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ABSTRACT

The Féshbach projection formalism is used to
calculate the form factors for the (d,n) stripping process to
isolated analog resonances. These are used in a standard DWBA
stripping calculation in which the radial integraticn over all
space is accomplished by including outerspace contributions
evaluated along the complex contours of Vincent and Fortune.

It turns out that the shape and magnitude of the predicted cross
section is guite insensitive to the continuum proton wave

emanating from the resonant residual state.

1. INTRODUCTION

A great deal of interest has been devoted to the
DWBA treatment of the stripping process to unbound residual

statesl'2'3’4).

Although in a variety of cases these states are
analog resonances, no special attempts at exploiting this property
have -appeared in the literature.

In this paper we present an analysis of stripping
to isclated analog resonances for which'fhé.DWBA form factors
are calculated from the analog state projection formalism5'6'7}.
The result permits an explicit separatién of a resonant part
from the total breakup amplitude. fhe resonant part of the form
factor is expressed as the sum of the wavefunction of a bound-
like state |A> in the residual nucleus plus a virtual proton
wave which appears as the result of the coupling of |A> to the
nen-resonant continuum.

Even though all the wavefunctions appearing in
the DWBA radial integral are regular and the integral is finite,
the usual numerical convergence difficulties were encountered.
These were resolved using -the procedure of Vincent and Fortune
which employs a deformed integration contour in the complex
r—planeé).

The method was tested for an aﬁgular distribution
at By = 13.0 MeV of the neutrons from the reaction 20(d,m) N
assoclated with the sharp proton resoﬁance at.2.365 Meﬁ excitation
energy in !3N , the unbound mirror of the first excited state
of iaC. The results show that the dominant contribution to the

resonant form factor comes from the wave function associated with

[a> and that the general shape and magnitude of the calculated

"angular distribution turn out to be quite insensitive to the term

involving the proton wave. This allows an immense simplification
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to be introduced into the analysis.
Application of this analysis to an energy averaged

angular distribution at Ed = 12.4 MeV for the reaction

8y

13¢(@,n1) ' ®N used by H. Schelin ét al.®’ i$ included as an

illustration.

2., THE RESOMANCE FORM FACTOR

The phase spaée used to describe the residual
resonant state may be analysed in terms of a) the normalized
single proton state associated with an orbital e, identical
to the corresponding single—neutrdn parent staté and b) a smooth
(néh—resonant} continuum, 6rthbg6nal to thié singie particle
state. The proton.resonance.is evidenced by takinq'into account
the coupling of the normalized orbital to the non-resonant
contiﬁﬁﬁm;. .

. Let H be thé hamiltonian for the residual

syétém, Then
THYS (E.x) = Byl (E,x) EEY)
e X = T
Eg R°Ep

where £ represents the internal coordinates, r the relative

cgordinates gpé ER islthe enérgy of fhe residual system. The
(tf is the usual convention to indiéaté that ¢ 'satisfies cut-

_going or ;pcoming boundary conditions, ;espectively.

. The phasg space decomposition described above may

be expressed as

el

where the operator A = |[A><al| = EunC><unC| , with P = 1-|a><a|

and u is the single neutron orbital bound to the target core

"¢ which describés the parent state.

Substitution of equation {2) into (1} followed
by operatioﬁ on the left firgt by A , then by P gives two

coupled equations

* _ t
(Eg=Hpp) AleR> = Hyp 2l _ {3

R

|
=]
w
<
v

(B -H,p) Plyg > = (4)

R R

where the convention H AHA and H = PHA etc. has been

AR PA
adherred to.
The non-rescnant continuum states, denoted by

.
¢é are obtained from

R
(E-H_) 95 > =0 5
R PP E, (3
R
and
. .
<AELP;: > = 0 {6)
R
In terms of these the solution of equation {4) is
t * 1 +
Plog » = g » + —mpeioemms Hpo Ay, > (N
Ex B (@l -w ). PR ER
r PP
where —~;4&-—— ig the Green's function for H
(EL -H_ ) ' PP
Br PP '
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The second term on the RHS of eguation (7} involves the amplitude

<Aiw§ > which can be found to be, from equations (3) and (7)
- .

-1

+ P *

<Aly¢. > = ‘:E - H,, - <A|JH ———— HiAﬂ <alH{{¥ » (8}
Eg R AR X g B En

r PP

it

‘It thus shows resonant behavior and correspeonds to virtual out-
going waves originating from the normalized analog state |a> .

The total state of equation {2) may now be written as,
Tt * 1 ' + :
g > = H’E; + [l bl HPA] |A><A|“’ER> (3)

£

For the problem on hand, this analysis of |¢ﬁ >
was used in connection with the final proteon plus target state
in a standard DWBA {d,n) stripping amplitude. This leads to a

non-resonant (background) contribution

B -~ +
Tdn,p B <XntPER;Van Xq%q” {10)

and a resonant contribution

- ‘ - + : -
Sy Vo IXgeg> + <X ?ERivpn{qu’d{I <¢ER|A> (11)

3
o 1)
=
o]
n -
——

- +
where. Xn and Xd

waves, ¢d is the deuteron wave function, and we used the

are the neutron and deuteron distorted

substitution

1+ 5, 1A > w )+ P2 (12
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which omits explicit reference to the core variables, since they
are integrated out to one in the DWBA stripping amplitude.

The resonant am§1i£ude <w; {A> , equation (8),
will give rise to a peak in the neutron spgctrum at the energy
for which E, = <a|H|A> . The width of this peak is related to
that of the analog resonant state. In general, interference
effects between the'resonant.aﬁd.noh—rééonant amplitudes will
be present in the excitation function. .

The fifst métfix element in éqﬁdtion (ii) has
exactly the structure of a'sténdard DWBA'étiipping matrix element
leading to a bound state in the residuai nucleus with the parent
state description. The second matrix element contains three
continuum states and involves Qadial integrals which converge
slowly. The phase spaﬁe construction imposes the orthogonality
relations .

<u [ > =0 and < [P > =0 (13
R ) R :
‘In practice gqxﬂjnhs {(4) and (5} may be solved by

considering instead the homogeneocus equations

(Eg-H) H;?B = Alu> L (14)

e [ (e}
(E,-H) H’E >

N o u >+ PH{un> (15)

where H is the optical model Hamiltonian for the proton + !2¢C
system.

The orthogonality conditions serve to determine

'A and o in a relatively simple way since, e.g., the overlap




<un§‘f;(h)> is a linear function of X . Moreover, the choice
R

described above for fun> leads to
PH{u > = Pvclun> (1e)

where VC is the Coulomb field of the core or target nucleus.

9)

A computer code TABOO exists for calculating the un(r} and

for solving the inhomogeneous equations subject to the orthogonality

conditions (13) to obtain the functions ‘P; and LP; -
: _ . oy L wm R

A computer code TUNEL which incorporates the

4}

procedures of Vincent and Fortune caleulates the radial integral

for the second matrix element from a. point on the real axis rp
to infinity along imaginary axes Vt, as they suggest. The
point L is chosen so that in the space beyond it (the outer
space), only the second matrix element contributes to the radial

integral. The DWUCK4_codell}

is suppliied with the calculated
resonance form factors up to the éoint rP {this is mostly the
first matrix element} and performs the integration along the
real axis from %=0 to r=rp"in the usual manner. The values
of the integral in the outer space for the different partial
waves is then summed with the appropriate inner space integrals

of the DWBA calculation. The inner space integrals are referred

to as "uncompensated"” and the total space integrals as "compensated”.

3. THE TEST CASE

We chose as.a test case an angular distribution
at #.= 13.0 MevV of the neutrons from the reaction t2c(d,n:) N

Time of flight neutron spectra have been measured for this case

at the University of S3o Paulo Pelietron Laboratory by H.
$chelin et 21.8Y . This first excited state in N  at 2.365 MeV
excitation energy is unbound by 0.421 MeV. The single particle
description views this state as a 255& continuum proton
coupled to a '*C core. The parent state is the first excited
state in *C at 3.09 MeV excitation energy and is bound by
1.85 MeV. The single particle description is a ZSyz neutron
bound to a !?C core. Since the L-transfer in the stripping
process is zero, this is an especially convenient case for
testing the analysis.

In obtaining the neutron spectra the experimental
energy spread (100 keV) was larger than the resohance width -

T = 32 kevi?,

Thus it was impossible to see any interference
effects between the non-resonant background and the resonant
part of the stripping amplitude in these spectra. Howewver, they
clearly showed that the background contribution in the region of
the n,; peak is indeed extrehely small (if not zero) suggesting
that the resonant sfrippinq amplitude alone accounts for the
integrated yield under the neutron peak. Because of resolution
limitations, this is directly compared to the calculated doubly
differential cross-section dzc/dERdR integrated over the
resonant line. Since the resonance is narrow, the slow energy

dependence of &PE is neglected in the energy integrations over
R

intervals of the order of the resonance width,

4. RESULTS

The form factors (un+qa ). calculated by the
R

computer code TABOO for the 2.365 MeV rescnance in '’N are
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shown by the full curves of figure la and lb. The dashed@ curve
of figure la is the parent state form factor.

The DWBA stripping differential cross sections
calculated with the code DWUCK4 "D for the potentials of table 1
but using the form factors of figures la and 1b (full curves)
with the radial integration terminating at rp=24.0 F and
rp=34.0 F respectively, are shown in figure 2. The sensitivity
of the predicted cross sections to the upper limit of the inner
space radial integral is quite promnounced.

Figure 3 shows the predicted cross sections where
the appropriate outerspace integrals {beginning at rp=24.0 ¥
and rP=34.O F} have been summed to the DWBA integrals. These
compensated integrals give similar predictions for the differential
cross section as one would expect. It should be mentioned that
the number of partial waves included was such to guarantee the
convergence of the radial integral with respect to this gﬂamﬁxx.

The differential cross sections calculated for

-the partitioning radius 34.0 F with the radial integral ocompensated
to include total space is shown again in figure 4 along with the
differential cross sectien calculated by using just the parent
state form factor, i.e., the u ~ term of equation (11}. The
striking similarity of the two cross sections shows the
insensitivity of the calculations to the second matrix element
of equation (11), i.e., the term invelving the proton wave.

The results of figure 4 suggest that the DWBA
stripping analysis to isolated analog resonances is quite well
accounted for by using the form factor w, which describes the
single neutron orbital of the parent state. This simplifies
considerably the calculations since the usual DWBA codes may be

used without complicated alterations.

.10,

As an illustration, an energy averaged angular
distribution for the n; neutrons at Ed=12.4 MeV was qhosen
from the work of H. &jmlina) for analysis. The energy averaged
distribution was used in order to insure the validity of adding
the direct and compound nuclear mechanisme incoherently.
Justification of this enerqgy averaging technique is given in
detail by P.E. Hodgsonl3’l4). The results are shown in figqure
5. The dash curve is the DWBA brediction using the parent state
neutron orbital to calculate the form Ffactor and the dash-point
curve is the resulf of the Hauser Feshbach statistical model
prediction for this channel. The Hauser Feshbach calculations
take no explicit account of the resonant nature of the residual
state. Details of tﬁe optical parameters used for calculating
these cross sections are reported in reference 8).

The solid curve of figure 5 is the 'best fit' to
the experimental cross section indicated by the solid points.
The curve was obtained using a direct réduction factor of 0.28
and a Hauser Feshbach reduction factor of 0.65. Discussion of
these results is also given in reference 8) and will not be

repeated here.

5. CONCLUSION

Stripping to isolated analog resonances may be
analyzed with the standard DWBA techniques if the unbound proton
form factor is replaced by the parent state bound neutron form
factor. This conclusion is based on the fact that the non-resonant
breakup amplitude does not contribute significantly to the

stripping amplitude over the resonance itself.




I

ACKNOWLEDGEMENTS

The authors express their thanks to the Brasilian

Conselho Macional de Pesquisa (CNPg) and the Financiadora de Es-

tudos e Proijetos {(FINEP) for the financial aid extended during

the course of this work.

~
o

.12,

BIBLIQGRAPHY

1) W.R. Coker and G.W. Hoffman Z. Physik 263, 173-199 (1973).

2) G. Baur, F. Roesel and D. Trautmann J. Phys. G: Nucl. Phys.
vol.2, 275 (1978}.

3) G. Baur and D. Trautmann Physics Letters, Section C, 23,

Ne 4, 293 (1978).

4) C.M. Vincent and H.T. Fortune Phys. Rev. C, Vol.2, Ne 3,
782 (1%70).

5} N. Averbach, J. Hufner, A.K. Kerman and C.M., Shakin Rev. of
Modern Physics, Vol.44, N9 1 (1972).

6} A.F.R. de Toledo Piza II Simpdsio Brasileiro de Fisica Ted-
rica, Ric de Janeiro, Fascicule III, Parte I, 1 (1969).

7} A.F.ﬁ. de Toledo Piza Nucl. Phys. Al84, 303 (1972).

8) H.R. Schelin, E. Farrelly Pessoa, W.R. Wylie, E.W. Cybulska,
K. Nakayama, L.M. Fagundes, and R.A. Douglas. Preprint
The '?C(d,n)!’N Reaction between E4=7.0 and 13.0 MeV. Ins-
tituto de Fisica da Universidade de Sao Paulo, SP, Brasil.
(Submitted to Nuclear Physics for publication).

9} A.F.R. de Toledo Piza Computer Subroutine TABOO to soclve a
projected inhomogeneous Schroedinger equation in an optical
model continuum. . Internal Publication, Institute de Fisiea,
Universidade de Sac Paule, Sao Paulo, Brasil,

16) E. Parrelly Pessoa Computer Subroutine TUNEL for calculating
the radial matrix elements along Vincent and Fortune Contours.
Internal Repoxt, Instituto de Figica, Universidade de Sac Pau
lo, S8ao Paulo, Brasil. .

11) ».D. Xunz DWBA Code, Version DWUCK4, University of Colorado
Program Description Notes (1974).

12)

H.L. Jackson and A.I. Galonsky Phys. Rev. 89,370 (1953).



.13,

13) P.E. Hodgson Ann. Rev. Nucl. Sei. 17, 1 (1967).
14) P.E. Hodgson, Nuclear Reactions and Nuclear Structure,

Claredon Press, Oxford (1971).

TABLE 1 - Optical parametérs for DWBA code at Ed = 13.0 MeV.
volume | Surface
Real Imaginary
W5 x4 R (F)[ R__{F) a,{r) a (®)
(MeV) (MeV)
Neutron 45 44 1.32 ] 1.32 0.57 0.34
Deuteron 118 30.9 0.90 1,67 0.30 0.57

No spin-orbit terms used




FIGURE CAPTIONS Figure 5 - Illustration of the applicatioh of the analysis to
the energy averaged. cross section at <Ed> = 12.4 MeV

Figure la - The solid curves represent the real part of the form .
for the reaction ‘?C(d,n,)'’N. The dash curve is

factor for the resonant state -in '°N at E = 2.365 Mev
the DWBA prediction. The dash-point curve is the
which was calculated from the analog state projection
: Hauser Feshbach prediction. The solid curve is the
formalism. The dash curve represents the parent
: "best fit" to the experimental points (solid@ circles)
state form factor which results from a DWBA stripping
o o S which was- obtained with a DWBA reduction factor 0.28
analysis. .
and a-Hauser Feshbach reduction factor 0.65.
Figure. 1b - The solid curves represent the imaginary part of the
form- factor for the: resonant state.-in  !IN  at
E, = 2.365 MeV calculated from the analog state -

projection formalism.’

‘Figure 2 ~ Behavior of the radial integral for two different
o values of the upper integration limit chosen along.

" the real r-axis. The dash curve is for Toax= 24-0F
and the solid curve is for Vrﬁax=34.0 F. The
_rescnance state form factor was used in the standard

DWBA analysis..-

Figure 3 - Repeat of the calculations of Figure 2 where the
values of each radial integrals wa§ corrected.by the
appropriate ocuterspace contribution. This outerspace
contribution was cbtained by integration along the
contours of Vincent and Fortune. The dots and solid
curvé refer to rmax$24.0 F along the real axis and

the triangles to rmax=;4.0 F.

Figure 4 . - The solid curve represents the DWBA differential
cross section obtained using the analog resonance
state form factor with the DWBA radial integral
evaluated for all space. The triangles represent the

cruss section calculated using the bound parent state form factor.
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