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ABSTRACT

In order to obtain the commutation relations for the crea
tion and annihilation operators for the para-particles in
Quantum Mechanics, a somewhat new second quantization-méthod'gs
proposed in this paper. We show that for bosons and fermions
the usual bi-linear commutatihn relations are valid and that
for the para-particles the commutation relations have a multi-
Tinear mafricfa1.form. It is also shown that from a symmetric
group point of view, it is hard to accept the paraboson and

parafermion concepts in Qhantﬁm Mechanics.




1. INTRODUCTION

(1

In a preceding paper we have shoyn, using the
irreducible representations of the symmetric group in Hilbert
space, that boson and fermion states and also para-states are
compatible with the postulates of Quantum Mechanics and with
the Principle of Indistinguishability. Qur analysis that gives
support, within the framework of Quﬁntum Mechanics, to the
mathematical existence of para-states, juétifies, in a certain
sense, the genera]_statistics_proppse¢ a 16ng time ago by

(2)

Gentile in a thermodynamic context We have improperly

named para-bosons and para-fermions‘uuf intermediate para-

states, only td'be in agreement with Green‘s termino]ogy(3).

Nefertheless, there afe_substanyial differences between the

two concepts as it i; seen in the sequeT. Throughout this

work we use the term para-state in a broader and more precise

§ensg than usually emp]oyed.. A“better name would be_genera1-

states or genti]eon;stqtes_and the para-particles that could

be represented by .these pa}a—states would be named gentileons.
in a few words, we have shown that an isolated system

consisting of N identical particles with total energy E has

a N! degenerate energy spectrum, due fo the permutations

Pidi=1,2, ..., NI} of the Tabels t, 2,3, ..., 0 of

the particles in their configuration space a(N) . OQur analysis

has been performed considering the eigenfuctions of the energy

operator ﬁ(1, 2, <.+ N}, but it is easy to see that similar

resutts could be obtained by taking into account any hermitean
operator f{1, 2, ..., N}

The energy eigenfunctions f{e.} (i =1, 2, ..., NI},
where e; = u{1,2, ..., N) and e,, €3, ..., ey, are ob-
tained from e: by permuting the labels 1, 2, ..., N, consti-
tute a N! dimensional basis of a Hilbert space that was indicat
ed by IZ(E(N)) . This Iz(e(ﬂ)) is decomposed into irredu-
cible sub-spaces . h(q} s that are the underlying sub-spaces of
the representations of the symmetric group S(N) in atl(E(N))
corresponding.to the differenf partitions (a) of the number
ﬂ . There are two one-dimensional sub-spaces that corespond to
{a) = (N} and (o) = (1N) and the wavefunctions associated to
them afe, respecf#ve]y, YS » Which is totally symmetric, and
YA » which is totally anti-symmetric under permutations. The
plad

remaining sub-spaces have dimensions going from 22 up to

{N-1)2 with attached wavefunctions indicated by the column

vectors
Yi{a)
Y:{a)
¥() = | (1.1)
ﬁ .
Y, {a)
where 1t = (f(al}z is the h(“] dimension and Yi(a).

(i =1, 2, ..., 1) (which constitute the basis of h(u), are

given by a linear combination of the unitary vectors_{ej}-



(3 = 1.2, <oy NL) .

By applying a permutation P to the particle labels in

'E(N) » the vector Y{a) becames P Y{a) = X(a) = T, Y(a) ,

where Td is a unitary matrix with 12 components. For

the one-dimensional sub-spaces we have Y. = YS and Y, = -Y

5 A
so that the concept of totally symmetric and totally anti-

A

symmetric wavefunctions subsists. For the multidimensional
h(u) ~ these concepts are meaningless because the permutation
operation P Y(o) dimplies in a rotation of ¥(a), defined by
a matrix Ta with t2 components (there are <2 numbers, put
into a matrix form, associated to the permutation P, instead
of only one number that canm be +1 or -1).

Since T, s a unitary matrix (orthogonal in the real

case), it was also shown.that the function

T
plo) = I [¥i(a)i? (1.2)

i=1

is permutation invariant and has been defined as the probabili-

ty density function.

According to Okayama(4), to take into account the correct
dimensions of the irreducible sub-spaces, it is necessary an
~extension of the definition of the mu]ti-dimensionaf wavefunc-
tions. However, with this in mind, he used a somewhat cumbersome
matricial form for the- Y(o}, in which we do not see cleariy

all symmetries involved. Thus, we are convinced now that the

.4,
n

original and main results of our preceding paper are: (1)

we have obtained a more compact and precise representation of

_h(u) , showing that the Y(a) can be put into a vectorial form,

with 1 orthonormal components Yi(a) and (2} we have shown

that the function ¢(a), defined by equation (1.2) is a'permutg

tion invariant. Thus, if para-particles (gentileons) ‘exist,
they must be represented by the state vectors Y(a) of the
multi-dimensional sub-spaces. The number of columns of the
first row of the Young shape associated to each irreducible

sub-space h(a)

will determine the possible maximal occupation
number d of the gentileon. This maximal order d will be named
statistical order d of the gentileon, If, for instance, we
have a system composed by N gentileons of order d ,with d 2N ,the
only possible state vector that could represent the system
should be a bosonic function, So, the gentilionic behaviour
shgu]d be masked when the above condition is fulfilled. A
natural extension of these statements allows us te infer that
all particles are gentileons. The fermions correspond to
d = 1 , whereas the bosons correspond to d = = .

The present paper, which follows the same algebraic-

(1)

geometric reasoning adopted before , is arranged as : in

Section 2 we study some geometric properties of the Y(a}

states, by analysing carefully a system formed by 3 gentileons of
order d = 2, and by exteading to the N-particles systems several
conctusions. In Section 3 it is developed a somewhat different

process of second quantization and multi-Tinear commutation
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relations for the creation and annihilation operators, and their
hermitean conjugates are obtained.  The usual bi-Tinear commuta
tion and ant%;commutation retations for bosons and fermions are
particular cases of our géneral expressions. In:Section 4, our
results are also compaféd with paréwsfatistics theory proposed
by Green(gr and the substantial djffgrences'which have been.

found between them are exhibited., -

6.

2. ROTATIONS IN THE HILBERT SPACE

In this section we analyse some transformation properties
of the wavefunctions of a system of N non-interacting parti-
cfes. A geometrical interpretation of the transformations,
based on the representation of the symmetric group, is given .
in terms of the basis vectors of a Hilbert space. We will
restrict ourselves to the detailed study of the simplest non
trivial 3 particTes case. The generalizations of the essential
results which can bg.extracted from this simp1e'case appear at
the end of the section.

Thus, if the system is composed by 3 particles, according
to Cattani and Fernandes(1); the Hilbert space has dimension 6,
compfising two one-dimensional sub-spaces and one four-dimensig

nal sub-space, It was shown that, if we indicate by.

the vectors of the basis of 2(8(3)) » the uni-dimensional

wavefunctions YS and YA are given by
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and YA = (T//E)(e1 -e, -e +e +e +e) and the 4

: 5 6
dimensional Y is given by

Y1 12 0 12 -2 0 -2 ) [q

o L L e WA s s 13 17273 i 2.0
Yot |-1/273 33 -y/2/3 17273 143 -1/273) ot
Ya 172 0 -t/2 -172 0o 17z | |%

non normalized to one.

These wavefunctions can be put into a compact forh ¥ o

Y)Y (18 UE 1B B 1B 17 ) [en)
1/2 0 1/2 -1/2 0 -t/2 e
e v l- 123 V3123 /3 AN A2 e
/273 A\WE -3 23 AT <1723 (e
172 0 -1/2 -1/2 0 1/2 esg
Yy B -1E AWE ANE 1B <18 | e

(2.2)
where U is a unitary matrix which determines the structure of
the functions YS, Y and YA .

Now, if we assume that the particles do not interact and
we indicate by o , 8 and vy the states allowed for them,

~we see that the basis vectors e can be written as

e, (aBy) a1} 8{2) v(3}
| Rl
e o g

e (arB) = |glioay| = |a(2) a(3) v(1)
es{aBy) al3) 8(1) v{2)
eg{aBy) a(3) 8(2) v(t)

If, instead of the order oBy we have, for instance, avf the

basis vector is given by

ey (oyB) {elt) v(2) B(3)

. e,{ayB) alt) v(3) B(2)
Celays) - leslovBY| _ 7 |af2) (1) 8(3)
e, (ayB) af{2) v{3) 8(1)

es{oyB) af3) y(1) g(2)

ec(ays)] a{3) v(2) B(1)

Since ei{ayB) = e.{uBy), es(ayB) = er{apy), eslavs) = e,(asy),
ey(ayf) = es{aBy), es{ayp) = e¢{oyR) and €s(avB) = es(aBy), the
basis transformation e{aBy) » e{ayR) can be described by the

matricial relation

0100 00] {e.{apy)
10000 0| jez(afy) :

elayg) = (000100 les(asy)| P[GBY] e(a8y)
001000| |eepy) r8
000001 |es(oy)
000010 les(uBy)

aBy : . s
where . P[GYB] is a un1t§ry matrix.

Thus, for a generic itransformation {agy) - {ijk} . where
the indices i, j and & can assume the values a, B and vy

in an arbitrary order, we write :

??Y] e(asy) (2.3)

e(ijk) = P[
ijk
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The equation (2.3) means the following: when the indices
{(aBy) are permuted in an arbitrary way, the'basié g 1is
rotated in the Hilbert spaceofgts(?’))'.

If we choose the order .(qBY) » the'wavefunct{un Y(GQY)

is, according to equation (2.2), given by

YS(GBY) 
v{aBy) = |Y (aBy)| = U elausy}
Ya(aBY)

and, in a generic order (ijk) we have, using equations (2.2}

and _(2.3)

v(ijki = U e{ijk) = U P[??I] e(asy) =

aBy + _ aBy |
= U P[ijk} Ut U g(aBY} = M[ijk] ¥lapy).

That is,
i _ cBy ’ - _
¥{ijk) = M[ijk] ¥ (aBY) {2.4)
where the matrix M(??El:3 defined. as M[%?I} = U'P[??I] ut

depends on the structure matrix- Y
In appendix 1 we show explicitly whe M matrices for
- 311 possible values of i, §J and k- . These 6 x 6 matrices

have the general form

0.

11000010
oé 10
i i
eBy]  _ 0! _fegy] + O 5.
M[lakl 0! GLJk] L0 (2.5)
S i
0100 0 01

where G(??El is a unitary 4 x 4 matrix associated to .the
paFa—states.

So, when the indices (usy) are permuted, assuming the
(ijk) values, the wavefunctions YS, YA and Y undergo rota-

tions according to the following relations :
Yo (k) = vs(us_\«), Yo (ijk) = 2¥,{aBy)

and Y(ijk) = G[??I] Y(aRy) . 0f course, due to the unitarity
of the matrices M , the functions [Yslz . |¥Al2' and |Y[* =

4
='E1|Yil2 are invariants under permutations. This assures that

1=
the physical interpretations of the wavefunctions are unzltered
by the unobservables transformations (aBy) + (ijk).

There are no restrictions in the occupation numbers of

the states (aBy)} in the basis vectors e{oRy) , i. e., one,

two or three particles can occupy the same state in e{aBy),

-However, if there are three particles in the same state, we

have ¥, =Y =0 and Yq # 0. For two particles in the same:

state, Y. # 0, Y

S A = Y: =Y, =0 and Y¥,# 0 and Y, # 0.

Here we see that ¥, and Yhﬁha#e-a,fermionic behaviour and
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Y1 and Y; a bosonic behaviour at least when the number of
particles that occupy the same state is smaller than d=2,
When two particles occupy the same state the basis vector
e has only three independent components. Thus, if we but two
particles in the same state o , for instance, a = 8 and one

in the state v , ¥(aay) can be written in a compact form

(Ys] 1773 1/v3 1/v3) fei{aoy)

¥(ooy) = (¥, = l1/J2 V] ~1/V2 e, foayl{= u e{any) {2.5)

¥y M/v6 VE73  -1/v6) lew(eay);

. remembering that Y, = ¥, =« YA = 0.
If, instead of (oay) we have (aye) it is easy to see

. - _ ooy _ X oy =+ _
that Y(ayva) = u elove) 'llp[mya] eloay) = u P[aya] U Y(aay) =
aya

rooy ) Copleey| ooy + .
m ) ¥{oay), where m{aya] u P[GYGI uT . Similarly, for

m[uaYl ¥{aay), since u s a unitary matrix. That is, Y¥(aya)=

{(yaw), ¥{vyon) = m[ig;] ¥(aay)
Since
ep{wyal es{yom)
elaya) = leyoye)l  and  elvow) = |es{vaa)
ey {oye) e1{yoa} \

one can verify that m[o“w] = m[wy] =1 dis the identity matrix.:
oy YO, :

Consequently, Ys(uuy) YS(aYu) = YS(Yuu) and  Y{aay) = Y{(vaa)

Y{yoo)

2.

As was pointed out before, the basis vectors. e do not
present any restrictions on the occupation numbers. The restric-

tions only appear in the structure of Y Y and Y

s A
The totally symmetric function Ys and the_totaj1y anti-
symmetric YA represent, as wé]] known, bosuns and ?grmions.
The multidimensional hybrid function ¥ must.represent, in our
formalism, a system compbsed by .3 gentileons of order Z .
For N non interacfing particles, we can alsc¢ show that

the basis vectors e and the wavefunctions transformations

are generically given by the matrix relations :

e{... ijk ...} = P[::: ??I :::} e(... aBy .7.}-

“and

¥(.o.. 13k ...) M["‘ o8y "'] ¥(... aBy ...)

R 51 S
where the matrix P can be easily computed, but the matrix M
requires an extremely laborious calculations, since it depends

on the structure of the multidimensional manifolds.




3. SECOND GUANTIZATION

13,

in thé second quantizatioh that we proposé, the creation

aﬁ' and annihilation a, operators act, row by row, on

the column vector e

‘Indicating by ey = e(000) the "basis-vector vacuum

state“,‘the creation operators are defined by the fol1owing

relations :
* * * : - *
ay, af &y {000} = ax

a> e{0cB} = vZ - e{uoB)
ax -a;' a; e(000) =.a;
* - 0By X
o, e(Bov) - P{em«]- %

Jug
a* e{fol) = P[Sao} a*

ak- e(UOY)

a% e(08y) = eloy)

at e(00a) = vZ a* efOom) = V2 /3 elooe)
(3.1)

e(0gy) = P{gg:] e(aBy)

e(0u) P{O“B]'/i e(aa8)

Bax0

SimiTarly, the annihilatiom operators are defined by

a_ e{oBy) = e(bBY}
a, e(0ar} = e(00Y)

a, e(wB) =v2  e(0uB)

=1}

4

n el0n) =« P%)

oo
3y elyoa) = P(Yuﬂ] g

e(Oay) = P[ggl] e(00v)
= oy .
elaya) = V2 P[Yua} e{0ya)

14,

Since, by equation (2.3) we have, e{ijk) = %??E] el@dy )

it is straightforward to show that

a? a¥ aK e . P[??E] ar a% ax e
a; aJ 3, e-= P[:g;] a, 3 4, ¢
a* a, a, e-= P[ﬁlg} aé a, a, e (3.3)
a, ax aY e = P[igg] ag a, aY e
a* ap at e-= P[Zgg] a¥ a, ar e

and others derived relations.

The creation and annihilation operators have been defined

in such a way that a¥* a e = N e = N_e , where N_ is
o1 o a a o

the occupation number of the o state in the basis vector e

It can also be verified that a, a; =1 + a; a,.0r, equivalently
fax , ax]_ = 1.

The equations (3.1), (3.2) and (3.3) define. a
composition law for the creation and annihilation operators
when they act on the basis vector e . We see that the permuta-
tion of the indices o and B , for instance, depends on the
third element vy . This generalized result comprisés several
equivalent relations deduced in Grassmann algebras and belongs
to more complicated structures defined in a third order a]gebrai;
system(5).

Let us obtain now the algebraic relations for a; and a,
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when they act on the wavefunctions YS’ Y and YA . Thus,

using equations (2.2), (2.4) and (3.1) we get for
kB AY Fa '

¥(13k) = U e(ijk) = at a% ap U e(000) = a¥ ay af ¥(000)

and

'.k = qS.-Y] : = (.xg‘\(] .
¥ (ijk) M[wk v (aBy) Muk a; a; a:: ¥(000)

which permit us to conclude that

X g% k- O'EB_Y] * * *
a 3 a M[]Jk au aB aY

Similarly, it can be shown that

fkji
4 7 ¥ lF‘MYIBOJ

=
2

* _ wrovBy.
% 2y o v ) ax ey Y :
{(3.4)

a ag a, ¥ = M[xgg a¥ a a_ V¥

at a * = oy * *
roag ar v M[asy at ag at v

and so on.

We must note that the operator a¥* = Na-gives the

_ o ay )
. occupation number of the « state, that is, a; a, ¥ = Nu y

When & = 8 #y , for instance, using the results of

and

a* a* a* y =

Ty e o

-]
L
L
=

it

u
*
U
u
*
=1
[}

'm-'[wi*r]' a*
Yo a
& -
5 |
'"@tﬁ By

When the aperator a

YA , results,

a._ -a* =
o

a a* =
[+ 3

a- a* =
o

a ar =
[+3 o

a a* =
o [»3

o

d -"a* "3
*

- a, a
- a*
dF ay

.16,

reasoning delineated above, we get

T {1 I

ax al v = m{Y ] a* a-Y a* y
Cofeey] ;
am aY Y.= m(owoc] da. aY aa ¥
(3.5)

P —om]YOE] . *
a, - a ¥ = m[aya]' aa .-ar v

* * g o | XY * gk
a ary¥ = m[daY] aﬂ ay aY ¥

.a; ac#s row-by'row.on YS, Y

for Y

for ¥, and 3¥; -ﬁf'~Nd?-b;f

. for ¥y and Y, o d4f Na} 2, where
d = 2° is the order of the gen-

tileon statistics - (3.6)
for Y. ahd \

for YA’ where dF =1 1s the

order of the Fermi statistics.

By taking into account the matrices M and m (given

in appendix 1}, we analyse now the action, row by row, of the

creation and annihilation operators on ¢ :
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a} Bosons and Fermions

when ay and ai éct on YS and YA , we see that the

following usual commutation relatiens are satisfied

fer aﬂi= [z, - 3Ji= o

* B L Y 1 £1 » 3.7
[aa 3. aY]i - Ga _ and consequently ( )
‘-' = 5 *®
{NG s .a?]i_m DaY aY

.[N.oa : a‘r].t ==Suy Fy

where the (-) sign corresponds to Yg (bosons) and the (+) sign

to YA (fermions)
b} . Para-particles

On the: other hand, when ay and- aﬁ act on the para-

state Y , we get, for o £ 8 £ v # o 1

az ¥ ,and so on...

- O‘BY] * * *

at ay af Y- G[ijkj_ ay ap  al Y

kji]
a a, @ Y = G[- a a a Y
cok Ba o £
1 3 Yba) Y (3.8)

_elave * i

aE aY a, Y = G[YQB] ag a, aY ¥

* - TaB *
2, as .éY Y = G{Yas} a a, aY Y

When o =B #y , we have, for i =2 and 4

.18.
* * - -
WA ita x Yt
and for i = 1 and 3
% % g% _'k‘;c* = nak 3%k 3%
aY ar a* Y1 =ay ak aY Y1 = a} aY a Y1

(3.9)

Finally, when « = B = vy, we have
* * = -
ay &y ay Y. =a a a Y, =0 forall v..

It is very important to remark that for the components Y,
and Y, we have [ﬁa , ax], = Sy 3 and [ﬁa = ay]+ = =Sy Ay
and thit for the components Y¥; and ¥, ’[Na > a;]-: Gay a;
and [N, aY]_= -8,y 2, » when N <2 . This means that two
components of Y , namely Y, and Y, have a fermionic
behaviour, whereas the two components Y; and Y, .have a
bosonic behaviour when Nug d =2 . It is commonly accepted(s}
as a natural requirement, that these relations remain valid, in

general, in the theory of free para-particles. Hpre we.show
that this assumption is actually correct and consistent.
For the N-particles case, following the above reasoning

and taking into account the general results of section 2, wé
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obtqin, for bosons and fermions, the usual commutation relations.

However, for the para-states, the commutation reiations have
multilinear matricial forms governed by the G :"' ??E :::
matrices. We are not aware of the exact form of these matrices,
since they depend on the structure of the irreducible manifolds.
Nevertheless, at Teast in priciple, they can be calculated.

Summarizing, we can say that for the oné-dimensiona] sub-
spaces, where the permutation of particles changes the state-
vectors only by a numerical factor (#1) , the commutation
relations are very simple. They are bi-Tinear single valued
relations with the properties

(1) The commutation relation befween any two operators
does not depend on the position of the remaining ones.

(2) For YA there ére only commutation relations
whereas for YS we have only anti-commutation relations.

For the multi-dimensional sub-spaces, where the symmetry
properties of Y under permutations of particles are defined
by a matrix, the commutation relations have multi-linear
matricial forms obeying

{1') The commutation retation between two operators
depends on the position of the remaining ones.

(2') It depends on the particﬁlar row Yi where it is

applied.

.20,

4. CONCLUSTIONS AND COMMENTS

As it is easy to see, our second guantization procedure
is a natural extension of the usual second quantization method

adopted in the 1iterature(7).

The well known boson and
fermion commutation relations are obtained as two particular
cases of our general expressions when we restrict ourselves to
the one-dimensional sub-spaces. 1In.our approach, the symmetry
properties of the multi-dimensional sub-spaces, indu;ed~by the
group of permutations, are preserved and the occupation-numbers
Na=2, 3, 4,... arise as a natural consequence of the symmetries
contained in the wavefunctions ¥ .

(1)

This work and the preceding one about para-bosons and
para-fermions in quantum mechanics, are based on several
concepts and results, as those derived from the classical
specfral theory of partial differential equations, that
presuppose a cltassical heritage 1ikg the actfon-at—a—distancég}
which is, evidently, present in ou; wavefunctions and commuta-
tion relations. MWe are not aware, at the moment,'of a-method
for generalizing ocur multilinear matricial commutatiom rela-
tions in order fo apply them to the study of relativistic
phenomena, which is the main purpose of Quantum Field Theory.
In etaborating a Quantum Field Theory we try to define, in a
consistent way, a set of field operators which are complete-

1y characterized by defining all possibie algebraic relations

between them. A more rigorous formulation can be given in
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terms of bounded operataors and their algebras, but this is
{9)

beyond the scope of the present work In our concern here,
we must expect that the formalism of uantum Field Theory could
- give the exact occupation numbers of the particles, which are
the crucial observables-and that, in the non relativistic limit,
our wavefunctions and commutation relaticns are reproduced. As
we have seen in the example of HN=3, the gentileons of order
d=2 are represented by the 4-dimensional state vector Y

with the rotation properties in the HiTbert space exhibited

in Section 2 and with the corresponding commutation relations
shown in Section 3. -

As one can verify from eguations (3.8) and (3.9), the

commutation re]atiéns faor the.components Yi are tri-linear.

it is worthy to ﬁote that for Yz and Y4 we have the
commutation relations {Eu, a;]+ = 6av a; and [ﬁa,a+]+=-6wYaY,
which are peculiar to fermions. On the other hand, for Y, and
Yi » when N < d =2, the relations [ﬂa, a;], = SEY a; and
{Na, ayj-= -SQY «, are satisfied. This means that Y, .and
Y, , when’ Na.s.z-, show & bosonic character. However, when
Na=3; Yz=¥.=0, i. e., it is impossible to accomodate more
than: 2 particles in the same state. Thus, the components Y
and. ¥, -do-not.-have-a genuine bosonic behaviour. To sum up
we can say that, at Teast in the non relativistic Quantum:
Mechanical 1imit, a gentileon of order d=2 - does not have a
pure fermionic or bosonic behaviour: : It is a fermion-boson.

hybrid. - The same considerations remain also valid when the

.22,

system is composed of N particles. If a convenient basis is
chosen for the vepresentation space, as we have done above, the

state vectors for the gentilteons will be constituted by 1 -

plel

vectors, where <t 1is the dimension of the showing

always the hybrid character, analogous to the case N=3

Let us consider now the generalized method of field

(3), fhat is anlysed with great

detail in an excellent book by Ohnuki and Kamefuchi(10). Founded

quantization developed by Green

in the idea that the hypothesis of complete symmetry or complete

anti-symmetry of the state vector of a system of particles is

stronger than the assumption of the physical identity of the
(&) '

particles . Green suggested the tri-linear commutation rela-

tiaons
[AK 3, - o3, 3% a;}_= "2 Sy %y | (4.1)
[aA a}vl - g au ay > a\;i_= a

for the para-fields. The parameter ¢ ( o = 1 for fermions

and g = -1 for bosons) will characterize the two possible

para-statistics.

To sotve the system (4.1} he has also suggested a decomposi
tion of the para-fields by the now well established "Green's
anzatz"

p
a, = 1 bl _ (4.2)

v
a=1
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where p is called the order of the parastatistics and the
bia) are fermion fields for o« = 1 and boson fields for

¢ = -1 . Obviously, when in equation (4.2) we put p =1 and
substitute into {4.1), we get the usual commutation relatioﬁs
for fermions and bosons.

Despite the fact that Green's formalism have solely used
the quantum field theoretic framework, there is no reason why
parastatistics cannot be applied to the corresponding quantum
‘mechanical description, at Teast in the non relativistic limit.
There are some differences between the quantum mechanical
approach and that of the associated field theory. However,
when the number N of particles is constant, some resemblances
could be expected. Now, if we try to translate Green's field
theoretic results into our quantum mechanical language, we fall
in with several difficulties from the onset. The first one 1is
the decoupling into two kinds of para-statistics implied by the
two-vaiuedness of o . The second is the decomposition of the
parafield into usual fields which belong to one-dimensional
representations of the group of permutations. The third is the
problematic interpretation of the order parameter p .The
difficulties pointed out above seem to disguise the true
‘character of the symmetries involved in the muiti-dimensional
state vector. Thuys, it could be infered that, from a symmetric
group point of view, it is hard to accept the parabosons and
parafermions concepts in Quantum Mechanics. The only entities

which could have a consiétent interpretation would be the
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gentileons. '_

Now, let us return_fo_our quantum mechanical_aiscourse..
Another point to be emphasized is that we have enhanced the
symmetric rather than the unitary group. The implications of
switching to such aspect of group theory can pe state& ciearly

rigth now. The point is that this switch involves a surrender

(11)

of the cluster property in qu;ntum—mechanics. But this
comes as no surprise since, in-our context, the operators are
symmetric functions of the re]evant:arguments of all particles.
The complete symmetry of the operators with respect to permuta-
tions has as another fundamental consequence, the generalized
commutation relations given by Eq. (3.3} and (3.4). These
retations require that the description of a system of identical
particles (cluster 1) depends on the existence of another
system of similar particles {cluster 2} even when there is no
interaction between the two clusters. It is possible that this
result 1s traceable to an unjustifiable extension of the
mathematical apparatus of the symmetric group to quantum
mechanics. As an alternative for the group of permutations,

we could, tentatively, to study one of its sub-groups, the

(12)

group of displacements in configuration space , for example.

As a final remark, we must note that the introduction
of our general statistics formalism, allows us some hope of
representing several quantum systems in terms of the multi-
dimensional state vectors. Thus, for instance, if quarks are
gentileons of order d=2 there is a possibility for describing

the hadrons with our non-reiativistic approach where the
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hypothesis of additional quantum numbers (color, charm, etec) APPENDIX 1 - THE MATRICES M(??El
are uynnecessary. The baryons should be described by the state

vectors Y whereas the mesons should be represented by the
P Y The watrices M[??E] , that are defined by M[??E] =
bosonic state vectors Y. . Another interesting application fagy . ) i
S 7 u P[ijk] ", where U dis the structural matrix defined by
of the above reasoning could be the interpretation of quasi- R .
the eguation (2.2}, are the following :

particles which appear as colletive excitations in several

condensed matter problems . Thus, it is a long road until 1)' [QBY]
accompliéhing a through study of the symmetries in configura- ove
tion space of Quantum Mechanics and its physical implications.
1 0 0 o 0 0)
0 -1/2 Y3/20 ¢ 0 0
M[GBY] ) 0 V32 1/2 1} 0 0.
«yB 0 0 0 -1z V3;z 0
0 0 v} /372 1/2 0
Lo 0 0o . 0 o -
By
2 (28]
(1 1] 0 i 0 0
0 -1/2 -v3/2 ¢] 0 ]
0 -Y3/2 /2 0 1] 0
M[aBY] .
YBa 0 0 0 -1/2 -Y3/2 0
0 ¢ 0 -/3/2 1/2 1]
0 o 0 0 0 -1
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