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I. INTRODUCTION

"In recent years the basic mechanisms underlying
nuclear reactions have been profoundly reexamined in view of
the increasing experimental evidence in support of new types of
processes that lie, in complexity, between the usual direct and
compound ones,

The thecretical description of thésé proéésses is
rencdered complicated as:a result of their being mcre complicated
than the simple direct processes, usually ‘describable within
DWBA or coupled channels theory, and yet less complicated than
the usual compound processes normally accounted for by the
statistical Hauser-Feshbach theory. This necessarily implies
that the description of theserpreequilibrium'pfocesses mast,
somehow, contain both ‘the statistical features, dominant in
compound reactions, and some coherent effects {e.qg. peaking in
the}hﬂad—angle region} that characterize direct processes.

One possible way of simplifying the theoretical
description of preequilibrium reactions is to separate the
average cross-section intc two well-defined and different pleces;
one describing fhat part of the precess which ié forward peaked
(called multistep direct part by the MIT groupl)) and the other,
symmetrical about 900, considered as a generalized mexﬁfFeﬂﬂxxh
cross—section that describes what is called preconpound’ or
multistep compound part. In particular, this last part has been
the subject of extensive theoretical discussion in the last
several vears. Principally, three theories have been advaq 1:2,3)
the common feature of which is their final result summarized as
a generalized Hauser-Feshbach expression for the average cross-

section. This expression is given as a sum of N distinct

terms related to the contributions from the N different classes
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of compound doorways resonances assumed populated in the process
of the formation of the compound:nucleus. The system is aliowed
to decay to the open channels from any. of- these stages. From
the characteristics of.these decay processes one should be able
to learn something about the- nature- of .the compound nucleus
confiqurations through which the trapped incident flux pexcolates.

In particulart‘in the Nested-Doorway Model (NDM)
developed recently in Ref. 3, a major.role is given to the
statistical fluctuations arcund the average cross-section
(Ericson's fluctuations) in providing the above mentioned
information about the différent CN stages. Through a careful
study of the cross-section autoc-correlation function, it is
suggested that one may be able to extract at least several distinct
correlation widths attached to the different lifetimes of these
stages.

Clearly, for these statistical analyses to be
viable, one is forced to restrict oneself to transitions lémﬁng
to well-separated discrefe states of the residual nucleus. The
excitation functions of these transitions are expected to
exhibit clear statistical fluctuations, for not tco high incident
energies.  As the incident energy is increased, the discrete
parts of the spectra of emitted particles become mostly direct
(forward-peaked) in nature. The multistep compound component
would, in this case, contribute mostly to the continuum region,
accounting partly for the emission of "fast" (non-evaporation)
particles exhibiting BDo—symmetrical angular distributions.

Recently, several excitation functions for
} 3)

digcrete transitions of both 1ight4 ~ion induced

- and heavy
reactions, have been statistically analyzed, and consequently a

very clear evidence has been established in support of the

.4.

existence of more than one correlation width. In these analyses,
the generalized cross-section autocorrelation function of Ref.

(3) has been used. Subsequent to these studies, it was suggested

n6) that the number-of-maxima method (NMM) of Brink and

L

i

Stephen should be applied to the analysis of these excitation

functions, in conjunction with the auto-correlation method in

order to check the consistency of results. Owing to the fact
that the pre-compound excitation fucntions analysed with NMM in
Ref. (6) exhibit several correaltion widths, the treatment was
necessarily crude. The inportance of the above double-checking
of the results with NMM certainly calls for a more precise
theoretical discussion.

In the present papef we present the above discussion
in the form of a generaliiation of the methcod of Bizzeti and

8)

Mauvrenzig which better serves the purpecse cof relating the
average number of maxima in the excitation function to the cross-
section auto-correlation function.

Por completeness, we present in Section IT, a
brief summary of the Nested-Doorway Mcdel of precompound
reactions. In Section III, we present a short account of the
NMM of Brink and Stephen and the related discussion of Ref. 8).
The generalization of the BM method to the multistep case ana

the numerical consequences are given in Section IV. Finally,

in Section V we present several concluding remarks.

II. A RESUME OF THE NESTED~DOORWAY MODEL OF PRE~COMPOUND PROCESSES

For a better understanding of the Nested-Dooxrway

Mogdel it would be worthwhile emphasizing again some of the points
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mentioned already in the previous section. ~We show in Fig. 1
a typical spectrum of emitted particles in a light ion induced
‘reaction, This'figure constitutes the prototype one usually

usedl}

to describe a nuclear reacticn at not too small energies.
The preequilibrium portion of the spectrum is seen to be in the
-continuum region.

At somewhat smaller energies, the form of the
spectrum, changes, as even the discrete. part of the spectrum
becomes compound-nucleus dominated (QOO-Symmetrical angular
distribution). A possible picture of the spectrum at these
‘lower energies is shown in Fig. 2. As is clearly implied,
individual peaks in the spectrum receive contributions from the
decay of the compound system at the different stages through

‘which it.passes on its way to equilibrium.

One would therefore expect that the average cross
section for a - given transition from chanmel ¢ +to channel ¢' is
(all formulae below refer to the contribution of a given partial

wave)

b Y

<O‘ccﬂ’ > =Z Th,ce’ (1)
. 4}

where n refefs'to three, five, etc. - excitons configurations.
Such a simple form for <0££> emerges from all three theories
of MSCP. 1In the MDM, the. individual terms in the sum of Bg. {1)

come out all in the Hauser-Feshbach form

5 -»._(_?"--Pnﬂ)ce (Eh—'fni-l)cf:’
n,cc! = T (P D :

- n nti

o

(2}

.6.

where Pn refers to the transmission matrix defined with respect

to an averaged S-matrix, <S>I r constructed in such a way as
Tt

to represent absorption in the system due to the coupling to
doorway classes, n+l, n+2,..., ete.. We are, here, adopting
the following convention for labeling the doorway classes: the
complexity increases according to the order: 1, 2, 3, ..., N.-
Class N , therefore represents the equilibrated compound nucleus
configuration and thus is the langest-lived. The energy interval
In is chosen in such.a way as to encompass all classes with
average lifetimes larger than h/Inrtbr; équivalently, with
average widths, Tn ; smalier than In). Eéplicitly,.Pﬁ is

given by

+ . .
P, = 4-<53 <S> @)

The total S-matrix is accordingly given by

- A “
sELS> +2, 5. @

m=n

£2 is obtained

Since the final ¥Yesult for ' o
using an averaging interval I larger than the width of all.

classes, we may write

LA |
S:<S>I + _S_, Qh _ {5)
1 n=1
where <85>, is the optical S—matrix, obtained from an optical
l .
model description of elastic scattering. It was shown in Ref.3p
. . ££
that the multiple averaging <<°'°<Un,cc'>1n"'>12>Il , needed

to obtain the final averaged fluctuation cross-section, does
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¥4

nocct ¢ Bd- (2), as long as the
r

not change the structure of g
individual’ Sﬁe in Eq. (4) (or Eg. (5)) are chosen in such a

way as to average to. zero, i.e.

PR e o o
— (6)
&y, =0 o .

Eq.. (6) clearly shows, also, that <S££> =0

I
: . n+l
etc.. The important first step used . in Ref.. (3) to.obtain the

’

above result was a generalization. of the optical background

9)-

representation method of Kawai-McVoy and Kerman™ °,. which gives

(7)

n,cc’

34 - —i E :7n.£,cé?yL£,c’
£ £-¢& noy
tehn ’ S
where T the usual form factors specifying the residues’

at, and e . are the positions:of,the poles in .8 due to the

i, by construction,

doorway resonances of class - n. The; ni
: : e, prep

are random variables with zero mean. ,-<g =0 . Eg:. (&)

ni,c I
) A 1!
is then satisfied automatically.. -

", wWith -the help.of Egs.. (6).and. {7), the S-matrix

auntocorrelation function, ... -

© 2% Evre) S ﬂ?"CE’)>‘”'
may be easily evaluated to give_:
$) L 52 . S
Th ~T .
Coe (© = ) e T o ©)
oy

and”3C

.8.

f£e

where Un,cc'

are given by Eg. (2). The cross-section auto-

- correlation functiocon, Ccc,{a) , is then easily obtained from

Eq. (9), neglecting.contributions from direct reactions {i.e.,

<S>I is ccnsideied diagonal in channel space)”
1
: . N . Lz
(s) 2 £2 [
=l¢c | =|>a,. n (10)
(e) = h,ecc' ’ .
cc/ ce’ ) oy f. r;?#_1e .

In Egs. (%) and {(10), Fn , denotes the correlation width

associated with the n-th class of overlapping dqmmmy resonances.

.Thé above result for Cc ((g) 1is.a straightforward generalization

c
of Ericson's-result for the one-class case. For a more detatled
discussion concerning the derivation of Eg.. (10) see Refs. 3b
Recently,  several andlyses4'5) of excitation
functions, using Ed. (10), have been reportéd. These. analyses

indicated clearly the presence of, at least, two distinct

correlation widths, It shguid be stressed that a clear verification

of the multistep nature of the discrete compound transitions of

figqure 2, referﬁed to above, does not necessarily. require the
presence of more than oné correlation width in the Cl(g) of
each transitioﬁ. It is sufficient to find distinctly different
correlation widths in Ccc.(s) for different exit channels.
This ié so since the nature of the final éhannel might be such
as to inéicate strong coupling to a given class of doorways.
‘The above menﬁioned.analyses are quite. hmn;uxi
for the understanding of the reacticn mechanism involved.
Recently, these studies were extended to heavv-icn induced

5} 10)

compound reactions and fusicn . The only feature of the

statistical theory that is being tested in these analysis, has,

W



z.ﬂ_.z_:réz__ =T E a1y
R .

.9.

been the existence of several distinct "life-times". To develop

‘a more stringent test of the theory, however, other consistency

checks, of the results cbtained in the above studies, are required.

One possible constraint would be a sum-rule involving the cor-

11)

relation widths; suggested recently by one of us This sum

rule states

wﬁéfé. Dn is the average level spacing in class n , and Pl

is the optical transmission matrix, 'So far it has been difficult
te put Eg. (11) into use, due to the fact that not all the Tn,s
are extracted experimentally.

Another, potentially important, test is the mumber
maxima method, developed originally for the one-class case, by
Brink and Stephenﬂ. This theory supplies the feollowing relation
between the average number, n , of maxima in the excitation

function per unit energy, and the correlation width, T ,

05
B

n o=

(12}

Eg. (12) has been extensively used in the past, in conjunction

with the auto-correlation method. Recentlys)

a generalization
of Eg. (12) to the multi-class case has been made. In this
case, the NMM deoes not supply another mean of obtaining the
Fn,s , but, rather, it may be used tc check the wvalues of the
extracted Fn,s and Giﬁ,s . However, as already recognized
in the past by several authors, several important corrections

have to be made, before a confrontation of Eq. (12) with the

.10.

data is attempted. These corrections are primarily related to
the finite size of the energy step and the nonzero value of the

errcr bar .

In Ref.(6) some of the above mentioned corrections
were introduced into the generalized BS relation. However, it

was realizede)

that the correction related to the error bar
could, almost, be accounted for only approximately within the
BS method. Although the thecretical values of & cbtained in

Ref. {6) for the reaction 2

SMg(3He,p)27A£ studied recently by
Bonetti et al., came out close to the experimental n , a better
account for the above ﬁentioned corféctions is ééiled for in

view of their important effect in reducing the number of maxima

to be counted as real maxima. In the following section, we

present a more refined treatment of these corrections.

ITI. AVERAGE NUMBER OF MAXIMA IN THE EXCITATION FUNCTICONS FOR.

PRE-COMPQUND PROCESSES

In this section we generalize the method developed
8)

by Bizzettl and Maurezing for the calculation of n . This
method is better suited for discussing the correctidon referred
to in the preﬁious section. In the BS method the real and
imaginary parts of the fluctuation S-matrix are taken to be
fandom variables. Here we take the fluctuation cross section,
ot calculated at three energies, E , Ete, and E-e¢_ , to be
the three basic random variables. The joint probability dis-
tribution of these cross sections is taken to be Gaussian.

Such & procedure is valid when many channels are opened.

The condition that at energy E the cross section
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attains a maximum value is

N

where for the moment we have ignored the effect of the non-zero
value of the error bar.' The average number of maxima per unit

12
energy interval, n , is then given by~ }

o Cz 7
R = £ \do;, |do Jdoy F (9,0 ,05) wh
.-oo —be a9
where Uy = cfg(E) ; Oy = 0f£{E+ec) . Oy = afﬂtE—so) , with
0120,%04 (for which reason the appearance of the factor 2) and

F(Gl'02'03) is their joint probability distribution given by

3% -2
F(U': 30, ,03) = (a??i’) D Q)‘P["" X A X] (15)
%1
where x = |o, and D =det C, C being the correlation
R - .
3

mat;ix,_whqse \ik_ matrix_elem@gt is given by (see Eq. (10))

. S . Ep o AR ’ : :
Caiv = }Z On — ' (16)
L iew g |

The matrix. A is just C .

The triple Gaussian integral, Eg. (1l4) is easily

evaluated to give .

.12,

— 1 -1 Ctoy— C¢C €,) 1
- = ta - 17}
n = TE, " \‘4 Ceoy— Crag) {

The C(eo) , etc. is given by Eg. (10).

Equation (17}, in the limit of zero energy step

size and one class case, reduces to

o0-55

n = —

r

which is BS .relation valid for the large number of channels

{18)

case. Eg. (17), though valid for many classes and contains the
effect of finite energy step (EO#U), still suffers from the
absence of any information concerning the nonzerc value of the
error bar. To remedy this we have to modify the basic condition
for having a maximum in the cross-section, Eg. (3). Thus we

require for the maximum the following

o CEY > O (ELED +¥ VD (19)

where V{c¢) 1is the wvariance of the cross section
) <
Viory =< at> — Lo > (20)

Eguation (20) guarantees that only the "maxima" defined within
the error bar (accounted for by the parameter y>0) are to be
counted. Let us now introduce the following parameters
T(E+E€) = Lo+ Ve x

o (E) = Lo> + Vo %z

g (E~€) = <O > o+ JV X3

(21)
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The average'ﬁumber of real maxima per unit'énergy is then given
by

- 2~ J“sz c]X
w0y % /R—(:;> —_‘L/J'RTJ)

where- o
Reo) Ve /(0"32'

For the Gaussian description of F to be valid, RI(0) << 1 .

i

Thus we extend the lower limits in the integrals above to ~®,
The joint distributidh function F(xl,xz,x3} is just as in

Eq. (15). Making the following change in varlables '

X

P B R B S ’.xsl__'“.@.“f'.we

and calling tan 8 = t , we obtain, after_intégréting over y ,

the following integral form for )

4

o=t -1 .j dt
T TENPM Cract vt

exF{ 3 .&Jﬂjfi} 23)

where D is the determinant of the correlation matrix C “and

is given by

D = (i - Cz(éo )) -+ Cz(lf:;).[(_“(zg) -1]

+ Cczg)[c'z(g)—-c(zg)] o {24)

and

.14,

:D M = .z(l— C[.Z.G’))—{-(]— Cz(-?-éﬁ)) -}-4—C(§)[C(1§)"1] (25)

e, {(1 o))~ CCE)) ('_Cme)) } (26)

. 2
C, =5i{(€?€}~€(zg))- G- CCG”)):D'M(I—' .C@{f,))_‘ } (27)

In all of the above equations C(x) ' is givén_by Eq. (10), namely

. N 8 R
On
CCX)Z]Z — % }
. h=| T

Clearly in the limit 'v=0 ', we récover-the errof¥bar'uncofrected
Bq. (17).

The integral.intﬁq.‘(23)lcannot be evaluated in
closed form. We have calculated n through numerical integration.

Equations (23)<(27) with C{x} given by Eg. (10)
constitute the principal results of this section. -They show
clearly the way the multistep aspect of the excitation function,
as exemplified through the generalized cross-section auto—éor-
relation function C(x} of HEg. (10), enters in the determination
of the averagé number -of maxima, subject to the usual experimental
restrictions of having tc deal with a fiﬁite energy siep size,
€y r and a non-zero error bar, Y . The zero step-size 1imit
(so=0} and perfect measurement (y=0) is easily obtained by

taking the appropriate limit in Eq. (17). Considering a two-=
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class case we obtain

n=¥ N(s,0,7.7) RECLY

O

where

I

N (0,0:,17,10) {
cr/r' +01/F+.za' [r’ +£ +P I’ I"F’ 'Jz, F’J}
a?/n* +a1/r;—2cr,a;[q r;—.~1:1}
with (29)

{2 __fe £4
= ) o = e fa )

Egs. (28) and (29) are a simple generalization of the BS formila

for the two-daorway~class case valid when the number of chamnels is

large (the numerical factor ;El is just 0.55, see Eg. (18)6)

Actually by setting either gy or o, equal te zere, in Eg.

(29) , we. recover Eg.: (18) for.the.one-class case {i.e. N + %—
1
. _ S S _ny
if -02—0 ar .. N 'y AT 01-0).
Close inspection of .the functicn .N(Glﬂﬁ’rlJbl

shows that its walue for a given.a‘l- and 0’2 , lies between
%_ and %— W Using éur ‘convention in ordering the doorway
1 2 .
classes,” we have

N {N@eg {5 6o

The above inequality clearly indicates that the'average number

of maxima to be expected in an excitation function, is generally

.16.

smaller than the number predicted by BS for the equilibrated
cne-class situation {only T2) and larger than the number
associated with the simple deoorway class alone (only Pl). This
is quite reasonable since the vresence of overlapping-docrway
modulation on top of fine structures (FS) fluctuation in q(E)
will make some of the FS maxima practically disappear.

Let us turn now to the effect of €5 and ¥y .
Both the non-zero wvalue of EO and vy result in a reduction
in the vglue of n . Bs €4 increases in value (EO = F2) some
Fs maxiﬁa start disappearing and eventually when €q rea;hes
the value Fl , one starts counting basically the doorway-
generated maxima only. In so far as the non-zero value of the
error bar (y) is concerned, the resulting reduction in n is
gquite easy to understand. The larger the error bar in the data,
the larger would be the uncertainty in the nature of the pgaks
in the excitation function and accordingly the smaller the number
of the real maxima to be expected. This feature is quite clegrly
seen in the formula for n . Eg. (23). .

To exhibit the dependence of n on the several
physical quantities that specify the multistep nature of the

reaction, i.e.

Ul' 02, 03, cens Fl, Pz, T3, <.+ wWe consider
below the specific case of the reaction 2SMg(3He,p)27A£ ,
studied recently by Bonetti et a1.4). These authors analysed

several excitation functions for transition to discrete states

27A£

in . and found that in all cases two correlation widths

seem to be present: a larger chne, Tl = 200 keV , attached to a

simple, five-exciton, configuration, and a smaller one, F2 =

= 50 keV, associated with the life-time of the equilibrated

compound nucleus 2851.
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The average number of maxim@ .according.to Bg. (23)
was célculated as a function of £ and vy and for different
combinations.of o¢;. and o, . dur results are summarized in
Figures 3-§.

To better appreciate the.effect of including the

error bar in the calculation of n , we present our result in

the figures in the form of a factor defined as. - dhqso)= n(y# 0,eq)

ni{y= 0,235’

which when multiplies | given by Eg. (17), namely E{Y=0,EO);
supplies the desired result. As is clear from the results,
d(Y,eo)' depends strongly on Y and mildly oﬁ_ €y s for most of
the different cases studied. The only case where the €, ~
dependence of .d(y,ao) is very strong is.the one-class case
associated with the doorway reéonances {g1=1.0, q2¥0.0, Fig.Jg )
when ¥ is taken fo be large (0.5). Although-.ﬁ}ymﬂ,so) always
decreases with incréasing € ﬁhé corréétion factor d(y,eo)
tends to increase with Eo , for a given vélue of ¥y (see, e.qg.,
Fig. 3, d(Y=m5,eo=50) = 0.2 , d(y=0.5, £,7200) = 0.47). Clearly
this treﬁd in d , depends on the nature of the correlation
function. BAs long as there ére fine structure fluctuations
(g27#0)., the increasg in @ with Eo. is very mild_even for large
values of ¥ (Fig. 3, 4 and §). Once the fine structure
fluctuations are removed,'then-the iqcregse cf 4 with €y
in the region' £, ¢'T , is seen to be quite drastic egspecially
for large. values of v.  For the case .shown in Fig. § {o1=1.0,
gz=0.0} , 4(y=0.5, eo=50) =.5 %10_5 and _d(Y=0.5,—Bo=200) = 0.43,
i.e. a change of ;everal orders of magnitude.

In cases where d(Y,eo) changes slow ly with
e& s it would be natural to seek a form for n that contains

the éo— and y-corrections as multiplicative factors, in the

sSense

-18.

— I3 ' o
A= N (05,0 dyte) dyeo) 1)

4t

where, though not indicated in Eq. (3%}, both d, and d,

. should depend on o, 65, I'; and T, , and N is thé function

defined in Eg. (29). A possible way of contracting d, (y) 1is.

" to define an average of d(Y,EO) over several value of £ ,

o
(i.e. the average curve in Figs. 1, 2 and 4). The function

dife,) is just Bq. (17) devided by Eq. (28). Further work on
the validity of the approximation implied by the form of o

given in Eg. (31), is reguired.

IV. DISCUSSION AND CONCLUSIONS:

-In this paper we have discussed Saﬁxal‘sﬁﬂﬁstﬁxﬂ
aspects of multi-step compound éxoceéses; In particular we have
considered’ the interconnection betweén.the numbef of ‘makimim
method, appropriately.generalized to the multistep case, and the
cfoss—sedtion auto-correlation fuﬂction-recently1discﬁ$sed in
connection with pre;equilibriﬁm reactions. _

. It is emphasized that any realistic application
of the number-of—maxima method_must unvoidably_coﬁsi@er the
limitations imposed by the non-zero vqlue of the gnerqy_step
size and the error bar. .Both of these effects result in a
reduction in the average number offmaxima. _

Our results should be guite useful in supplying
a double check, through the comparison of f with experiment,
of the results of the generalized Ericsqn analysis of mulpistep

excitation functions.
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FIGURE CAPTIONS

Figure 1,

Figure 2.

Figure 3.

Figure 4.

A schematic plot showing a typical nuclear reaction
gpectrum. The individual peaks at the end of the spectrum
represents direct transitions to discrete states in the
residual nucleus. The broad bump indicates the evaporation

component.

A schematic plot showinﬁthe spectrum of emitted particles
at lower energies. The individual peaks represent compound
transitions to discrete states in the residual nucleus.

The different components in each peak represent the.

contributions from the different stages.

The correction factor associated with the finite size of
the erxror bar, for the combination o, = 0.75, g, = 0,25,
"y, = 100 keV and Py = 50 keV. The full curve corresponds

to €y = 200 keV, dotted one, €y = 150 kev, dashed-dotted,

#

€

o 100 kev, dashed, ey = 75 keV and dashed-dotted-dotted,

€
o]

{17 )} are 41, 29, 23, 15 and 12 respectively. The error

50 keV. %he corresponding values of 5(Y=0,£O)AE,(E$

bar corrected n is obtained by multiplying n{y=0,c)AEby
the appropriate value of d, plotted in the figure as a

function of v {see text for more details).

Same as the previous figure for the combination gy = 0.25,
o = 0.75, F'; = 200 keV and ", = 50 keV. The value of
E(y=0,eo)Agis 45, 32, 25, 17 and 13 for Ey = 50 keV, 75 keV,

100 kev, 150 keV and 200 kev, respectively.



Figure 5,

Figure 6.

.21.

Same .as the previous figure for the combination

g; = 1.0, 0 = 0.0, [} = 200 keV, and T, = 50 keV.

value of n(y=0, ¢ }4Eis 20, 18, 17, 14 and 11, for

&, = 50 keV, 75 keV, 100 kev, 150 keV and 200 keV,

respectively.

Same as the previous figure for the combination

6; = 0.0, ¢ = 1.0, T; = 200 keV and T, = 50 keV.
value of n(y=0,£)4E,is 45, 33, 26, 17 and 13 for
€o = 50 keV, 75 kev, 100 keV, 150 keV anﬁ 200 kev,

3

respectively.

' The

The

Figa
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