (p,8) (43), tne eigenfunctions 4\ (p,0)
(equations (38) and (39)) are written as
ECY] _ 1 (+) :
$M (p,8) = ?E;T§77 ¢Z {p,0) (44)
and
UARNTIE Qg Y P | (45)
M ! (Zw)l72 7* 4 "
respectively.

Thus, w§+}(p,8) (44}, and its complex conjugate,
transform under §4 as 2 and Z* , respectively (equations
{Ala) and (41b)). As for the eigenfunction wé"’{p,e) (45),
and its complex conjugate, they transform likg Z* and 2

respectively (equations (41b) and (41a).

.18.

L (%
M
+

(wﬁ(p,e))* can be used to obtain totally symmetriec or totally

We now show how the eigenfunctionsg )(p,e) and
antisymmetric functions. &As mentioned in the end of section
ITI, the particles must have an extra degree of freedom. We
shall assume that the particles have spin L and the eigenvector

2
corresponding to spin-up (down) will be denoted by u{d). Spin

. eigenfunctions of the three particle system that under the

permutation group 53_, transform as Z and 2Z* will be obtained

through that procedure of combining the MS and MA spin functions

as in (40a}. The three-particle mixed symmetry functions(g)

have: total spin % and superscript * % will be used to indicate

the Z-component of the total spin. The spin up functions are

1/2 1

ng = = [udu + duu - 2uud]
/2 1

XMQ = —; [udu - duu] P

and the spin down are

-1/2 _ 1 _

Xus = = [aud + udd - 2ddu]
172 _ 1

XMA/ = -; [dud - uaqd] .

And the corresponding complex conjugate wectors, that transform

as Z and Z* (({4la), {41b)), are

172 _ 172

1/2
Xy MS

MA

1/2
7%

1/2
MS

1/2

MA {46}

+ 1i¥x N X = X - i X
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and

-1/2

-1/2 _ -1/2 . -L/2 -1/2 _ .
XZ = ¥ + i XMA . X i XMA . (47}

MS

The totally symmetric and totally antisymmetric wave
functions are now obtained from the appropriate combination of
wéi)(p,e) {equations (44) and (45)}), and their ocamplex Gﬁﬁﬁﬁﬁé,
with xgl/z(p,e) , and their complex conjugate, (equations (46)

and (47)). "The positive parity functions are

(+) . R
ws (p,B.ii)—

(+) £1/2 {+} * o xl/2
[%M (p,8) ?z* + [wM (D.S)] Xg } . {48)

i
/Z

(+) L1, 1 (+) *1/2 _ (+} * ox1/2
'bA (preyii}_’ 7‘5 l:IDM (D;e) XZ* [le (Qfe)} XZ ] ] (49)

and the negative parity are

(-} * 172 (-) +£1/2
[mM (0,8)] Xz* + wM (D,Q) XZ , (50}

{-)
Vs

B
-
1]

{p,8;%

ol

(=}

—
1]

[STE
]l

* T-
oy =) *1/2 _ (=), *1/2
[wM (p,a)] Xz* Py (p,9) X5 .. (51

4 (p,8;2

0f course, if the three-fermion system has no other
degree of freedom besides spin, only the above totally antisymmetric
*
eigenfunctions Wé }(p,B;t l) {equations {49) and (51)) are

admissible.

.20.

V. CONCLUSIONS

We now analyse some gualitative features of the bound-
state spectrum of one—dimensional three-particle system described
by a hamiltonian invariant under parity and under the group S3.
We shall consider the cases of bosons of spin zero, fermions of
spin % and also the case of distinguishable particles {Boltzmamn
statigtics).

For a system of bosons of zero spin, the only afmissible

(2}

eigenfunctions are the totally symmetric ones, ws (p,0}

(equations (31) and {34)). Due to the absence of centrifugal

barrier for K=0 , the ground-state eigenfunction will be

wé+)(p,e) . There may be_an excited state described by

w7

a considerable centrifugal barrier. Depending on the deepness

{p,0)} , for which the lowest component is K=3 , thus having

of the potential, there may be a whole band of states of -type
¢é+)(p,6) and wé')(p,e) , but no mixed symmetry type is
allowed. In the case of the §-potential, there is only one-

(+)

bound-state, ws {p,8) .

Now, for a system of spin % fermions, the eigenfunction
in spin-space will have mixed symmetry character due to Pauli

principle {two states for accomodating three particles). Thus

“the spatial eigenfunction will be either w§+}(p,e) aor

wé')(p,e) (equations (36} and (37}), the corresponding total
eigenfunction being, respectively{ wi+)(p,8;i i) of

v} (0,0:5 2) (equations (49) and (51)). Due to the centrifugal
barrier we expect the eigenfunction wéu)(p,e) {which contains

K = -1,5 components) to have an eigenvalue smaller than that of
the eigenfunction 'y (0,9) (which contains K = 2,-4 components).

Finally, for a system of distinguishable particles,

(Boltzmann statistics), all symmetry type states are allowed.
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The ground-state will be described by wé+)(p,8) {equation {31))

due to the absence of centrifugal barrier for K=0 . The other

symmetry states, due to the centrifugal barrier, should occur

in the following order: o7/ (p,8) (equation (37)), AT

(=)
5.4

¢é+}(p.8) (equation (32)) (assuming that the potential is

{equation (36)), @ {degenerate) (equation (33), (34)),
attractive enough to bind all of them). Depending on the deep-
ness of the potential, there may be whele bands of excited
states for each type of symmetry state and the above order of

occurence of states refer to the heads of the bands.
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