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THE 130Te(p,p') REACTION ON ANALOG RESONANCES INTRODUCTION

M.C.H.M. Ruiz and M.L. Cescato
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scattering on analog resgonances provides an important source
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P NO{re Déme, Indiang 46556 and ' parentagelT. That is, from these processes we can learn to what
Intermet i .
metrics, Inc., garmlnster, PA 18974 éxtent a nuclear state can be built up by adding a nuclecn in a
an

F. Xrmpotié* definite single-particle state to a definite core state. More
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precisely, the inelastic scattering gives a direct measure of:

and i) the particle-vibrator coupling in the parent nucleus of the

Departamente de Fisica, Facultad de Ciencias Exactas, decaying proton is above the neutron Fermi level, and
Universidad Nacional de La Plata, 1900 La Plata, Argentina
ii) the microscopic structure of the core states, when the

proton decays from a level which is below the neutron Fermi

level.
Angular distributions for elastic and inelastic
scattering have been measured on six analog resonances in the In a recent paper7 we have analysed the elastic and
130 - , )
Te + p system and at two off resonance energies. Partial inelastic decays of the isobaric analog resonances in gy o B

widths are deduced from the angular distributions. Formulae for
system associated with the low lying states of the perent nucleus

145

the spectroscopic amplitudes within the framework of quasipar-

: . . . his - -
ticle randem phase approximation are presented. The experimental sm with spin and parity J, = 7/21 . 3/2

1 1/2;. All the single-
results are compared with the theoretical predictions. particle orbitals (f1/2 ,p3/2 i and f5/2) which, togheter

NUCLEAR REACTIONS 130Te(p,p') E = 7.5 - 14 MeV; with the positive parity vibrational fields establish the struc-

enriched targets; measured G(Epfﬂ); deduced spec- ture of these states, lie above the neutron Fermi level. Therefore,
troscopic amplitudes; 131Te calculated and spec~ .

. . . the main information which can be obtained from that study is
troscopic amplitudes predicted. :

related to the particle-vibrator coupling; the microscopic struc-—

ture of the core plays only a minor role.

In the present work we study proton inelastic scattering
+ + -
to the 130'I‘e 2; state through analog resonances 3/21, 1/21, 7/21,
3/27, 3/2, and 1/2] in 1311, In this case the negative parity
*Permanent address: Departamento de Fisica, Pacultad de Cien states are also built up dominantly from the single-particle
cias Exactas, Universidad Nacional de La Plata, 1900 La Plz
ta, Argentina, Fellow of the Consejo Nacional de Investiga states, which are above the neutron Fermi level. The positive
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parity resonances on the contrary comes from the orbitals which
lie below or just on the top of the neutron Fermi surface. As a
consequence, for the 3/2{ and 1/2; resonances, both the particle-
vibrator coupling in the parent nucleus and the macroscopic

structure of the wvibrational 2; field turn out to be relevant.

In the same way as in Ref. 7 we make use of the coupled
channel fommlation. for treating the direct non-resonant scattering.
However, as a) the analog resonances under study lie 7 to 10 MeV
above the neutron threshold where there is a vast phase space
available for neutron decay of the T states and b) proton decay
of the T° states is inhibited by the Coulomb barrier, the fluc-
tuation contributicn to be protoﬁ cross—section should be nil.
Thus, contrarily to what hapoens in the 144Sm + » system, the
proton scattering in this work can be well described by considering

a direct hackground amplitude and a resonant amplitude due to the

nresence of the analog states.

The fluctuation processes, as well as the different
estimates for the single-particle escape amplitudes, have heen
thoroughly discussed in Ref. 7. Here the main emphasis is rut on

the nuclear structure calculation of the parentage coefficients.

It should be noted that nrevious measurementssqli on

lsOTerlacked forward angle data and the analysis did not include

the non-rescnant direct mechanism.

II. EXPERIMENT

With the proton beam of the S3o Paule Pelletron=-8UD

accelerator anqular distribution of 0(8) were measured between

40% and 169° at laboratory enmergies of 8.00, 8.30, 10.29,

10.54, 10.60 and 11.00 MeV., These energies are at or near those
of analog resonances having J" of 3/2+, l/2+, 7/2°, (3/27),
3/2_ and {1/27) respectively, and correspond to maximum yield

in the first 21 state averaged over several angles. Qff-reso-
nance angular distributions were taken at 7.50 MeV, 9.90 MaV

and 14.00 MeV at angles between 30° and 170°. An array of

three surface barrier detectors was used, each subtending a

solid angle of about 1 msx. The detectors were cooled to 0°C

using a water-—-ice mixture.

Targets were made by vacuum evaporation of 99.4%
enrichied !30Te from a gold plated Ta crucible onto 10yugm/cm2
carbon foils and were about 200ugm/cm? in thickness. The
carbon foils were evaporated onto clean BaCl; coated micro -
scope slides by electron bombardment of graphite. Commercial
foils and those prepared with a detergent substrate had
contaminants which hindered the experiment. Targets made by
evapdration from unplated crucibles contained tantalum teluride

and were not stable in the beam.

Absolute cross-sections, accurate to within 5%, were
determined by normalization of forward angle elastic scattering
data to optical model predictions. The error bars on the data

points are purely statistical and do not contain this error.

III. ANALYSIS

The method of analysis is identical to that of Ref. 7.

Following Ref. 12 we express the cross section in terms of the

C matrix defined by




b eeB e A et 2841 1/, =2ig R, i
Clee!'J)=C" (cetd) 5 kc £2£'+l} e 'S (cc'.:l')J (3.1)
where J is the angular momentum ¢f the resonance; cz{nfjI}

and ¢'={n'£'3'I']l stand, respectively, for the entrance and

exit channel gquantum numbers; kc and G, are the wave number

and Coulomb phase. The background term CB(cc‘J) is calculated

using the program coupled channel JUPITORlZ} The spectroscopic

informaticn is contained in the resonant part of the scattering

'matrix, which reads in the R matrix formalism13
: gilcT dgle'T )
s¥(cermy=iet (Petberdy 287~ v (3.2)
VE. ~E- & IT
J 2 °J
A¥)
with
= R
¢c = Ec + oo + wc. ‘ (3.3)

Here, E the is incident center of mass energy, EJ

v
resonance energy of the v-th state with spin 7, PT the total

J
width of the resonance, £ the real optical phase and ¢5 the

resonance mixing phase. The resonance amplitudes g(eJu)are

related to the spectroscopic amplitudes S(CJv)through the
. 14,15
expressiocn
2T+ 1 1og(ed))
o v
g (e = 3.4
R 6.0
c c

where To denotes the isospin of the target nucleus, Pg the
optical-model penetrability and ;c the imaginary part of the
optical phase. The quantity ycS'P' is the single particle

reduced width given by

the

2 .
Zma 2 Fnlay) (3.5)

where [ (ac) is ‘the value of the neutron wave function at the i
channel radius a, and m is the neutron mass. The minimun values

.- . 1/2
of L(2T0+ 1)/ ZPCOJ / Yi'p' in the region of the nuclear

surface were calculated by program ANSPEClq’l5

and used in the
determination of the B(ch). The spectroscopic factor is simply

given as § (eJ ) =92 (ed,)-
The coupled channel optical potential was obtained
by fitting elastic and inelastic angular distributiocns at 7.5
and 14.9 MeV using program EC:IS]'.6 which solves the coupled

equations by a method of sequential iterations. The first 2*

state is considered as a one phonon vibration. Fig. 1 shows

the fits and the optical parameters. The deformation parameter

17

B Was taken from the Coulomb excitation B(E2), 0.295 e2b2,

using the relation

B(Ex} = {-‘2-; ZeBC Ré)2 ,

where Z is the atomic number and RC is the Coulomb radius, A
linear dependence in energy was assumed for V and W, the real
volumn and surface imaginary potential depths. Using the 7.5

and 14 MeV potentials one obtains

A1

-0.59F + 60.49 MeV,

W= 0.58E + 3.83 MeV.

The 9.5 MeV elastic and inelastic anqular distributions which

are affected by the 10.29 MeV resonance showed z best fit

indicating a dependence of about



W = J.48 E + 5.37 MeV.

This gave improved resonance fits, particularly at 8.038 MeV

and was used throughout this work.

Resonance mixing phases and elastic partial widths
come from a reanalysis of the 170° scattering execitation

14,15

curves of Ref. 9 using program ANSPEC Fig, 2, shows

Q R o]

. . R
fits to two resonance regions. We obtain Yemp = g7, ¢£=1=7 ,

= 50, = 00. These phases are then used in inelastic

¥ o5
=2 £2=3

fitting. The "on-resonance" angular distributions were taken
at the energies cof the maximum yield of the first 2*which are
The quantity E

not the resonance energies. - E was determined

J\)
by vérying E until the elaétic aﬁgular distributions were fit.
Fig{' “3;.shdwé'thé-eia$tic réééﬁaﬁ£ énguiar distributiohs.

The only free-paramééers in tﬁe inelastic analysis
are the g(ch). Once the correct combination of.signs for the
g(cJU) is found, the itergtion procedure rapidly converges.

The resonances were fitted separately, but every three iterations
the background due. to. the other resonances was corrected.
Table I, shows-tha~deduged elastic and.inelastic parameters,

Errors are estimated from behavior during fitting: and do not

include the normalization uncertainly.

IV. CALCULATION

IV.1l. Nuclear Model

We attempt. to describe the energy spectra and

the spectroscopic amplitudes in terms. of the pairing-~plus=...

-6 -

multipole medel (PMM) with the guasiparticle random phase
approximation (QRPA) for the doubly even system and the
quasiparticle vibration coupling (QVC) for the odd-even system.
A detailed description of the PMM model can be found in Ref. 18;
here we shall merely sketch the main arproximations involved in
this model and derivate the formulae for the snectrosconic
anmrlitudes, which are not available in the literature.

l The PMM consists of tﬁe cne-body shell model
Hamiltonian (HSP), with the short range pairing (Hp) and long
range multipole (HM) forces as a residual two-body interaction.
Usually, the pairing coupling constant G is fixed from the ex—
perimental pairing energy & and the neutron-neutron, proton-
proton and neutron-proton multipole forces are chosen to he

equal:

>
B
1]
=
P
>
-
W
>
P

The QRPA implies:

"1} An approximate diagonalization of the Hamiltonian

Hsp + Hp through the Bogoljubov guasiparticle transfor-

mation

+ . _ +. . j+m

@, = u.ad. o+ v.ad.-; a.. = (- a. .

jm J jm i im’ jm ) J-m 4.1
leading to the independent guasiparticle Hamiltonian

H =71 E,of a. . .

P gy 3 Imtim (4.2)

The operator agm(ajﬁ} creates (annihilates) a particie in the

state [jm>(]3,-m>») and j=(nfj}; the corresponding quasiparticle

operators are, respectively, agm and ajﬁ The symbol B,
: J




stands for the independent gquasiparticle energy ii} The scattering terwms in the multipole Hamiltonian are

1 dropped out and the QRPA Hamiltonian
| /
By = E(Ej —BF)2 + a%] 72, {4.3) :

. - . , . _ __}_ R " M
whereeE‘Ls the Fermi energy, & is the energy gap and €5 is the HQRPA,_ qu. 5 iuxA(,) M3 {P)MA(P) , . (4.7}

single particle energy.

The multipole operators is brought intc the diagonal form:

B . A Agu +
My = & <jymy|i*rvYidomyral o a. (4.4) _ T
A ym, A Jamyame Hoo11 = af, 18,1 Ba,i Ba,i (4.8)
Fomy
contdined in Hm' become by the Bogoljubov transformation
M= M (s) + M (p), (4.5) wt _ 1 (2. (513,00 08" (545 . Ay -y oL
A by p : B, i = _E_jsz 2; 313200 p; (Gad2)-by (G320 (3" Fp M (3]
where (4.9)
M (8) =.5. S (3132008t (3132), (4.5a)
A J1J2 A where
M!J-( ) = 1 TR )_|+ S [ St TR TSP L P(jljz;\)
2B o= —E—jlgsz(J132 ){PA (31323+ (=) 12N (F132) ], (4.5b) ag(31323) = &y | g (4.10a}
31 d2 Al
with
- -1 . AR . P(32323)
S A} = A+l U. .U, -v. Vv, i . 53 = e
Gudad} = a1 5 U5,05,7V5, 75,0 <hi 1y [ 15p2, (4.6a) by Gidzd) = b s s (4.10b)
Jr 12 Ay
-1
P(i132%) = (2a+1)"7 (15,0, +0, v, }<j1|IiArAYAi{j2>, (4.6b)
! are, respectively the forward and backward going amplitudes
Moa s 4 o + with the normalization condition
sy (3132) [“jlajzlx’ _ (4.6¢)
+ - - : .
L Lo : Aa,, Ay-b, Alb, AYi=248..,. 4,11
p'"A {(Jriz) = [m;lugz}‘;. {4.6d) ﬁ]z[al(h:lz )al (31320 1(3132 } lt(3132 )}7 ii? { )

The eigenfrequencies o are obtained form the

A,L

dispersion relation




-1
Xl =

1 1
— + ]
J hﬂ:A’i E. +Ej2+hm;\'

lP(JIJZA)J [E 5
J1 J1

1
2 313
(4.12)

while the gquantity A i is given by the expression

=2 __ 3 - 1 1 -
Mt 3, i)[xx I= 3 ]?]Z-P(Jljzh)] [(E VB, ey T

1
T T {4.13)
J1 T2 Ayl

After applying the inverse transformation to eq.

(4.5b) the phonon multipole operator reads

i -1 u+ A=y —n
Ao PhLalBy it By (4.14)

For the odd system the Hamiltonian is written in

the form
Hoddr= qu + Hcoll lnt(QVC) (4.15)
where
= ut ut ;\ up~H
Bjng (QVO)=, Iya, oM (s)fBl’i 1] (4.16)

The wave functions of the Hamiltonian {4.15) are

expressed as a superposition of one quasi-particle, one quasi-

particle plus one phonon, etc.

- 10 -°

loM»=]¢ (iju|JM}m

+
137159, 10 m®

= + .
c;|Jomm> + jz Ciri J|3x ;TM>

where |w0> is the ground-state wave fun

{BCS~vacuum) .

Faen

1 i vy (4.17)

ction of the evén systen

The actunal calculation shows that only the lowest

energy phonon, which corresponds to the
important. This is not only because .its
but also because it is strongly coupled
particles (Al,l is large). Therefore we

lowest phonon, drop the suffix i and us

vibrational state, is
energy is the lowest,
to the single—quasi-
will consider only the

e the number of

phonons N, together with the total angular momentum I, to

specify the many phonon system. The energy matrix element of

the Hamiltonian Hodd is given by

ISR : =
<3 N'I JiﬁoddijN1J> 8551 Sy

-y (M 24 /2{§ O LIGREE!

+H£l

x[<NrI|||B;|iIN>5Nr’N+l+<N|I.HBA
where B;ﬁ = (_)A_qufu' In particular
<J W=l I'=A,T=3|H_,.!3,N=0,I=0,0=3>

odd

- 11 -

511'(thx + Ej)

) (4.18)

2i+1

=_AA(23+1)

/2S(jj'l)
(4.19)




It should be noted that the relation between the
gaantitly AA and the macroscopic particle-vibration coupling

strength <k> is given hy

B
i, = <K ____A_T7_ {4.20)
<r> (2a+l) 2

where <k>=<rav/sr>=50MeV and <rx>=3/(3+A)Rl with R=l.2Al/3fm,

A being the mass of the nucleus considered.

We arxe now ready to calculate the spectroscopic

amplitudes defined by
B(INLT) = (2341) 172 <1As;J|]a§P)+||1> (4.21)

and which measure to what extent the isobaric analog state
(IAS) with the angular momentum J can be built up by adding a
proton, in the single-particle state j, to a core state with
N phenons and angular momentum I; TO is the iseospin of the
target nucleus. The IAS is related with the low—lying.parent

state (PS) through-the.relation

IAS;J> = T P5;J> (4.22)
1/2
(2T _+1}
o
where T = .Z a?+an iz the isospin lowening operator. The

jm TimTim

final resuit is

I 1 L L B T PTVRTTLIN (3,1

8 {JRIT)=A{~} snzas Uy Yy e b S A T I

( (m

G JA)+U

x{[v(n] Ply(p)y, (n)
3 ]

- 12 -

blB) 1505 M) pry (0) (P} o
G ran v R uPlatP JA)]EN.'N+1

(0} (B) 4B 0D viyy ag {0 g (B) 1B (B) 1 v say aps (M) (DY (B)s (B 1o s
+[vj R AL E A LR AT R A R PR ISR AL R s D A TV L

(4.23)

To discuss the physiéal features of the. spéc. -
troscopic amplitudes, it is useful to give explicit formuléé
for specific cases. In the following; fhe cases which involve.
ground andl the first vibrational state of an even nucleus are
listed. Contributions from two phonon states in the odd

nucleus are neglected. The cases are:

a) Even Nucleus in the Ground State (Elastic Scattering):

RPN ¢ B {9 Y 59} 221, 1/,
,I=0,J=9}=c.u.™ p! L= S 139
8(3,I=0,J=3} 595 05Ty (2]+l) ,§'C3fA3

(R) 4R B}, (0] (s vay o (m)B) 4 (B (B) picas Lo dmhg () (B) (B (s
x[vj LA e Rl G b k)+Uj. U3 vy (5 x)+uj. vV U a5 2],

(4.24a)

b) Even Nuclgusain the First Excited State ({(Inelastic

Scattering): .

: 1= gy I-TFA g @ )Y _ A+1 Ly
8(j,I=2,3)=(~) {Cj 5 § U7y ST Cy
. (p} . ’
-[vjﬂ’ujp UgP’a(n}(JJA)+U§H)G§P)V§p)a(p)(th}+U( ) yip) gp) @inl.

{4.24b}

J
diagonalization of the Hamiltonian (4.16). This procedure,

The amplitudes C. and ijj'are obtained from the
however, leaves hidden those physical processes which play

_13_




the dominant role in creating the properties of the coupled

system:. More over, the results of diagonalization sémetimes

show arcartain asymptotic behaviour which could be eventually

predicted without cbmplicated numerical operations For

these reasons, the results for the spectroscoplc amplitudes in the case b);
are llsted below when only zeroth and first order contribu-

tions to the wave fugctlons are considered. This means that: II) For a predominantly collective state the wave function

is approximated by:

I) For a Predominantly singleﬂquasipafticle state the wave

function of the parent state is abproximated by:

(n} cas
§V(TINN)
| gM> = |5 ' ATM> - Ak(g‘;:i)% |T0IM> (4.2
E, ,+hu)-E
. i I
() g1y
s (Fin
| IM>=| JoTM>~A (%éﬁ)} _Z 13 Aagm> (4.25} and
31 By E
(n) (B} (P g {n) ..
: 1 Uy ultioF g (33'%)
and 9(j,I*—=0,J=j)=—AA(§;:i)'Z (=1
Ej|+hmAij
. R {(n) ..
8(3,1=0,3=9) =0 M ¢(P)y(P) _, 2 22+] sYY (491 0) (n)(p)(p)(n .
5 U350y J\(234_1) —j—_—EJ-Z‘U_h_mh. +YL() (j) {330 E:L{‘)Uj.(?)vjﬂp}p(m (33*x) +£)v:fp)u(p) 2P (553
gD (I [N
BRI g, E;P 45
(0 ) n ] Pt
x_an Puf (n)(n'x) v PRy Pp® 550 vy Pp® (50 1 : o
+
o, [n) @ (4.26a")
j J WT\ . .E} p-i‘hml o Ej )+E:§}‘.))-—hm
(4.26a) in the case a), and
in the case a) and s™ (350
603, 1=1,3)= () 77T Ay [Py [PYy (@) Az(ﬁ“i) REME
;Y57 J+
n , E., +hu ~E
05,120, 3y=mn, (ZAELT U.J('n)Uj'(' )Uqu)stn) (331 3T
T G ) _g(r) | T YN S NS Y DO T S E S S
> 3T "j(?() — L L, :
m) (p) n D) P P P
V.V uPglPlp M g, R A SN S S T By HEy ey By #EyT rhey By #Ey7 Huy
Mg M 5 — J(J ) 3an ' (4.26b")
3 A 3 By RS ey o EJP}+EjP}+hm )
(4.26b} 15

- 14 -




in the case b). The graphical representaticn of different
terms in Egs. {4.26a}, {4.26b), (4.26a'} and {(4.26b"} 1is
displayed in Figs. .4a., 4b., 4a', and 4b', respectively.From
these figures it is easy to see the physical meaning of each
cne of the contributions to the spectroscopic amplitude. For
example, the last term in Eq. (4.26b) {last diagram in Fig.
4b) arises from the ground state correlations in the parent
state, which create a phonoen and two gquasiprotons; the proton
in the state J(p) is annihilated, together with the . initial

guasineutron in the state J(n)

. by the operator T , while the
second proton decays from the state j(p) leaving the nucleus

in the first vibrational state.

The first terms which appear in Egs. (4.26) cor-
respond to the conventional processes in which one neutron
above the Fermi level is transformed, by means of the T
operator, into a proton which latter on decays. The first
terms in Egs. (4.25) include, in addition, all the possible
processes in which one or more phonons are successively
emitted and abscorbed through the scattering vertices. 7The
decay modes mentioned above are the only ones which can take
place in the usual macroscopic QVC model. In this coupling
scheme the quasiparticle'and'collective'degreés of freedom
are trieated -as if they were independent of each other,'i.e.
[ajm,B:1=U, and the vibrational field causes only the
scattering of the quasiparticles, but neither creates nor
desfroyﬁ.pairs of quasiéérti;les. The remaining three terms

‘in each one of Egs. (4.25) and (4,26) arise either when the

microscopic structure of the phonons' is explicitely taken into
account or, equivalently, when tne allows, within the macroscop-
ic OVC model for the pair creation and pair destruction
processes, in the first order perturbation theory. In the
present work we have followed the first option; in the second

+ A
case one should substitute the operator Mi (s} in Egq. {4.16}

+ L+ + :
by the operator M; :M; (S)+M; (P) and impose the condition

r
[ajm'B?«]=0°

Both ffom the formu;ée f4.26) and the graphs shown.
in Fig. 4, it is easy to discover a cloée similarity between
the cases TIa and ITbk (by case Ila wé mean the eiastic scattering
through a dominantely single-quasiparticle statg, etc.}). The
parentage coefficient in both cases is mainly determined by

the superconductive factor Uén)uép)ﬂgp), as the remaining three

2
A

explicitely: the transitions from the multiplet

terms, being proportional to A are relatively small. More

| 323=]j=a{,..3+1> to the cne-phonon state |x> are of the same
order of magnitude as the transition from the single-guasipar-
ticle state |j> on which is based the multiplet, independently

of the wvalue of the angular momentum J.

The cases Ib and YIIa also bear a close resemblance,
A1l the contributions are of -first order in whe coupling

constant A in addition, when ﬁmh>2ﬂ, all the pair creation

A
and pair destruction factors carry the same sign, while the
scattering form may interfer conétructively or destructively
dependiﬁg on the interplay of the sign of its energy *
denominator with the sign of its superconductive vertex factor.

A carefull analysis of the individual terms in Egs. (4.26b}

- 17 -



and (4.26a') might lead to several interesting selection and.
intensity rules, similar to those which govern the electro -

magnetic processes in a coupled system (see for example Ref.

19).

IV.2., Numerical Calculations

Table 2 shows the single particle energies Ej
used in the calculation. These come from the works of Heyde
et al.20 and Szanto de Toledo et al.Zl. The process
of calculation ﬁaé as follows.. First the gap equations were

solved, both for neutrons and for protons, with the gap

pafameters
A% = 1,16 MeV and 4P = 0.846 Mev,

taken from the experimental odd-even mass differenceszz. The
corresponding pairing strengths and the Fermi energies were,
reépectively, -

6" = 0.145 Mev and ¢ = 0.142 Mev

€5 = 3.57 Mev and'Eg = -3.18 MeV.

The resulting quasiparticle energies and the

occupatidn'coefficiénts, shown in Table 2, were then used *o

"'18 -

calculate the guasiparticle-phonon coupling constants AA

for the first excited 27 and 3~ states in !30Te nucleus, by
means of Eq. (4.13). 1In this step we have employed harmonic
oscillator wave functions with the length parameter
b=l.0957A1/3fm, and the experimental values for the phonon

energies, i.e,
fhwmy = 0.839 MeV and fuwy = 2.72 MeV.
Next, with the calculated coupling constants
Az = 0.154 MeV fm ° and A3 = 0.0158 Mev £,

we have evaluated the amplitudes ai(j;j.k) and b(jid2r} and
have proceeded with the diagonalization of the Hamiltonian

HOdd in the basis

. ‘ > > -

IJ,(N2N3)N, {I5T3)1; JM>; N=Np+Nz, I=I,+Tj.
Here, Nl and TA stand, respectively, for the number and angu~
lar momentum of the A-pole phonon. Futhermore, the neutron
quasiparticle was allowed to stay in one of the orbitals:
1 2d 3s 1h 2d 2f 1h . 3 3
97/21 5/2: l/zl 11/21 3/2: 7/2r 9/2 P3/2r Pl/zl
1113/2 and 2f5/2 and all collective states up to three guadru-
pole phonons (N3<2)}and two octupcle phonons (N3<2) were
considered. Finally, with the amplitudes CjNIJ’ obtained from

the diagonalization procedure, we have calculated the parentage

coefficients 8(jNIJ) given by Eg. (4.23).
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In order to analyse the sensitivity of the theo -
retical results on the model parameters and with the idea of
getting the best possible fit to the experiments, several other
calculations were performed, beside the one just mentioned.
This stﬁdy has revealed that the agreement, between the theo-
retical and measured energy spectra of 131Te nucleus, improves
significantly only when the guasiparticle-phonon scattering
vertex is weakned rather drasticaly. The results which will
be discussed immediately correspond to a effective scattering

coupling constant
= 2.5.
A Ak/ 5

Although the only convinecing justification for a such a
procedure lies on the agreement with the experimental data it

is worth to note that:

i} When the above menticned QRPA values for Ay and A,
are used in  the relation (4,20}, with gy = 0.109
and g, = 0.050, we obtain for the macroscopic particle-vibra-
tion coupling strength, respectively, <ks> = 70 MeV and
<k> = 90 MeV; both of these values are significantly larger
than those used in the previous theoretical studies of the
. 6,20,21,23,24
odd~mass nuclei in the A =130 mass region {<k>

between- 30 and 50 MeV}.

ii} The QRPA treatment includes only one-phonon states
{or two quasiparticle states) while in the diagonali-

zation of the Hamiltonian H_ 33 we have inecluded also two and

..20 -

three phonon states which are build up mainly from four and
six guasiparticles. It is a well known fact that the
main effect the two and three phonons have on the low=-1lying
states of the coupled system is to increase the particle-

phonon strength. Conseguently, the extension of the collective

subspace should be compensated with a diminution of the par-

‘ticle-phonon coupling constant.

V. RESULTS AND DISCUSSION

Fig. 4 shows the calculated level scheme compafed
with the experimental (d,p) work of Joilyzs-and Graue et alzs.
Jolly's work at 14.8 Mev had poor energy resolution {~ 50 keV)
while the work of Ref. 25 with 9 keV resolution at 7.5 MeV was
essentially coulomb stripping with unreliable 2-values for weak
states. Most levels, calculated and observed, with SdP <. 01
are omitted from the figure. There are large discrepancies
between the two (d,p) exﬁeriments as to observed levels,
spectroscopic factors and excitation energies. Still it is
clear that while the level scheme and spectroscopic factors,

which- is the QVC model read18

_ (n) _ 231 .1 _(m
Sj = ECjUj , {'2j|_+1")7 V. t C

e I j’ljlz
3!

!

are globally reproduced, there are serious differences which
could not be resolved by any change of parameters within the

framework of the model employed. For example, the calculated
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-+
1/2; state is too low in energy and has a spectroscopic factor
low by a factor of two. Increasing the 351/ single particle

) 2
energy causes the state to rise but further reduces the

spectroscopic factor.

The 2.28 MeV 7/2” level and 2.58 Mev, 3/27 level
are well reproduced in spectroscopic factors but the calculated
level corresponding to the 2.51 MeV state appears 150 keV low

in energy. Increasing e results in splitting of the

/2
12f7/2, 0+; 7/2 > configuration Spectroscopic strength among
a number of states. The 2.51 MeV (3/27) level has no clearly
identified counterpart among the calculated states and we
take the lowest energy calculated 3/2  level for comparison
of wave functions. We identify the lowest calculated 1/27

state as corresponding to the 3.00 MeV (1/27) state in 131pg,

Tables ITI and IV show the spectroscopic amplitudes
deduced from the experimental data together with those from
the model calculation. Errvors are estimated from the behaviour
of the partial widths in relation to y2 during: fitting,
Uncertainties in single particle widths are not taken into
account. Figs. 5 and 6 show the Ffits to the inelastic data
together with the angular distributions predicted by the
calculation. Thexe is an uncertainty of perﬁaps 20% in the
predicted cross sections because of uncertainties inp 51nqle

particle widths and resonance total widths.

The experimental and calculated spectroscopic
. +
amplitudes on the 3/2 rescnance are in excellent agreement in

‘ +
both magnitude and sign. ¥or the 1/2 resonance the calculated

elastic spectroscopic amplitude is a bit too small. A really
sericus discrepancy is found in the amplitude B(d3/2, 2+; l/2+).
The measured value for this quantity indicates that: either
both the particle-phonon and the core contributions are small
or that they interfere destruétivelylwith each other: Theo -
reticaly, both amplitudes are large and add coherently due

to the fact that the factor

g(m) yn) —yin) ()
51/2 da/z Sl/, d3/2
(n) {n)
E -E -Hw
S1/y c-{3/2

which appears in the first term of Eg. (4.26b) is positive
In order to invert this situation one of the conditions
(E;?; égiz) > fiwp or UéT; U(n; > é?; (2; should bhe
fulfilled. However, we have not succeeded to do that with

any reasonable model parametrization. The amplitude

e(ds/z, 2+, 1/2+) is gquite well reproduced by the calculation.

For the negative parity states the overall
agreement between measured and. calculated spectroscopic
amplitudes is satisfactory; the most pronounced misfit

appears in the 2,47 Mev 3/2° level.

The theoretical differencial cross sections are
shown together the experimental results in Figs., 6 and 7.
Most of the calculated curves show shapes comparable to the
experimental ones and in particular*at forward angles- As
was expected the largest difference appears for the 1/2+

rescnance.
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IV. SUMMARY

We have perforned the analysis of
elastic and inelastic angular distribution of protons from
'ilre on iscbaric analogue resonances considering at the same
time resonant scattering and nonrésonant scattering described
by a coupled channel matrix, and good fits were obtained.
Furthermore, it was demonstrated that the QRPA, with a multipole
multipole force plus pairing,explains most of ohserved
scattering data. Keeping in view the simplicity of the force,
the agrégment between the experiment and the theory is
surprisingly good, in particular, for the high lying resonances.
The remaining discrepancies are probably due to correlations

and excitations not included in the approach employed here,
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FIGURE CAPTIONS:

Figure 1.

- Figure 2.

Figure 3.

Figure 4.

Optical Model Fits. The form of the potential is
U(r) =V, -V f{r, R_, a) - i W % f(r, R,, a,)

C f ol Fo dr U T 1

+ Vso d . . /3 g
+ go. 2 (mﬂc) = &% flr, Rso F:\ . aso)‘where
f{r, R, a) is the usual Woods-Saxon form and RC
is the uniform sphere charge radius. We find
1
R, = 1.25A /3 fm, a_ = 0.703 fm, R, = 1.27 2 /3 fm,
a; = 0.634 fm, V7.5 = 57.06 MeV, W7.5 = 8.30 =V,
Viy = 52.23, MeV, Wiy = 12,09 MeV and take
_ - 1/4 -
vso = 6.2 Mev, Rso 1.10 B fm,‘aSO = 7,50 m
- 1/3 ; - - -
RC = 1.20 A fm with BC RC = SvRu = BI RI = 0.6%0
fin and Bso = 0.
Fits to 170° elastic excitation functions over 5
resonances,
Resonant elastic angular distributions., The curves
correspond to the final values of E; - B.
A"

Lowest order diagrams contributing to the proton

scattering in an analog resonance. In the graphs
{a} and (b) the parent state is a single guasipar-
ticle state and in the graphs (a') and (b') it is
a member of the guasiparticle-phonon multiplet.The
graphs {a) and (a') and (b) and (b'}) correspond,
respectively to elastic and inelastic scattering.
The pertinent analitic expressions are given by

Bgs., (4.26).
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S

Figure 5, Comparison of experimental and calculated level
schemes,

dp
function component for the calculated states.

% ¢01 and column (d) show the largest wave

S0lid lines indicate fits to

Figure 6. Even parity states,.

Dotted lines are

angular distributions predicted by the calculation.

inelastic angular distributions.

Conventions same as for Fig. 6.

Figure 7. Odd parity states.
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TABLE 1V Qdd Parity States. Comp_arison between experimental and L:alcglaicd energics for the parent states and
between experimental spectroscgpic amplitudes and these obtained from model calcuiations. Core
amplitudes ave negligible except for the 111/2 orbital which has ﬁcore = -0.10 on the 7/2  resonance.

al E(MeY)  8(35,07) 8(p1/2,2") w(p3iz, 2ty oesszeh) ecersz, 2ty 0(h9s2,25) 8(hil/z2, 25

Exp. T12] 2.23  0.76+.42 -0.33+.0.00 -0.08" )% -0.3510.02

Theory 2.22 0.67 -0.23 -0.04 -0, 40 0.04 -0.10

- +0.05% 5

Exp. 3/2,; 2.47 0.32+0.03 -0.18:0,02 ~0.03_U'09 -0.23+0.03 -0.31+0.02 .

Theory 1.0 0.13 -0.03 -0.04 -0.14 ~0.20

Bxp. 3/22 2.53  0.53:0.01 -0.30:0.02 -0,38+0.02 -0.08'0"0%  -0.4710.02

Theory 2.33 0.50 -0.15 -0.26 -0.08 -0.53

Exp. /2y 2.92 0.63+0.02 0.53+0.03  -0.54+0.07

Theory 2.68 0.40 0.52 -0.21
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