|

R e b

UNI\IEBSIDADE DE SAB PAULD

INSTITUTO DE  FiSICA
CAIXA POSTAL 20516

01000 - SAD PAULO - SP

BRASIL

IFUSP/P 406

!IFUSP/P—406

‘\"-\“""“ R

PARTICLE-HOLE RANDOM-PHASE-APPROXIMATION WITH
GOOD ISOSPIN |

by

F. Krmpotic

Departamento de Fisica, Facultad de Ciencias
Exactas, Universidad Nacional de 1la Plata,
1900 La Plata, C.C. 67, Argentina

C.P. Malta

Instituto de Fisica, Universidade de S3io Paulc

K. Nakayama

Institit fur Kernphysik, Kernforschungsanlage -

- Jdlich, D-5170 Jilich, West Germany

Maio/1983




PARTICLE-HOLE RANDOM-PHASE-APPROXIMATION WITH:GOOD IS0OSPIN

F. Krmpoti&*

Departamento de Fisica, Facultad de Ciencias Exactas, Universidad
Nacional de La Plata, 1900 La Plata, C.C. 67, Argentina

C.P. Malta

Instituto de Fisica, Universidade de Sao Paulo
C.P. 2056, 01000 sSaoc Paulc, SP, Brasil

and

K. Nakayama

Institut fiir Kernphysik, Kernforschungsanlage Jiilich,
D-5170 Jllich, West Germany

ABSTRACT

A simple methcd is designed for the treatment of
a charge-independent Hamiltonian with wave functions with good
igospin and for nuclei with N#Z . Both the particle-hole and

the A-isobar~hole excitations are considered.

[WUCLEAR STRUCTURE. Collective excitations with good

isospin. Tensor equations—of-motion. ]
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In.dealing with particle~hole excitations in a
nucleus with ground state isospin Te={N-2)/2>0 it is convenient
to subdivide the shell model orbitals‘into:

i} ?he filled orbits (f), completel& filled for both neutrons
and protons.

ii) The valence orbitals (v}, filled only for neutrons. -

iii) The empty orbitals {e), containing neither neutrons nor
protons.

Thus, there are four types of cne particle-one hole (lp-1h)

excitations, namely: f+e , f+v , v+e and v»v , and two types

of A isobar-hole-particle excitations which are: f£+A and

v+

For a f+e transition we can introduce the coupled
particle~hole creation operator
1

+ ' _ t . 1 + + .
C' (f+e;t I_nt) = (a; % b%)m ﬁx}r:l (ifmmt—m|t mt) e%’m b%,mt—m '

(L)

where t=0,1 is the:'isospin carried by the excitation, m, is

. . + + + +
itg third component and a; 1 , a; 1 » b1 13 and by _; are,
2 i.-+

TrE R Tz Z

respectively, the creation operators for neutron particles,

proton particles, proton holes and neutron holes®. In a second

step the operator C+(f+e;t m is coupled with the core tensor

)
state [To>> {(whose (2T,+1) components [T, My > are the usual

Dirac ket vectors) resulting in an excited state with definite

isospin T=Ts~1 , Ty and Te+1 :

*since we are not interested in any specific particle-hole state,
we do not write the single particle states explicitly. Moreover,
as the formalism developed here is valid for any type of collective
motion, all referemces to orbital angular momentum, spin and
total amgular momentum of the resomance will be omitted. The
notation is very similar to that of Ref. 1l).




|£+e,t;T M > = (c+(f+e;t)x[Tu'>>')BT{

T

1

1]

I t=~
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T

(t Tp m, , M m |T M)C (Frest m) |To.Mm> .  (2)
N g e M T My, e My >

+ :
(Note that when MTO T,-1 . C {frejt m) [TU,MT-mt> gives a
1p-1lh state for mt=—l, 2p-2h state for mt=0 and a 3p-3h
state for mt=l.)
The particle-hole operators for the fav and
v+e transitions, i.e.,
+ + +
; b 3a
C (f+v mt) !1_’_._5_ ‘i'rmt+11' r (3a)
and
C+{v+e;mt) = a} , by _s ; (30)
: Tt TEe ety
(mt = -1,0} do .not have definite t spins due to the lack of

the proton valence states.

However, also in this case, eigenstates

of the total isospin are ecasily constructed by noting that the

states
aT _1 |Te>>
Tz -
+
b

1 _1 |Tn>>
7

are tensor states when the operators aj

the valence region.

lwsTo- 35> (4a)
-1
v 7o 25> (4b)

and bT

ze"

+
act on

1

-1
z

Mo

T

(The fully aligned components !w:'I_"u - ¢ To ~ 37

2
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-1 1 1
and |\J ;TD-E,‘I‘D—§>

with neutron and proton numbers (N,Z+1) and (N-1,Z)).

represent, respectively, the nuclei
Coupling
tensorially the operatox b;’m to the state |« ;Tu-%>> and
the operator a;’m to the state |v7'; To—v%>> one obtains

immediately the eigenstates of the total isospin T ,

1

+ T

| £+ ; T My = -(b»;_ x |mg T —§>>)MT ’ {5a)
and
. + -1 1 T

. Sy . -
|vre ; T M (a% x v Ty 3 )MT ' (5b)
where the isospin can take the values T=T,-1 and T, and the
minus sign was introduced for the sake of convenience. By means

of relations (3) the last two states can be also expressed in

the form

[£+v ; T M_.> =

0
1 1 1 1 +
= E_ (5 ¢To-%5,m +5, Mp~m ~ 5T M)C (Frvimy) | To P Mpmm> o

(6a}

and

1 1 1 1 +
G T m3 Mg Mo m - SIT MY (e |To My~ >

(6b)

In the case of wv»v transitions we are only
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interested in the fully aligned state

e + + _ ot
vrv;T=Ty-1; M, ,=T4=1> = aj _1 b1 1 |TOTo>' = C (vrvym, =-1) |T0Tb>-
T kxS Teow t
(mn
For the A-h excitations we proceed in the same
way. That is, in the case of f+A excitations we first
construct the coupled A-h creation opératcr of isospin t=1
and 2 ,
+
ctigss ; tm) = @f xBDE (8)
B z Mg
where the operator AE m creates the A++ . At , A% and A~
P
isobar states for m = - % , - % . % and % , respectively.
Next, as in the case of f£+v transitions, we cauple the
operator (8} to the tensor ground state [Ty>> and get
" T
| £+4;T Mp> o= (C7(EvAit) x [Tg>») . (9}
M,
. T
The second A-h creation operator,
+ + + .
C (v+Aim_ ) = A; . b i 10
e R 1 o

(mt=—2,-1,0,l) does not have a definite isospin and the eigen-
states with good isospin are conétructed, as in the case of

v+e transitions, by coupling the operator A; to the tensor
state (4b), i.e.,

lv=:iT M, > = (A7 x [viTo — £53) {11)

T
z My

I3 1 1 1 N ,
= Z—l(f.To“f,mt+§,M,I,-mt-§|TMI,)C(V+A;mt) |To ¥y = m> -
t 7 : (12)

At this point one should remwember that the states
|f+e , £; T MT> p |frv ;T Mf> and [v+e ; T MT> contain, in
addition to lp-lh components, configurations with 2p-2h and
3p-3h, which makes the calculation of the matrix elements in such
a basis rather cumbersome (see for example the work of aAuerbach

2)}. 1+ is, however, possible to relate the

and- Yeverechyahu
matrix element of states with good T +to the ip-1h ﬁatrix
elements with different MT's. Moreover, these last guantities
can be easily summed up and the final result appears in the form
of matrix eléments between the usual lp-lh states, multiplied by
a geometrical Tg—dependent factor which contains.correction
comming from the 2p-2h and 3p~3h componénts. The same procedure
can be folléwed for the A-h matfi#'elements.

Quité recently, TokiB)'has elaborated a very
ingenious method to esfablish the above mentionedrrelationship
between the matrix elements. Unfortunately, this method is
applicable only within the Tamm-Dancoff approximation (TbA) and-
an extension to the random-phase approximation (RPA} does not
seem to be trivial at all.

Within the RPA, there is the method of tensor-
egquation of motion {TEM}, developed by Rowe and‘Ngo—Trongl), in
which the 2p-2h and 3p-3h configﬁrations are automatically

included as a result of the tensor coupling of the excitation

aperator to the tensor ground state. This metheod, however,
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can be applied straightforwardly only for the f+e and £+4
excitations, as in the remaining cases the p-h and A-h excitation
operators do not have definite t spins. The way to overcome
this difficulty is suggested by expressions (2){ {5) and {1L).
That is, the eigenstates |f+v;T>> and [voe;T>> and {v+A;T>>
can be treated, respectively, as result of excitations of rark %‘aﬂd %
coupled to a ground state of rank To - % . Similarly, the
eigenstate |vsv;T>> can be considered as result of an excitation of rank
zeroc coupled to a ground state of rank To+l . Therefore, in
order to exploit the invariancékp;operties of the Hamiltonian
and to be able to make use of the TEMrformalism we will introduce
auxiliary temsor excitation operators C+(T) of rank T“U,%,l,%
and 2 and- auxiliary ground étaﬁes [To (FY>> and |T,(B)>> for
forward and backward going amplitudes, respectively {of course,
in tﬁe case of f+*e and £+A excitations, the operator C+(T)
willrcoinqide with the particle-hole excitation operators (1
and (8) respectively and the ground-state will always be |To>>).
Let us first simplify the notaticon and label
different p~h and A-h configurations by an index « running
from 1 tq-8 (see first and second columns of Table I). Next,
we define the above mentioned auxiliéfy quantities (which are
listed in the fourth column of _Ta_xble' I) by means of the
relations: .

F o .
¢ laym =1 ~Tot T (F)) |TQMI,0>=: My + To- TSm>

4+ .o o
o) lTu(F)MTD>

(13)

D I TEENT> = (D clummn ot T5®) Ty, >= M+ o= T @,

and intrcduce the RPA excitation operator

] ,
M - (u)c+(r“gT) - =1nF f“TYTn(a);(T?.—uT) ;o (1)

Q+ (TauT)_= X
n . n

.8.

where XT (o} and YT (@) are, respectively, the forward and
n n

backward going amplitudes of the excited state ITn>> {n—th

state with iscspin 7). From a moment's reflection it can be

seen that:

1) Xq (o) = O{YT {a)=0) , for the £f+v , v*e and v-v
n . n .
transitions and  T,= T, +1(T=T, -1) , and

2) Xp {a) = Yo (a) = 0 for the wv»v transitions and T=T; .
n n
The properties of the operator 9; (t*)  are
n
= + a I+ T
|Tn>> =7 (RT {(t) x | Te>>) ' (15a)
o n
Qp (tH [T =0 . (15b)
n
One should always keep in mind that the operators E+(TG} act
on the forward going ground states | T?{F)>> and the o@erators
o .
(™ = {~1)T £{t™ on the backward going ground states
o
|75 (B)>>

We can now straightforwardly arrive at the tensor

equations of motionl)

T

o o ' ' + v . L]
aé"PT{T TO;TQ T? :mt)<'r% T%IE}I‘D(T%T),H,QTH'(TOt ué)}lT? 79 >

e

i, 1 PT(ra'rf;Ta ﬁf ) < T T?IE?TH(TGUT),Q;HI(TG U%J]E T? T% >

n oo’

= 6nn' i ! 18

- o _ o' '
where u, = m+To~T; , = m+Te=T, ,

t
energy of the state |T§>>_ and

L P is the excitation

n
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PR 70, o'
Pt T T ) = ) '(—l)T"+Tn HIHT

. 1 .-
T N P (2 TE41) (21 +1)) 72
Ty

o o’ L o ! o_ L0t
% W(Tata! T Tm'-TiT)- (T P " Tot T“'mtfr = To |71, To- T
0o’ o o' o T
(T, 79, 7372 737%

{17)

The true excitations operators are defined as

+ '
OT (u,mt} = X

: Tn(a}c+(a,mt) T Yy (@ClR) (18)
.whé;e
Clo,m,) = (-_)k“mt clo,-m) (19)
an§
. - t for the f+e and f£+A transitions ,
o {l otherwise .

Making use of relations (13), the equations {16}
can be written in terms of the true excitation operators (18)

and (19)

1 T
Toe (e% T8:% 7Y m )<TDTDI1:0 (a,m) ,H, 05 (a',m )] TyTe>
aqﬂ T . il Tn el the Tn Py E
m

t

= o B e R . +

= an ag' PT(T Toit T, ;mt)<TuTQW§T (a,mt),OT (a',mt)]ITuTn>
n n

= ann' W - _ (20)

Substituting the expansion (18) into this last expression one

.10.
arrives at the RPA eguations
B X X
Ap T T, 7 T .
=y ' {21)
oD ¥ i
B _
T 7)Y T_
with the submatrices defined as:
1 1 i
Aptosa’) = [ o2 T8 1Y T B)my) <ToTe | |Clanmy) B, CF (@ ) | IToTo>
m
t

= A;(m',u) p

Bplm,a') = | B (% % 18 B ;mt)<T0To'i|:C(ot,mt) .H,C(a',ﬁt)]lTqu ,
m,.

e
{22}
Dpfa,o ) =I§ PT(TG TSm ;e T2 fB)=mt)<ToTa| I:c+(ou, Et) ,H,C(u',ﬁt):llToTp o
" .
= D;fa‘,u) .

In this way we have succeeded in relating the matrix elements
with gooed T +to the lp-lh matrix elements with different

MT = Tu'H'nt .
one should notice that Tg(F) # T& (B} when the

" excitation operator C+(a,mt) does not have a definite t (for

@=3,4,5 and 8). As a consequence, the geometrical factors Pg
involving these configurations will have different values for
the submatrices AT , BT and DT .

Within the TEM formalism the reduced transition

matrix elements of a one-body tensor operator Wt of rank £
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in isospin space are easily calculated from the expression

- 1
cr|iwt]lTe> = T T T § P (P W £ T 5 m)
d I .
€
x <TgTp| |0, (a,m,) wt | T¢To> (23)
olo i e r ™M [ ] v i

Finally as

¥ PT(T“T?;flT?;mt) =1 (24} -

amt B N

eq. (20) leads to. the usual RPA normalization conditicn

(%, (@)|? - |¥m (@}{?) =21 .
g" Tn Tn

within the TDA our results, both for the p-~h and

the A-h excitations, agree with those obtained by.Tokig). We
believe, however, that our formalism is more compact and more
convenient for a numerical calculation, Moreover, as already
nentioned, the extension of Teoki's method from TDA to RPA seems
to be rather compllcated

. Mathematlcally the method employed in the present
work is that cf Rowe and ¥Ngo- Trongl). However, our results
c01nc1de w1th thelrs only for- the f+e and f+A tran51t10ns,
although the last ones were not con31dered by them. The first
1mportant dlfference appears in the treatment of the f+v and
vre ex01tat10ns. In the work of Rowe and Ngo-Trong they carry
a zero isospin and are coupled to the ground state with 1sosp1n

Ta. As a consequence, the m&trlx elements lnvolv1ng twoe

configurations of this type are identically equal to zero for

.12,

T =T,+]l (see eg. (17}}, which is obviously incorrect. On the
contrary, within our formalism the just menticned excitations
are treated as entities of rank % and coupled to the ground
states with isospies Toe ~ % and T, + % for foxrward and
backward going amplitudes, respectively. Another serious
disadvantage of the method developed by Rowe and Ngo-Trong is
that.they do not consider at all the wv»v configurations, which
play a very important role for some charge-exchange states with
T = Ty¢~1 (in particular, for the Gamow-Teller tesonances) through
the forward going graphs, and for the states with T =T+l (for
example, in the case of isovector, quadrupole resonances) thﬁmgh
the ground state correlations.

Finally let us note that within our tormalism
the matrix elements with good isospin T = Ty+l are always
identically equal to those of lp-lh with My = To+l for both
the forward and backward going amplitudes.

Explicit results for the matrix elements and
transition probabilities, as well as, a few numerical results

will be presented in a forthcoming paper.
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TABLE I - The excitation operaﬁors C+(m,mt) and c+(1amt), their

tensor ranks t” and 1 and the corresponding ground

state isospins Ty(F) and TY(B) for the forward and

backward going amplitudes, respectively.

*(a,m,) T R £ B 1)
0 o Ty Ty
+ + t=
fre {az x bl); i
2z 7 M =Wy
i 1 Tu TD
+ 1 1 1
£v a b ~b -5 Te-3 Tyt
% 'é‘rmt"'%' El"u-r 2 T2 2
+ + + 1 1 1
+a a s} - = Te ~ 5 Ty + 3
v T Y3 3 p) © 732 © T3
vy al _, bt 1 - 0 Ty-1 T+l
Tz 7
101 T, T,
£+a (a} x b]) E7T
: T 2 MMy
1 2 Teo To
+ + + 3 1 1
vrA Y] 1 b1 1 As - 5 Ty = 5 Ty + %
—z-,mt-l—z iy Tk, 2 2 2




