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ABSTRACT

In perturbative QCD, the Bloch-Nordsieck cross-
secticn for quark-antiquark annihilation is known, to order
g*, to be infrared finite, except for terms which are power-
suppressed at high energies. We give a £fairly simple
explanation of this fact, using analyticity, unitarity and ar
analysis of mass-singularities in both Feymman and axial
gauges. The argument applies fairly easily to order g® .

Assuming a generalized unitarity principle, the argument can

be extended to all orders.




1. INTRODUCTION

Can the methods of perturbative QCD be used to calculate

the Drell-Yan cross-section by relating it to the cross-section
for quark-antiquark annibilation? A necessary condition is
probably that the latter should be rendered free of soft
divergences by Bloch-Nordsieck: cancellation. For, if this were
not the case, interactions with spectator partons would be
necessary to cancel the soft divergences, and factgrization [1]
would fail. This is not obviously_a sufficient condition,
because there mlght still be non—factor;z;ng contributions of
order 1 from_spectatprs I2]. To order g“_, however, this  fear
has been shown to be unfounded [3]

In fact, the Bloch—Nord51eck cancellatlon is known
to be 1ncomplete in QCD [4], but expllc1t calculatlon to order
gt has snown [4] that the uncancelled soft dlvergences are
power-suppressed by a factor oflm*/s2). _?herefore thgre is no
trouble in- practice to leading-twist order.

The question we ask is whether this power-suppression
persists to higher orders of perturbation theory. The difficulty
in trying to answer this gquestion is that the supression results
from cancellation between diagrams with and diagrams without
3=gluon: vertices. This is true in the Feynman gauge and the
Coulomb: gauge- and all gauges we have tried. The power-suppression
is- therefore not a consequence of any general property of
individual diagrams, nor is it a simple consequence of gauge-
invariance.

We believe that we have identified the reasons for
the cancellation in as simple a way as_possible. The steps in

the argument are, briefly, as follows:

.3.

(a) (Section 2). "Gluon-reversal”, that is, comparison of the
process with soft glucns in the final state with an
imagined reaction in which they are in the initial state.
The latter is obviously infrared finite, By time-reversal

and unitarity.

(b} (Section 4). The eikonal approximation, and an integral

representation expressing its scaling properties.

(¢} (Section 5). A generalized eikonal exponentiation thecrem [5],
which allows:.us to restrict our attention to graphs which

are "maximally non-abelian" (MNA).

() {Section 6). Simple analytic properties of the integral

representation in (b}, assuming a smooth limit as m?/s~+0 .

{e) (Section 7). Using (a) and (d), cancellation up to 0(m?/s)
¢f the infrared diveréences from simple sets of diagrams

(in the Feynman gauge} connected by unitarity.

(£) (Section 8}). Analysis of mass-divergences in the axial gauge
to show that, in the MNA sector, they. cancel in the sum of
all diagrams; and sc¢ that the assumption in {(d) was

justified.

One can perhaps see that the argument could aot be
much simpler than outlined above. For steps (b} and {(d), we
must -use the Feynman gauge, for it is only in this éauge that
individual graphs have simple analytic properties. But for
step (f), the axial gauge {or possibly some other non-covariant)
gauge) is convenient, in order to control the mass=divergences [1}.

. The theorem iﬁ {c) is essential in order to isolate
a sector, the MNA sector, in which there are no mass-divergences.
Of course, there are mass-divergences in general, and their

analysis is esSential for the factorization theorems. But
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fdrtunately we can avoid them for the purpeses of studying the
changes brought about by "gluon-reversal" (a).

In general, the eikonal approximation suffers from
unphysical behavior for large transverse-momentum gluons,
because the transverse-momentum is not contfolled by the eikonal
quark denominators. To make physical sense, a transverse-
momentum cut-off is pioﬁably required, which would complicate
the formulae. By isolating the MNA sector, we avoid this
problem also. |

Any analysis which is ¢laimed to work to all corders
of perturbation theory must be treated with some degree of
caution. Our application of the generalized unitarity principle
in Section 7 supposes that there are nc snags in using this
property of functions of several complex variables. More
seriously, our analysis of mass-singularities in Section 8
assumes that we have correctly traced the physical cause of all
.mass-singularities from a study of lowest order examples.

Finally, note that we only establish suppression by
a factor O(m?*/s). To order g* , the facter turns out tec be
O(m*/s?) [4]. It is an open question whether this stronger

suppression occurs at higher orders.

2. GLUON REVERSAL

The first step in our argument is to compare the

probabilities for

"

‘F(/“} T g (/‘;’J ﬁ—v\_j"*(-él} r Seft glaens (k, ko) (2.9

and

+5.

\f\*\\i)‘-—*’ %(P‘! + ‘-—f,Lln.) + sc:-j‘-f aﬂur.du,s f\.iis.d, . ic_,l_,) (2.2)

where ¢, g and y* dencte guark, antiquark and virtual photon,

momenta appear in brackets, and "scft" is defined by

| B.';_ b < A {2.3)

for each gluon independently. Colours are summed or averaged.

We use the notation
Q,-fa,k‘,;: Hﬂ , JP’.’Z;: KL
(qu,)a:s (2.4)

and we assume that

2 : ' i
“/“'\' << 5 : 5‘.]. << }/(’k,r K, << 9 {2.5)
so that

2
@Y s, (2.6)

The probabilities for the reacticons (2.1) and (2.2)
can each be written in terms of a single set of quantities 'Fr‘
the squared moduli of amplitudes summed over spins and colours
{for simplicity, we pretend that the virtual photon is spinless}):
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where
L= Ly Rl A T g"“-%‘l ’
.- - g g (2.9)

In {2.7) and (2.8}, the k;-integrations are each bounded by
(2.3}, and the @ +p and E'—integrations are over small
regions g=0.

We wish to express the phase-space integrals in

£2.7) and {2.8) in terms of invariants.

< - 3 i
Hote T §.8)=> LTT &2 g9, s k)«
= LFS C e $= 2 k)

~

Te this end, we define

X E_(S;i,fzg;'tngi s Sﬁ)‘ (2.10)

Then

SRR _ A —_—
KLS):E—T—[S{.S' l)] )0{? AT A8 ri_r(‘a’ f’fj, L9} ,2.11)

RIQY = T (@) Ay g ds (e I- 78108

(2.12)

Since
$+ 9 +C = O(k.)
we can, up to infrared convergent terms, replace {(2.12) by
iy : 2 -1 z
: f
RI@)Y TH(QY ™ [dT1d T e H. (@Y 1,1,8) s
The integrations in (2.%11), {(2.12) and (2.13) are over small

regions, with £,£'$0 in {(2.11) and £,£'20 in (2.12) and
(2.13). o

A unitarity argument [6] assures that R(Q?)

is
infrared finite. (For a contrary opinion,rsee [7]1.) In order
to find the infrared properties of R(s}; it is therefore
sufficient to study the quantity
/ ; i - T/ A

In subsequent section, we will be concerned with the infrared
properties of this guantity.

In the above equations, we have not bzen precise
about the regions of integration. If we were concerned to calculate
non-vanishing and non-leading this would matter. Since we only
want to show that there are no infrared divergences {up to

0(m?*/s)), we believe this imprecision is unimportant.

3. HARD AND SOFT GLUQNS

In our proof of infrared finiteness (up to ©O{m?/s),
we adopt a strategy formulated fdr instance in reference [8].

We divide each gluon integration (real or virtual) into two



regions,. |x| <& and |k|[>4&. (The k -integration for a
virtual gluon is unrestricted).

We proceed inductively, and assume that infrared
finiteness has been proved up to and including order gZ(N-1).
Suppose, to crder g2N , we encounter an infrared divergent
graph, some of its gluons having "|k] <4 and perhaps sowe having
ki >A. The gluons contributing to the infrared divergence
must be attached to external guark lines (directly or via other
soft gluons). The gluons with |§i> 4 (if ahy) can none of them
be attached to a guark line further out than the innermost soft-
gluon vertex. Therefore, the hard-gluons in the graph form a
core, whose dependence on the soft-gluon momenta may be neglected
(because any power of soft-gluon momenta would render the soft-
gluon integrations infrared finite).

Thus the infrared divergence, if any, comes effectively
from the soft-gluons, the core being irrelevant. If there was
an infrared divergence produced by fewer than N soft-gluoas,
it would contradict the inductive hypothesis. Therefore, the
only possibility we have to consider is that all N gluons to
order gZN are soft.

Thus, in principle, all the gluons cénsidered
throughout this paper should be soft, with |g|< A, However,
for virtual gluons, it is often convenient to extend the region
of integration to infinity. We believe that this does not
affect the existence of infrared divergences. But we take care

to do this only when ultraviolet divergences have been properly

renormalized and where the eikonal approximation has not produced

unphysical mass-singularities or transverse-momentum divergences.

These conditions are satisfied in the MNA sector.

4. THE EIKONAL APPRCXIMATION

The eikonal approximation is usually ﬁotivated
by the argument that, for a soft virtwal gluon with momentum
k, k? <<p.k + P being a gquark momentum. This is not true for
gluons with momenta in the transverse direction. We believe
that, in general the eikonal approximatioﬁ is valid for
detecting infrared divergences; provided it is used with a
cut-off (on the total or transverse three-momentum}. It may be
dangexrcus to remove the cut~off in general. We will argue that
there is no such danger in the MNA sector.

In this section, we present the eikcnal approximation
as a way of calculating the leading term for small real gluon
momenta. (Purely wvirtual graphs are irrelevant for (2.14))_ We
use the Feynman parameter representation for a Feynman integral
{in the Feynman gauge}. For the purposes of the MNA sector
(see Section 5), renormalizaticn is only a small complication
{see Appendix A}.

Congider a Feynman graph contributing to an amplitude
for process (2.1). ©On the internal gluon lines, let the momenta
be £

k and the Feynman parameters be =z On the gquark {anti-

k-
quarkj lines, let the momenta be p*a; (p’+bj} and the Feynman
parameters be xi(yj) , with i=1,...,n , j=1,...,n' . {Quark

loops are of course neglected}.

The combined denominator is then
D=3 L0 S x. (2 al) +
- Z_R k’ - )(C’ 2. Q-P e [

— B
v > 3}»12.bj.f:'+bj) © (4.1}

Momentum conservation at the vertices is expressed by equations
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S orta, + 2 w2t 2 k- ,  4.2)
veV JEV kel > €&V

where 1ieV mgeans those guark lines attached to a particular
vertex V , etc.. The km fe=1,...,r}) are external gluon
momenta. The t signs apply according as the momenta are out of
or into the vertex V.

For given values of the parameters x5 ,yj s 2y
the momenta a; ,bj ,£k are‘determined by, in addition to (4.2),

the extremum eguations (see eguation (1.5.27) of reference [9])

2 I'Zgl!ih, v 2 tXoa + thjbj +

kel ce b jel—

+PZ_ t X, -r-PZ_ Yy = (4.3)

rel

M

for each independent closed loopr L {the * signs depending
upon;the-sense—of the momentum in the loop).

The external momenta ka are assumed small compared
tor p and p'. We express. this by imagining each ka scaled
by a-small parameter X . We look for a self-consistent solution

cf (4.2) and {4.3) in which
X“'/Z?[J-’ IQO(_J CLC}}OJ'/ Qp = O())
P, P, 2, = O (1) (4.4)

Then, with neglect of 0(x%) , (4.3) becomes

2.tz ﬁ@*PL 4y =0 as)

el _ . LCL o JCL

1.

Similarly, with neglect of 0(A*®} , (4.1) becomes

D= 2 b = 2p 2o xeay *?‘Fi'zjibj (4.6)

In terms of D , thus implicitly determined, the.
Feynman integral takes the form (see equation (1.5.22) of

reference [9])

2

T (v- EQ)S—TJ-KL—‘—OLJ-TIOLZ §l-3x-5y, T2y,

) ~ e -3 =
x(*D—L&E) v+ Ev 2-(2+8)y

N L{4.7)
Mar pre

Here E 1is the determinant factor {(called C in [%}) and

N is the numerator factor. D, E and N are
LERIt . Hi...d

each functions of the parameters Xy ’Yj v Zy -

The graph is defined to have:

n gquark lines
n' antiguark lines

r real gluons

{4.8)
Y 3-gluons vertices
£ = % {(n+n'+Y~x) independent loops
v = number of propagagors - 2£ = % (n+n'+Y+r)
We use dimensional regularization with d = 442n . (These

formulae require slight modification for one-particle reducible

diagrams) .

In the eikonal approximation, defined by (4.4}, we
neglect X ,yj in E and in the 67function in (4.7). We
define
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KC—;w?b y\\:'v«)aj.

where 2_;1, - ng _ i : (4.9}

Since the only relevant contributions to the integral coﬁe
from w=0(}) , we may extend the range of the m-—integration to
+ » , thereby making only an error of relative order X .

The numerator N

u1-.-ur

of degree y . In the eikonal appreoximation, Nu1 " has
e b

is homogeneous in tk ,kOt

order AY , and has the form

| & e N
My = “ Mo M (4.10)

where N°  is homogeneous in the ka of order +vy-1., and alsc
depends upen p, p' ’Ei ,EE v Zy
Putting together (4.7), (4.9) and (4.10), we get

the integral representation

- " (v- 2 AX dF dz EVT2HOM
M/‘"i' oo = [ (v ﬁrL) > [] 4% g E %
& ~ : | -V
N T 2 g+ 0= (2
* M Pr_OJaLuJ e L L
where . G =+ + B - {4.12)

The quantities A, B and C have the following

forms:

{4.13)

=1 C"“f’ Soup

where A , Ba R B& ’ caB are each non-negative functions of

®y ’§j and 2y - {These assertiogs are easily derived from
pages 34, 35, 36 of reference [9]).

The w-integral in (4.11) expresses the scaling
properties of the eikomnal approximation; It is one of tﬁe main’
tools we will use below.

As an example, we qguote the values of 2,B and C

for the graphs in Fig. 1.

()

FIG. 1 - Examples of Feynman graphs in the eikonal appnmdmmjnn.
Solid lines are quarks or antiguarks and broken lines
are gluons. The left hand vertex represents the
production from a virtual photon {not shown}. Feynman

parameters and external momenta are indicated.




14,

For (a), we have

A= m'- sX (1-X) |

&~
H

-Xp- ez, +20k, + 23k, J +.

- (4-%) P',ink_! + (Zi-f-Z,_,)k;_J ; (4.14)

O
'

=-22,25 ki k,

We take this opportunity to prove a simgle inequality

for this graph:
By {[xz;p+ (4-X)z,p 1. (kiﬂez)}a
2 LRzyp+r c1-3)2:p 7% Chy+i)))
7 4 X(1-X)252, pop bk, DAC 15

In the second:step, we have used the fact that k,;,k; ,p and
p' are- time-like vectors.

The inequality B?>AC can be proved fer any one-
loop: graph in essentially the same way:

In the second example, Fig. 1(b), we have

A=mee sl 23X (G ga) + av 2) (3r 2,0 7]
B= -;\;zlz?’ p-(kyrky)- {}L.ﬁmgﬂzlzj pillytk,),
C

=-22Z2y2,2;kh .k, S O (4.16)

.15,
and the determinant in (4.11} is

—

E = 2,3(_2.1+ Z.)_)

4

(21"'22."‘2-3 =4 Xi*’*%*?ﬂ*g).:i)

We use this example to show that B? zAC is not

true in general for multi-lcop graphs. To see this, we may for

example choose X = y1 =0 and

ketkh, =2 (2, %, p 2, G, p)

Then

B*Ac = )\Ll/a.f)’ z__fz,fz.s Z;‘g; (z2;-2) + O(mz).

5. GENERALIZED EIKONAT, EXPONENTIATION THEOREM

In this section we draw the conclusions which we
reguire from an exponentiation theorem. recently proved by_one
of 'us [5].

In the present situation, the theorem mé? be stated

as follows. The guantity ¥ in (2.7) has the form

=3
F.o= o] ex; ] (5.1
™ -0[ IO (- a:’_, ) -
where F' 1is defined in the same way as F , but has "maximally
non-abelian" (MNA) contributions only, and Sy is the Born

approximation.
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The definition of MNA is, roughly, that conteibutions

proportional to

._ N C C NM—1
F F e (5.2)
only are kept, where
twtq’ :CF 1 ; ][Q,Bc—'garbd- = CC, gc.ot . (5.3)

Actually, to higher orders, nct all colour weights can be

expressed in terms of CF and CG above. A general, implicit,
definition is given in [5].

The notation [_1r in (5.1} means that only
contributions to a total number of r real gluons are kept.

For example, F, has a contribution

LTF (o) B (ke o) + T (k) Ry ey o)) +

=+ F:i ( éﬁ ) F?L (%%3 akﬁl ) ]

If we write

! ) n
F = Fo + F (5.4)
where Fé is the purely virtual part of F' , we can rewrite
(5.1} as

~ = F"
Fe [e’w( o, ))'“ (5.5)

Since PO is unaffected by gluon reversal, we need not consider

it in (2.14), and we may concentrate on the second term in (5.5).

L17.
This has the vital consequence that we may omit from consideration
all diagrams with quark self-energy parts, and all diagrams with
a vertex part at the quark-antigquark annihilation vertex. These
contributions are not - MNA, and are contained in the triwvial
factor Fo.

In the remainder of this paper, we shall refer to
all the diagrams in % eF"/GO as MNA, not just those in F" .

This result is so important for what follows, we
illustrate it with a very simple example. Consider the graphs

in Fig. 2, and let the corresponding contributions to F be

~ b 2~ &
Cr Ky ) Ce F, , Ce R

z d ! (5.6)
CF ‘F;_ + CpCe Fy , 0%

where the colour weights, defined in (5.3), have heen displayed.

The exponentiation theorem says that, since

. A £ I:ab

1 i o (5.7)
[ =]

the sum is correctly obtained from terms in

k| - T iy
op [exp(SEE0) ] [enp(Sefotieefa )]

Thus we need not consider graph {d) éxplicitly.

 Asg explained in Section 3, we should consider F
defined with a momentum cut—off A . Howéver, we believe we can
let A=+e in the second term on the right-hand side of (5.5}
without meeting any difficulties. ”This is hecause the MNA
sector is free of problemé with renormalization {see Appendix Aa)

and free of spurious mass-singularities (see Section 8). This
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> <

(e)

FIG. 2 - Quark-antiguark annihilation graphs contributing to F.

.The.right hand side of each graph represents the
complex conjugaté of the contribution of which it is

the mirror-image. Graph {e) is the Born term, %

allows ué to use the integral representétion (4.11), which was
derived neglecting any cut-off.

In Fo in (5.5), the cut-off should probably be
retained, but this does not worry us, since we do not have to

consider FO explicitly in (2.14),

Finally, note that the decomposition {5.5) is gauge-

invariant, and is true in any gauge.

.19,

6. GLUCN REVERSAL AND ANALYTIC PROPERTIES OF EIKONAL AMPLITUDES

In this section, we show how the gluon-reversal
transformation from R to R in Section 2 is implemented in
terms of the integral representation (4.11) for eikonal
amplitudes.

Define the amplitude

A

M/*i---/w,,.(F”P') b, )= -1y M/'v,_----/u.»(/’}f’f‘koc) (6.1)

so that R in (2.12) and (2.13} is constructed from #. The

reason for the (-1)¥ in (6.1} is that then M=M for tree

gkaphs. {We do not consider the case r=0 in this section.)
In view of (4.10), (4.11), {(4.13) and (6.1}, we are

lead to compare the integrals

oo i _v+2t
-1 -
I=5M w [Aw*+2Bw+C-ce] (6.2)
<
and
~ -0 . vty
I:{Au? Wt TAw?2+28w+ € -t (5.3)
o

(since the transformatior w=+-w in (6.3) produces a change in.

sign of B and the (-1)F in (6.1)).

We shall next study the connection between I and

I. This will turn out to depend crucially upon the sign of A.
From (4.13), A<0 except for a region of x; ,yj ,zk—hﬂxgratkm-
which tends to zero with m?/s . If the amplitude is well-

behaved at m?=0 , we could just take the limit m?-0 in (6.2)

and (6.3), neglecting terms 0(m*} , or, more strictly,
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| -t
O Liw®) DL] } - : . (6.4)

where t is some rational number.

It will emerge in Appendix B that individual graphs

have mass—singularities like
_(mz.)_— 1 {6.5)

at m=0, so the naive limit m®+0 cannot be taken. But, we
willi argue in Section 8, that the singularities (6.5) cancel in
a complete set of diagrams in the MNA sector.

We will therefore do as foliows. For the remainder
of this section we set m® small and negative in (4.13), so
that A<0. We will then deduce an exact relation (6.12)
between I and I . We will then argue that, for a'sum of a
complete set of MNA graphs, because of the absence of mass
singularities, this relation is true up to 0(m?/s) when
m? is small and positive.

In order to deduce the desired relation, we must
study the analytic properties of (6.2). We have to fix the
phase of the integrand to define the physical branch of the
integral I. This is done by starting in the Euclidean region
and continuing with the help of the ie.

Let

j (w)z Aw? +2Bw + C (6.6)

In the Euclidean region, A,B,C >0 and

- ¥
JLEVL = ljv! 1 (O waoe) (6.7}

<21,

There are branch points at

R i/.
wy = A [-Bx (B*-pac +nce) ] .5
but these are not on the positive real axis.

Now continue to A<Q keeping B,C>0. The branch

point w moves near the positive real axis and the ie dictates

that it is below the axis. Sco

|

Mgt o< wew.

(6.9)
W, £ W e

]

15 SUL o LTy

This is shown in diagram (a) of Fig. 3.
Next, continue to A,C<0 , B>0 , with AC<B?.
The branch point w,_~ moves to a point just above the positive

real axis; so

L en
& KA - i}l ; W <« W< ,
. €y I Ve { vl ‘3 1 W < W @
= ij—i e . (6.10)
=\JH°"L o 0 waw,

This is shown in (b) of. Fig. 3.

Finally, we reduce B so that AC>B?. The branch
points W _ and w®w_ move away from the real axis keeping above
and below it respectively, as in (c} of Fig. 3. If the cuts

are drawn as shown in Fig. 3 , we have that
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[ f(w*)]%: {[fcw)]anf* (6.11)

W c

W gm—-—-—=— - in each case.

In Fig. 3, the contour of integration defining the

Fa
(: integral I is marked as C. Consider the integral i in

{6.3). The contour is along the negative w-axis (below the w,
GL) cut). We may rotate this contour, without passing any .
singularities, to the positions C shown in Fig. 3.

We next define an integral I to be a2 non-physical

___________ ___jf*’ o branch of the function I. I is defined by giving all the

;d; . Sap in {4.13) negative imaginary parts, in other words by

crossing all the multi-gluon threshecld branch cuts (but not

M

altering the other variables, s 'Ku ,K&). Thus I is defined

by continuing from C>0 to C<0 with € having a positive

(G} imaginary part (but with the previous step from A>0 to A<0
. done as before in Fig. 3(a)}.
f cbd} Thus we start from Fig. 3({a) and give C a positive .
; imaginary part, making the branch-points move into the opposité
Tttt F----- < _half—planes from Fig. 3(a). Now, as C is made more and more
T Tt e negative, we get the situations shown in Fig. 4.

Bearing in mind (6.11}), we see from Fig. 3 and Fig.

W
é; 4 that

A ~

—-.*

(c) L =1L C(6.12)
) - e s s £n ) .
FIG. 3 The complex w-plane and the definition of £, The{e This is the key relatieon we wished to derive. It is essential
are branch points at W, and the cuts are drawn as to its derivation that A<0, otherwise (6.11) is nof true,

dashed lines. C and C are contours of integration. because gEn is not real on the real axis between the branch-

The three cases are: (a) A<0, B,C>0 ; (b) A,C<0, points (in the diagram corresponding to Fig. 3(b)).

B>0, B®*>AC ; (¢) 2,8<0, B2<AC.
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————— - -a
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-L\J“_

4, B e m = —
““““““““““ [T W
L)
a

fb\}'.—

|

?

’l‘-\_j\__r

(¢}
FIG. 4 - The positions of the branch cuts and the contour &
defining the unphysical function T. The three cases

correspond to those in Fig. 3.

T -1 =

.25.

We note two special cases of relation (6.12). First,

for cne-lcop diagrams, we have the inequality
B* >AC (6.13)

as shown in the example in (4.15). Then it follows from Fig.

3(b), and equation (6.10) that

( e‘trcﬂpi_ 6-.:7&2:1,),(

o« vl
x S dw w’i l:f—(w)l L (6.14)
and so )
- 4 J—
RKe (IL-T) -0 (6.15)

Second, for the even more special case when €20 (A<Q0) , Figs.

3(a) and 4(a) show that

and so (6.12) becomes

A

* _
T~ =T (6.16)

For one-particle reducible graphs, the derivation of
(6.12) reguires a little extra care. This is discussed in
Appendix A.

Finally in this section, we repeat that (6.12),
{6.15) and (6.16) have been derived under the unphysical
assumption that m?*<0. In Section 8 we will argue, from the
absence of mass singularities like (6.5}, that the above equations

are valid in the physical region m?20 up to terms of order
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) 8 a . )
{6.4). It is in this sense that we shall use (6.12}), (6.15) Next, consider order g° . A new situation appears
and (6.16) in Section 7: for r=2, where we may have a product of two one-loop graphs or
the product of a two-loop graph with a tree-graph. WNow C30 ,
A ~ ok ;l.—"['.iq_ .
T - I = O £ (m?*) ] {(6.17) so the cne-loop graphs do not obey (6.19). Also, in general
)
B?ﬁzu:, so the two-loop graphs do not obey (6.18). Thus neither
n 1-{%J 2 : . . .
—_—— p tyvpe of contribution to (2.14) is of order (6.4) by itself.
p&(I-‘_L_)-: OE(M“L) }(B >FJC) | (6.18) Yp

However, we will show that the two types terms cancel each other.

To see this, write (2,74) in the symbollic form

A
b . K ; 1-tw 9
T -TIT" 0L "] | (C=0). & .
~
MMT - M opn | (7.1)
where a generalized matrix notation is understood including a
7- Q§£E§§EE§ 2-particle phase-space integral (with &% (grkitky) as in {(2.10).

Using {6.17), we may re-write (7.1} as {up to order
We next. establish from (6.17) that (2.14) is

O[kmz)?—til_ In. order to make . the argument as persuasive as o4 ~ ~
possible,. we begin with the simplest, most special case, and M oM™ — A/rk M =
work towards. the. general case. . (/\/] 3 [\.’\;} )M* - ,\«%(M 3 [‘l; )*
To order g*, =0,1;2. r=0 means purely virtual (7.2}
virtuql diagrams_and r=2 means tree diagrams. In either case,
(2.14) vanishes.trivially. 50 we may take r=1 , which means The generalized unitarity principle (see reference [9] equaticns
C=0. The contributions to (2.14} come from products of an (4.7.6a) and (4.7.6b)) states that
order g* graph with a (real)} order -g tree-graph. Therefore ~ ~ ~ ®
(2.14)_;s,of order (6.4} by virtue of. (6.18}). M~ Moo= MS =MS =- /\4 S (7.3)

Next, consider order g®%. The non-trivial cases

where 8 is the 2-gluon + 2-gluon S-matrix, and again 2-particle
are r=1 and r=2. For r=1, one possibility is the product

phase space integrals are understood. The last form of (7.3)
of a .g° amplitude with a tree-diagram, when again (6.18) may

follows from equation (4.2.21b) of reference [9]. Substitution
be applied. The other possibility is to have the sguared

of (7.3} into (7.2) gives
modulus  of & g® amplitude. Since C=0, this satisfies (6.19),

~ . 5 ~ A
and hence (2.14) is of order (6.4). For r=2 , we have g M 5 M_%-v ~ N (M 5"’)*. =0,

{(7.4)
one-loop amplitudes multiplied by (real) tree—graphs; '

SO We may
use {6.18), and again (2.14) is of order (6.4). as required.
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In Fig. 5, we give an example of the structure of a.

contribution to (7.4). This can arise from (7.2) in two ways,
when M-H# is 0(g%) and when (M-H)* is 0(g¥) . The two

¢ontributions cancel.

FIG. 5 — Structure of a typical coatribution to (7.4) in order
g°%. The two left-hand graphs may be a g°® contribution
to M-M , and the two right-hand graphs may be a g*

contribution to (M-M}* .

‘The argument in equations (7.2), (7.3) and (7.4) is
now in- a completely general form, provided that 8 1is the
cémplete S-matrix in the pure gluon sector. When, say, 3-gluon
intermediate states are involved, there are three 2-gluon
threshold cuts (in.the variables Si»,, Sz3 and Sgl), and one
3-gluon threshold cut (in the variables S;»+S:3+S;1) . The
S-matrix includes disconnected pieces depending on single
variables Si2,8:3 or Si;1 . Assuming that eguaticns (7.3)
generalize, we see no reason why the argument should not apply
to all orders.

In this section, we have been dealing with the
complete probability function F. in (7.1). However, we could
equally have restricted ourserlves to the second term in (5.5).
This is because the first term, FO , obeys the trivial

eguations
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- BT =

L= ©

o2

and so would factor out of all the eguations in this section.

.8, MASS-SINGULARITIES AND THE AXTAL-GAUGE

We now consider the behaviour of the integrals in
(4.11), {6.2} and (6.3) near m?=0.
For individual diagrams, there are certainly terns
. behaving like

+é
(m?) t (8.1)

as m?=0. This is shown in Appendix C. Such behaviouwr, if it
were uwancelled, would prevent our deducing (6.17) for m?>0

from {6.12} for m?<0.

However, we will argue on quasi-physical grounds, that

terms like {8.1) cancel out in a complete set of MNA graphs,
_ leaving terms which differ from a finite limit at m?=0 only

by terms
L . N —“-tyL .
O L m2) 1 S (8.2)

(t being some raticnal number). If this is so, we can deduce
(6.17}, up to this order, from (6.12).

The only knewn source of "mass-singularities" like
{§.1) is collinear configurations of a quark and gluons. Here

there are denominators of the form

{ i—/3 con & ')ﬁi) (8.3)
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where 82 is the speed of the {anti-)guark and € is the angle
between the three-momenta of the gquark and a gluon. In the
centre-of-mass system

G am ¢
ﬂl": i - - 5 7 (8.4)

and angular integrals involving (8.3) may give singularities.
like {8.1) (in dimensiocnal regularization). We give examples
in Appendix C.

Next, we take advantage of the gauge-invariance of
complete sets of graphs in the eikonal approximation}to repeat
the analysis of collinear configurations in the axial gauge [1}
{defined by an arbitrary unit space-like vector nu). In this
gauge, a. guark. cannot emitia_pargllel gluon. The matrix element

is suppressed by a factor
S5in B : : {8.5)

{more precisely, see equatiqn:tD1)}J  Iﬁ general, this factor
prevents;(B.B) from producing ﬁass—sipgulatiries.

An exception ogcurs when a gluon is emitted and
absorved by the same. quark. Then: two. factors (8.3) can cccur,
with only one. suppression factor (8.5).

. The simplest example of this oeccurs in quark self-
anergy'insertions. Howeyer, these are irrelevant in the present
contexﬁ,”since sucﬁ-ekamgieé are not MNA (or have r=0) (see
Section 5}; These non=-MNA. mass-singularities are of vital
imporﬁanéelin Ehe factorization theorems [11.

For individual graphs in the axial gauge, mass—
singularities can also be generated by graphs or sﬁb—graphs like

the examples Fig. 6, in which other gluons (ki,kz,...} leave
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the quark line, in addition te the parallel gluon which is
emitted and absorbed. This happens because we are using the
eikonal approximation and extending the virtual k-integration
to |k| == (see the discussions at the beginning of section 4,
and in Appendix D).

However, when a complete set of graphs (like (a)+ib)
or [e):{d)+(e}+...}) is added together, the mass-singularities
cancel, as we will now demonstrate.

We begin with the lowest order example, graphs {a)

and (b) of Fig. 6, and the case when k; is a real gluon.

()
Fig. 6 — Examples of graphs which, individually, in the axial
gauge and in the eikonal approximation, give mass— -
singularities. The singularities cancel when the

graphs are added together.
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Then, to this order (g?) in the axial gauge, the only MNA.graphs
which can possibkbility give mass-singularities are these two
graphs together with the corresponding pair on the p'-line.

Therefore, the mass singularity would have to have the form

_?3 m 2 Folpnks) = B (pf “JKL)JEE»\_ (8.6)

Since this is suppesed to be the complete mass-singularity
contribution in an S-matrix element, it must be independent of

the gauge-vector _nu. Therefore (8.6) has the form

BT NR (k) — Fy(pi k)] (6.7)

By the scaling properties of the eikonal approximation,

(8;7}.ﬁust be

' Lk p pik. YU _pi
gl (L) - - () -1+

cop, b AN o -2 )
ob e, [ (BRe)™7% (b L e
) m. . ¥i
where é' and b are constants. But, in the axial gauge, the

MNA contribution to these graphs, satisfies a simple, homogeneous

Ward identity (since there are no ghosts)

EJA Ex=0 {8.9)
(in:the notation of (8.6)). This implies that
a = (8.10)

in (8.8), and hence that there are no mass-singularities (8.1)
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in this case.

Next, let ué relax the condition that ki;o; We
argue that his does not alter our conclusion that (8.6) is free
of mass-singularities. The reason is, as shown in Appendix D,
that the mass-singularity comes from large values of the
variable |k|. k} appears in denominators along.with |k|
(not along with (1-Bcos8) |k}) , and so does not altér-the
behaviour of the integrand for large values of |k|.

Next we extend the argument to two emitted gluons,
as in Pig. 6 (¢}, (d), (e}, first assumed to be real. The

generalization of (8.8) is
- ’
g L epups T+ OmD] e

where ¢ is a homogeneous-function of p.ki1 and p.k, of
degree (2n-2) . The O(m?) terms include tensors like pukiy
whose coefficients are homogeneous of degree (2n-3) in p.k;i
and p.kz2 (like the b-term in (8.8)). The Ward identities got
by contracting with kg or k¥ give c¢=¢'=0 ; so'égain there
is no mass-singularity.

The generalization k%,kZ#0 is by the same argument
as before.

We may now consider two loop graphs. Some examples
are shown in Fig. 7. Case {a) is free of mass~divergences by
the general argument of equations {8.3) and (8.5). Graphs (b)
and {c) are examples where one virtual gluon is emitted and

absorbed by the same quark; so they might have had mass-divergences.

.However, the argument just made about Fig. 6 excludes this

possibility.
Thus the only possible mass—divergences occur in

graphs like {(d) in which all the gluons are attached to one
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(c) : ' {d}
¥ig. 7 - Examples of two-loop. quarks: in: the axial gauge. (b}

. and {c}. contain graphs of Fig: 6 as: sub.graphs.

quark,lihg;, For:.these. graphs,. we. may- repeat the argument
involving equation (8.8} (or (8.11}), and show that there are
- no mass singularities.

We can now go on.to graphs with two loops and more
re;L'gngnSL.andithen.tQ.three—loqp,g:aphs. Thus the argument
con;ingéqk;néuqtively;

This completes. the. argument that mass singularities
likef(§.1)wcancel in- the MNA sector in the axial gauge, and
therefore.in-any gauge. This justifies the use of (6.17},
+{6.18) and (6.19) for m*z0, and therefore justifies the work

of Section 7.
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APPENDIX A - RENORMALIZATION IN THE EIKONAL APPROXIMATION

In this Appendix, we want to show by simple examples
thaf one=-particle-reducible and ultraviolet divergent graphs

make no significant change in the work of Sections 4 .and 6. By

. the argument of Section 5, we may restrict curselves  to the MNA

sector. (As explained in Section 3, a cut-off is ﬁrobably
regquired in order to define FO in (5.5) properiy.)

In the MNA sector, the only ultraviolet divergent
sub—~graphs are gquark-gluon vertex parts and pure-gluon graphs.
We give an example of the former, as. the pure-gluon graphs are
more straightforward. The graphs are given in Fig. 8. We are

interested in the MNA part of (a).

S Pﬂ-kl o _ P4'h|

(@) (b)

FIG. 8 - Seccond-order quark-gluon vertex parts.

Let us first take the contribution Vi from (a)

{with the CG colour weight) and the contribution V? from

(b) which comes from the

(2k+ l,), an

dpv

term in the 3-gluon vertex. The divergent parts of the integrals

are, apart from uninteresting factors,
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V, = Qm'g“’b,\ T'T(i“-’?,}
"j A% [dw w [miwt-20(p b +5p £ ‘
a el |

(B2)

Vy = = 2mipy TCL-p)

L
xiolzjzw w[ml'w"'—o?.u)(lo A +1/9 k,)- /o.zZ(i ..7,)] "

(a3}

- Bach gfaph separately diverges at w=« , but the sum is finite
(end actually zero for ki:o). This is to be expected, as the

contribution from (A1) satisfies a simple homogeneous Ward

-identity.
We are left with the contributicon V?' from graph
(b) from the remainder of the 3-gluon vertex
- 2h +h )
jf\/b( st )y T g, (ke —k)y (a4)
This gives a numerator -
—L o. {2k -
bpy prl2hth,) | (as)

The:ultraviolet divergent part of the integral is therefore

proportional to
G2 , o , -_'1
P fd Tk (ktece) [(b+t,)+ce] (86)

The integral is a function of the single variable k2. It may

be renormalized in the usual minimum-subtraction way (temporarily
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setting n<0) , introduc¢ing a 't Hooft unit of mass .

result is proportional to

T LSTPL S

The

a7)

In order to obtain the form (4.7) for graphs

containing (A7}, we require formulae like

dnf%

The only complication is in zkudependence of

does not affect the w-integral in (4.11}.

A
Vet faz 2 [ Xz +¥ (1-2)

N

LI T

-2+

)] (AS)

, ‘which

Precisely similar remarks apply to gluon-vacuum—

polarization and 3-gluon-vertex-part sub-graphs.

The only cther complication is that, in a one-particle

1

reducible graph, like (d) of Fig. 7, »° ' in (4.11) must be

replaced by W™,

APPENDIX B — MASS SINGULARITIES .IN THE FEYNMAN GAUGE

In this Appendix, we first study how mass-sinqularities

are produced in individual diagrams in the Feynman gauge, using

the Feynman parameter form. {4.1%) of the eikonal integrals.

We begin with the specially simple case of just one

real gluon. Then C=0 in {(4.11} and the w-integral can be

done simply:

T’(u..-ﬁil) JM 7 (}O;L.U +2Bw -4 €&)

(Tlvrgw) !(LV g - lQ@(lBA&)

Cloaptalig

0+f1

v -0
(A-cg)

(B}

e
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By the usual rules {pages 34, 35, 36 of [9]), A

has the form

. ~ — —_— 2

where A, - is bilinear in -x, .and 553. . With the notation

— A o o
- | . (B3}
§LEX1: :':z—'gﬂj' = 'i/
(B2). becomes
ﬂ.:_sfj-u,)u_ aq?_’(-\xt}fg\jjzk.)fmz— (B4)

Aléo,_with this neotation B has the structure
Skl 8 (- e

(Acétailyﬁ in this.case.there is only one kK1)

Mass—-singularities. came from the regions u=0(m?/s)

and: T-u=0(m?/s).  For definitenéss, we take the former case.

The simplest example is when
,énd;=Bua0%T); .Then;thg1u—integral:of'(B11_gives a term

g
OLgm*)"""17 (B7)

On.the other hand, the integral of (2B-3’.z—:)q—2“+2En with

respect to. other variables may give terms
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Ol (w p. & )zlm:] . (B8)

and then the u-integration gives
2y én
OL (m*)" "] | (B9)-

Another possibility is that v-0=0 , but that the

B—term gives
ALy -1
O[(bup.(;) )

instead of (B8). Then the u-integration again gives (B9).

We have not found any examples in which the B—terﬁ
produces uzn (instead of (B8)); but if it did, the u-integration
would give fnis/m?) instead of (B7) or (B9)}.

Next, we generalize to C#0. We are concerneé

with 2 , given by (B4}, being "small", or more strictly

. 2 .
B Ci << P . (B10)
We may distinguish three cases:

(1) g - 4Li-ves —2. {B11)
i.e, by (4.8)

.%:(n+v1~f~r“)+'63*i : (B12)

In this case, we get a convergent w~integral by simply setting

A=0 in (4.11). The corrections are 0(m?), and there. is no
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mass—-singularity. Note that (B12) requires at least two real

gluons emittéd from 3-gluon vertices, so C#0.

i) g 4 -V 2o (B13)
i.e.

i - + & =4

‘ET C N o+ L - 51-— r ) = {(B14)

In this case, the-w-integral would diverge if we just put A=0.
Therefore, for small A, the mass-singularity comes from large

w . To estimate it, given (810), we may set C=0 , and still
have-a convergent integral at w=0. This therefore reduces to
the case C=0 , already studied in (B1}, with the possibkle

“results (B7) and (B9).

(£ii) gr— 1_v =—1 - {B15)
l.e.

.i_. LA —_
-L(h—c—m—‘bf.\—r*)—;-é_o (B16)

Now, under condition (B10), there are important contributicns
both from small © and from large w . The contributicn from
large « again has the approximate form (Bt} (the only new
feature being a coefficient T (Zn)}, with the results (B7) and
{(B9}). The c¢ontribution from small w is obtained by neglecting

A, and is f{using (B15})
. LT e R
'P(WJTjﬂgm)(iB—ua) (c-1{¢g) (B17)

This generates no mass-singularities. Its only role is to
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cancel the pole at n=0 wﬁiéh appears'in {B1} when (B15} holds.

Thus we conclude that (B7) and (B9) give the general
mass-singularity behaviours.

A degenerate case of the above analysis occurs when
all the gluons are attached to a single (anti—)quafk line. Then
AyZ0 in (B2}, and the mass-singularity is displayed in (B1)
without deoing any further integration.

The simplest example is afforded by the integrals. in

(A2} and (A3). These each have mass-singularities of the form
{B7) t{with £=1). The mass-singularity in (A3) can be found by
neglecting - k§ , in the manner of case (ii} above. Thus the

singularities in (A2) and (A3) in fact cancel.

It is perhaps worth noticing that the cancellation
between the mass-singularities in (AZ) and (A3) is a consegquence
of the simple, homogeneous Ward identity cbeyed by {A1). In-
this sense, the mass-singularity behavicur of (A2) and (A3} is
a sort of model of the axial gauge behaviour predicted in
Section 8 by the case of the Ward identity. (8.9)}. Of course,
the axial gauge is more complicated, because of the n~dependence
of individual graphs. However, we argued in (8.7) that the
n-dependence goes away in the complete set of relevant graphs.

The complete contribution to the vertex from (A4}
also has mass-singularities ({a4) does not obey a simple Ward
identity}, which cancel with contributions from graphs involving

both quark and antiquark line.

APPENDIX C - MASS SINGULARITIES IN MOMENTUM-SPACE

The appearance of mass-singularities like m_2£n in

(B7) is a little surprising. It means that dimensional




e
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regularization with n>0 does EEE regularize all the mass-
singularities when m=0. It turns out that these singularities
(as opposed to the m2£n ones) are a consequence of using the
eikonal approximation and at the same time extending the
momentum integrations to infinity. In this sense, these
singularities in individual graphs are unphysical. Since,
according: to Section 8, the singularities cancel when all graphs
are summed, their appearance in individual graphs does not
invalidate the approximation (at least in the MNA sector).
Presumably the approximation is saved by its gauge~invariance.
To elucidate these remarks, consider the simple

example in Fig. 9.

FIG.. 9 — An example whose mass —-singularities are studied in

nmonentum space.

We complete the ko—contour of integraticon in the lower half-
plane, and display the contribution from the pole of the gluon-
propagator (the contribution from the quark-propagator gives no
mass-singularity).

In the centre-of-mass system, this gluon-pole term

is (up to constants)
{qy 242

o
<

. .o’ 3vlq
gy [ 6

x ‘l_lz,[iuﬁ x) 77 Lefit-Ax)+ p.k, (po)'jfi (e

e KT (2k) [k (14x)]
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ey e
Pe P; ’/‘)’

A -~

:._f;’. % =X

where

and

&2

’:?\J
The k-~integration in (C1)} gives
”—J’i—;ﬂ"*‘%ﬁ‘(i ~21)
.P ’ P o s 21—1 )
. 3+ . -3 oyd-2y v =l (C2
xjd *i_n(i-r/}x) (£4-pr) (—Po )

d3+2nﬂ contains (1-x2)ndx and

Since the angular integration
since 4m? = s{1-p?) , the region near x=-1 produces a mass-—

singularity proportional to

. ( m p. £y )auz-

' : (C3)
Pk S
and the region near x=1 produces
P ( P. kg )‘J"L
m————me - c4
P'ﬁli Y (Cc4)
The m_2n in (C4) is due to factor. (1—Bx)"2n in. .
(C2), which is procduced from the range of k-integration .
satisfying
Ry PR (1-px )t n opoby Lo
~ P M & (C5)
=

This range would have been excluded by a cut-off, for sufficiently
small m? .

These mass-singularities are ligaments of the eikonal
approximation. This is illustrated by an exact calcglation in

which typically terms like

('}’V\)"f‘ 2 - 121)—;1'
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occur., Such a term reduces to (m)—zﬂ in the eikonal

approximation.

APPENDIX D - MASS-SINGULARITIES IN THE AXJTAL GAUGE

We first describe how Appendix C is modified in the

axial gauge, defined by a unit, space-like vector nu. The

cn-shell gluonh-propagator then introduces into (C1) an extra

facter

T (ke nok)

x‘[(i-/]’-J( k;.v_l:-r ie,: nf"_ Y+ kz..:_— (1.1-/3") {%T. *Q;_T)A -+
- - " (D1)
+ °l(;ﬁ." Nohy = No-R. ) Ry ony ]

where L and T denote component of 3-vectors parallel and

perpendicular to g::—E'. In the case of {C1), the ET'ET
“term averages to produce a term proportional to g; ; so there

is a suppression factor of either (1-8%) or

[Q,'z' oo { 4 ~x%) ' (D2)
L .
This  has the consequence that {C2) has a smooth limit as B8-1,
the corrections being

OL (m2)* 1]

(D3)

This is in accord with the general expectations described in
Section 8.
For gluons which are emitted and absorbed on the

same quark line, however, the axial gauge does not have a similar
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effect. It merely replaces the m? .in the humeratdr (in, for
example, (A2) and (A3))} by a factor proporticnal.to (1-x?).
In general, mass~singularities remain in individual -graphs. We
argued in Section 8 that these cancel out when a complete set
of MNA graphs is summed. . .
Finally, we sketch a few details of an example
designed to substantiate the claim in Section 8 that, even in
the axial gauge, mass-singularities are unchanged when an
external gluon goes off-sheil. (An example of this example ih
the Feynman gauge is given by (A3}}.

We take the example in Fig. 10.

- 3
-
-
-
~
-~
-
-
- -~
-~ ™~
< < P
\\ ~.
hY
~
N N
N ~

FIG. 10 —~ An example of an axial gauge graph designed to
illustrate the independence of the mass singularity

on the value of k2.

Complete the contour in the lower half ko-plane, and consider
-1

the contribution from the pole in (k%+ig) . The relevant

factors are then

[(2k kv o) ip )t (porp bV s

~ ) =4
x (;h,é_-+ /9"él 7'/Dv1éi J 1 ALB ] 1&5’

ko= BT (D4)
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Let |lpl=8p and k.p=x. For the most singular term near

o
k=1, we may approximate k, by LEEPA/PO in the first and

last term in the sgquare bracket, to obtain

i ! h. . 2 . -—.j
26 A0 b L 5 g

, -1y -1
x[hl{)o (J_-ﬁx)-y— p2 £, ] . [é,/gg(.!—ﬁx).-y—f. k’a + p k,i] (D5)
The k-integration now produces a factor

(4- )" TN 00 (06)

N . -1
where £(x) is non-singular near x=8 .

We must supply a factor

(i’—)(z) (D7)

from the axial-gauge propagator, but the angular integral of

(D6} times (D7) still produces an rn"2n

mass—singularity.

The k3 in the first denominator in (D3) only
changes the behaviocur of f({x} away from x= B_l , and so does
not. affect the mass-singularity. In fact.the kg—dependence is

expaected, just from eikonal-scaling, to be by terms of relative

order
2.2 . .
0 E (m k3/p.k3) x {homogenecus function in p.kl ~ (D8)
and p.kz_of degree -1} ]

There is a similar contribution from the other gluon

~1
pele [{k+k;}?] . This is most easily evaluated by the change
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of variables k' =k+k; .

The reason forlchoosing the rather complicated
example in Fig. 10 is that, in simpler cases, the contributions
from the two gluon poles separately diverge at kK=  and have
to be combined. When they are so combined, the conclusion is
the same.

True ultraviolet divergences, in the axial gauge
versions of Fig. 8, cancel by the simple Ward identity in the

same sort of way as in {(A2) and (A3).

- ACKNOWLEDGEMENT'S

One of us (J.C.T.) is grateful to Conselho Naciocnal
de Pesquisas (CNPg) and Fundagdo de Amparo i Pesquisa do Estado
de 830 Paulo (FAPESP) for financial support and to Instituto
de Fisica da Universidade de Sdc Paulo for the hospitality
extended to him.

Another (J.G.M.G.) acknowledges receipt of a.
studentship from S.E.R.C. J. Frenkel acknowledges a grant_frcm
cwzg.

We thank D.E._SoPgr and C.T. Sachrajda for useful

conversations.



.48.

REFERENCES

[1].J. Frenkel, M.J. Shailer and J.C. Taylor, Nucl. Phys. B148,
228 (1979)}; G. Altarelli, R.K. Ellis and G. Martinelli,
Nucl. Phys. B157, 461 (1974); R.K. Ellis, H. Georgi, M.
Machacek, H.D. Politzer and G.G. Ress, Nucl., Phys. B152,

285 (1979}).

[2] G.T. Bocdwin, 8§.J. Brodsky and G.P. Lepage, Phys. Rev. Lett.
47, 1799 (1981).

[3} W.W. Lindsay, D.A. Ross and C.T. Sachrajda, Phys. Lett. 117B,
105 (1982) and Southampton preprint.

[4] R. Doria, J. Frenkel and J.C. Taylor, Nucl. Phys. B168, 93
(1980); A. Andrasi, M. Day, R. Doria, J. Frenkel and J.C.
Tayloxr, Nucl. Phys. B182, 104 (1981); C.Di Lieto, S. Gendron,
I.G. Halliday and C.T. Sachrajda, Nucl. Phys. B183, 223
{1981); J. Frenkel, J.G.M. Gatheral and J.C. Taylor "Soft
gluons and the eikonal approximation with massless quarks",
Nucl. Phys. (to be published).

[51 J.G.M. Gatheral, "Exponentiation of eikonal c¢ross sections
in ncnabelian gauge theories" (Cambridge preprint DAMTP 83/3).

[6] T. Appelquist and J. Carazzcne, Nucl. Phys. B12Q, 77 {1977).

[7] H. Banerjee, M. Sengupta and A. Chattergee, "Failure of
Bloch-Nordsieck mechanism in perturbative QCD", CERN preprint
.TH 3544 - {(1983).

{B]IS.B. Libby and G. Sterman, Phys. Rév. D19, 2468 (1979}.

{91 R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne,

"The analytic S-matrix" (Cambridge University Press, 19%66).




