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"

points de vue divers, quelgquefois
opposés, que les sciences progres-—
sent, et il ne faut pas mutiler

ltesprit humain."

E. Picard

... ¢e n'est qu'en adoptant des

ABSTRACT

A somewhat new second qthimﬂjﬂnneﬂxﬁ.isjpﬁoposed
in order to obtain commutation relations for intermediate states
in quantum mechanics. These commutatioﬁ rules are found to héve
a multilinear matricial form, whereas for bosons and fermions
the usual bilinear relations are reobtained. It is shown that
from a symmetric group point of wiew, it would be hard ﬁo accepp
the paraboson and parafermion concepts in quantun mechaniés.
Assuming that guarks can be represented by intermediate states;
several propertieé of hadrons, such as quérk confinement,
pbaryonic number conservation, and 3-guarks saturation in baryons,

seem to have a natural explanation.




1. INTRODUCTION

{1}

In a preceding paper we have shown, using the
irreducible representations of the symmetric group in Hilbert
space, that boson (YS) and fermion (YA) states and also inter-
mediate states (Y} are compatible with the postulates of Quantum
Mechanics and with the Principle of Indistinguishability. Our
analysis that gives support, within the framework of Quantum
Mechaniés, to the mathématical existence of intermediate states,
justifies, in a certain sense, the general statistics proposed

{2~4)

leng ago by Gentile in a thermodynamical context We have

imprdperly named para-bosons and péra—fermions our intermediate
states, oniy to be in agfeement wiéh Green's terminology(s).
Névertheless, there are substantial differences between the two
concepts és‘is seen in this paper.,

. In a few words, we have shown that an isclated
system consisting of N' identiéal partiéles (by particle we
mean a.pafticle or a guasiparticle) with total energy E has
a MN! degenerate energy spectrﬁm; due tc the permutations
Pi (i = 1,2,...{N!) of the labels 1,2,...,8 of the particles
in their configuration space E{N). Our analysis has been
performed considering the eigenfunctions of the energy operator
# (1,2,...,0), but it is easy to see that similar results could
be obtained by taking into account any Hermitean operator

£ {1,2,...,M.

The energy .eigenfunctions {ei} {(t=1,2,...,8,

3.
where e, = u(i,2,...,N) and e, ,ez, ... ,eN! are cobtained
from e; by permuting the labels 1,2,...,N , constitute a

N! dimensional basis of a Hilbert space that was indicated by

L, (S(N)). This Lz(e(N)) is decomposed into irreducible

subspaces h(a) , that are the underlying subspaces of the
B P

(20} in LZ(E(N))

representation of the symmetric group 8§
corresponding to the different partitions (a} of the number K.

There are twc cne-dimensional subspaces that correspond to

fa) = (N) and {(¢) = (1N) and the wavefunctions associated
with them are, respectively, YS , Wwhich is totally symmetric,
and YA , wWhich is totally antisymmetric under permutations.
The remaining subspaces h{u) have dimensions going from 22

up to (N-1)° with attached wavefunctions indicated by the

column vectors

Y (o)
] Yo {a)
Yia) = — : 1.1
e .
YT(u)J
where T = (f(a))2 is the h(“) dimension and Yi(u) (i =

= 1,2,...,T) {which constitute the bagis of h(a)), are given

by a linear combinaticon of the unitary vectors {ej}(j =1,2,...81).
By applying a permutation P to the particle labels

in E(N) , the vector Y(u) becomes PY {a) = x(u)='PaY {a) ,

where Ta is a unitary matrix with 1? components. For the
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cne-dimensional subspaces we have Y_=Y_ and ¥,=-Y¥, so that

5 S A
the concepts of totally symmetric and totally antisymmetric

wave-functions subsist. For the multidimensional h(a)

these
concepts are meaningless because the permutation opération

PY {c) implies a rotation of ¥(a) , defined by a matrix Ta
with 1% components (there are 12 numbers, put into a matrix
form, associated to the permutation P, instead of only one
number that can be +1 or -1).

Since TDL is a unitary matrix, it was also shown

that the functicn

T

ol = ¥ |¥ ta)]? {1.2)
i=1 '
is permutation invariant and has been defined as the probability
density function.

The first to note the need of extending the
definition of the one-dimensional wavefunctions was Okayama(s).
However, he has cbtained multidimensional wavefunctions where
the over-all implied symmetries are not clearly displayed.
Improving their results, we have written, in a t-dimensional
subspace, the state vector ¥, as an orthonormalized <-vector.
The number of columns of the first row of the Young shape
associated to each irreducible subspace h(“) will determine
the possible maximal occupation number & of the intermediate
state. This maximal order d will be named stafistical order

of the intermediate state.

5.

The présent paper, is arrangéd as follows: in
Section 2 we study some geometric prqperﬁies of thé_.Y(af
states; by carefully analysing a systeﬁ formed by 3 particléé.
and by extending toc the N-particles systems several éonclusions
on symmetry prope;ties. In Section 3 we develop a somewhat .
different process of second guantization and multi-linear
commutation relations fqr the cxeation énd anniﬁiﬁﬁﬁon qpmﬁmors;
and their Hermitean conjugates are obtaine6. The ﬁsua;:bilineér
commutation and anticommutation relations for bosons and ‘
fermions are particular cases of our general expressions. In
Section 4 our results are compared with the parastatistics

theory proposed by Green(S}.

In Section 5 we try to interpret
the Y states as representing a new kind of particles. 1In
Section 6, as an application of our intermediate states, we
consider the standard SU{3} model of strongly interacting

particles in a non-relativistic approximation for the internal

dynamics.

2. ROTATIONS IN HILBERT SPACE

In this section we analyse some transformation
properties of the wavefunctions of a system of N non-interacting
particles. A geometrical interpretation of the transformations,
based on the representation of the symmetric group, is given in

terms of the basis vectors of a Hilbert space. We will restrict
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ourselves to the detailed study of the simplest non trivial
3 particle case. The'generalizafions of the essential results
which can'bé extracfe& from fhis simple case appear at the end
of the section. o

If the system is composed of 3 particles, the Hilbert
space has dimension 6, compfisiné tworone—dimensional sub-spaces
(1)

and’ one four-dinmensional sub-space. It was shown that, if

we indicate by

B

€g. .

the vecﬁors of the basis of szsta)j ; the one-~dimensional

wavefunctions YS and YA are given by

6
Y. = (1/V8) I e

izt *t

and YA = {1//8) ler—e,-e;+e, +e; —eg) and the 4-dimensional

Y 1is given by

(2.1)

7.

where E is a 4x6 matrix seen in Appendix 1.
These wavefunctions can be put into a compact

form:

P = ¥ = Ue (2.2}

where U is a 6x6 wunitary matrix shown in Appendix 1

which determines the structure of the functions YS , ¥ and

YA'
Now, if we assume that the particles do not
interact and we indicate by o, B and Y the states allowed

for them, we see that the basis vectors & can be written as

e; (aBy) af{1) Bt2) v(3})

ez (afy) of{1} B3} y(2)

ez (aBy) a(2) B(1) v(3)
elayB) = = .

ey, (aBy) af2} B(3) v(t)

es{x8y) al3) B(1) v{(2)

ces (aBy) al3) 8(2) v(1})

If, instead of the order aBy we have, for instance, aypR the

basis vector is given by




[ ei (ayB)
ez (ayB)
es {ayB)
ef{ayB) =
e, {ayB)

es (ayB)

e (ayB)

Since e, {ayB) = e, (aBy) ,
ey{ayB) = es{ufy) , es(ayg)
the basis transformation

the matricial relation

0 1t 0 0

10 0 0

N g 0 0 1
e{ayg) =

o 1 0

0 ¢ 0 0

0 0 0 0

aBy

elaBy) -+ e(ayB)

a{1) v{(2)
a{l) v{3)
a(2) v{1)
al2) y{3)

a{3) v{1)

a3} yv{2)

ez (ayB) = ey (aBy) ,. esloyB) =

= ez (eBy}) and

0 o e (afy)

0 0 e (aBY)

0 0 e (aBy)
o 0 ey (asy)
0 1 es (uBy)

1 0 eg (0BY)

where P[ YB) is a unitary matrix.

B(3)
B{(2)
B{3)
B{1)
B(2)

B{1)

e 0By} ,

eg (uyB) = es(apy) ,

‘can be described by

- pleBY
= P[GYB] e(aBy)

Thus, for a generic transformation (wBy) > (ijk)

where the indices i, j and k «can assume the values o, R

and Yy in an arbitrary order, we write:

e{ijk) = P{?QV} e(aBfy)

ijk,

(2.3)

Equatlon {2, 3} means the fOllOWlng when the indices

AoBy) are ‘permuted in an arbltrary way, the ba51s e is rotated

. in the Hllbert space Lz(E( ,)

 If we choose the order (aﬁ#) ’ the wavefunctlon

¥{aBy} "~ 15, accordlng to equatlon (2 2), glven by-

:ié(aBY)J
¥laBY) = | Y(aBY) | = U elay)

¥A(a8v)

and, in a generic order {ijk) we havé,_usiné-ééuétions_12;2)

and {2.3):

3 3 _ e qSY. o
¥(ijk) = Ue(ljk}__ U-E{ijk]_e(asvl =

_ aByY B 1,772 S,
= U'P[ijk} U U ef{oBy) = M[ijk] ?(u8Y) L

That is

v(ijk) = M[ggg} ?(aBY) ' Tz

where the matrlx M[ }k} ,”ggﬁ;ggé.as: ﬂ[ijk] _"U-P[ijk] U
depends on the structure matrix U,

In appendix 1'we:show explicitly the M matrices

for all possible values of i, j and k.

These 6 % 6 matrices

have the general form
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1 :0 0 0 0 IO
04 i 0
1 i
ol | o
JoaBy - 1 [GBY] 1 {2.5)
) - 0] o)
' !
0| 10
| |
loED. 0O O O 121

where G{i?l] is a unitary 4x4 matrix associated with the
intermediate states.
So, when the indices {eBy} are permuted, assuming

the (ijk} wvalues, the wavefunctions Y b4 and Y undergo

s A
rotations according to the following relations:

Y lijk) = ¥ (aBY) ¥, bigk) = ¥, {aby)

and Y(ijk) = G{:g;} Y({aeBy) » Of course, due to the unitarity

of the matrices M., the functions |YS|2 , fYA|2 and (¥|® =
4 2
= | l¥;|" are invariants under permutations. This assures
i=1

that the physical interpretations of the wavefunctions are
unaltered by the uncbservables transformations (aBy) -+ (ijk) .
There are no restrictions on the occupation numbers
of the states (ofy} in the basis véctors e{aBy) , i.e., one,
two or three particles can occupy the same state in e(aBy) .
However, if there are three particles in the same state, we
have YA= ¥Y=0 and YS# Ol - Por two particles in the same

state, YS#O,YA=Y2=Y.+=.~0 and Y3 £0 and Y £0. Here

Sht.

we see that Y, and Y, have a fermicnic kehavior and Y,
and Y:; a bosonic behavior at least when the numbers of particles
that occupy the same state is smaller than d=2 .

When two particles occupy the same state the basis
vector e has only three independent components. Thus, if we
place two particles in the same state o , for instance, o=8

and one in the state vy , Y{oay} can be written in a compact

form:
E 1/¥3 1/7V3 1/¥3 ][ e1 (aay)

Y{oay) = [ ¥1 | = 1//2 0 =1/vZ || e, (aay) | = u elaay)
Yaj -1//% V273 ~1/V€ | | es (a0y)

(2.6)

remembering that ¥, = ¥, = ¥

A= 0.

If, instead of ({(aay) we have (ayu) it is easy to

see that Y(oye) = ue(aya) =u P[ziz] eloaay) = uP[wYJ u+‘¥(og,cxy) w

ayo
m{g$;] ¥{aay) , since u is a unitary matrix. That is,
. QoY aay] _ ooy T -
Y{oyae) = m{uya] ¥{oay}) , where m[aya] = u P[aya] u . Similarly,
for (yoo) , ¥(yoo)} = m[gg;] ¥ (aay) .
Since
ez (aya) es{yaal
e{ayal = e (aya) and e{yaa) = |eslyon)
es(aya) e {yaa)
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{
cne can verify that mi%Y | o |9 - I is the identit
[aya Yoo ¥

matrixz. Consequently, YS(aay) = Ys(dya) = YS(Yaa) and
Y{oay) = ¥Y(yaa) = Y(aya) . '

As was pointed out before, the basis wvectors 'g do
not present any restrictions on the occupation numbers. The
restrictions only appear in the structure of YS’ Y and YA.

The totally symmetric function YS and the totally
antisymmetric YA represent, as is well known, bosons and
fermions. The multidimensional hybrid function Y could
represent, as will be seen in Section 5, a new kind of particle.

For N non—ihteracting particles, we can also show

that the basis vector e and the wavefunctions transformations

are generically given by the matrix relations:

. By « ..
e{...1ijk...}) = P el ven GBY ... )
ve. ijk ...

and

Y¥( ..o ijk ... )

cer GBY ou. I : ‘
M E V(oo @BY «us )
R 1 S

where the matrix P can easily be computed, but the matrix M
regquires an extremely laborious calculation, since it depends

on the structure of the multidimensional manifolds.

13,

3. - SECOND QUANTIZATION

In -the second gquantization. that we propose, the

*

‘creation ay and annihilation ay operators act, row by row,

on the column vector e .

Indicating by .e; = e{000) +the "basis—vector vacuum

-state", the creation operators are defined by the following

relations:

* *

a ag a; €(000) = ay a; e(00y) = a; e{0BY) = elaBy)
a* e(0cR) = ¥Z elacR)

a* a* a¥ e{000) = a* a* e(00w) = V3 a* e(Qua} = vZ V3 eloon) (3.1)
o “a a %o o

a* e(BoyY)

1
]
P —
=]
™
oy

* _ 0By
Boy) a, e(0By) = PIBOY] e{afy)

a* e(Bu0) = p[ a* e(0ap) sz[ggg) /3 elacB) .

Similarly, the annihilation operators are. defined by:

a, elapy) = e(08Y)

a, e(0ay} = e(60y)

a, eleaB) = /2 e(0ap)

a, e(o0y) = p[gg:) a, e(0ay) = P(zgi] e{60y)

a, elyon) = P[$Zg] a, eloya) = vZ P[zzg} e(O}d) -
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gSince, by equation (2.3) we have, elijk) = P[ng e({aBy) ,

ijk
it is straightforward to show that

* L% % _ afy * ok ok
ay aj ay e = P[ijk] au as aY e
- kji

al aj ak e = P[YBG] aa aB aY e

% _ ayd *
ag aY a, e = P{Yas] ag a, aY e (3.3}
a a*a e = P[YQB} a*a a_ e

a B Y YBu B Ta. Ty

* * ~ aBy * *

aa a8 aY e = P[GYB] aY aB au e

and so on.

The creation and annihilation operators have been
defined in such a way that ag a, e = ﬁa e=N e, where N
is the occcupation number of the o state in the basis vector
e. It can also be verified that a, a; = 1-+a§ a, » or,
equivalently [a},a,l_=1 .

The eguations (3.1}, £3.2) and (3.3) define a
compoesition law for the creation and annihilation operators
when they act on the basis vector e . We see that the pernutation
of the indices o and B, for instance, depends on the third
element <y . This generalized’reéult belongs to more complicated
structures defined in a thixd order algebraic system(T’ ang
comprises several equivalent relations deduced in Grassmann

algebras.

5.
Let us now obtain the algebraic relations for a;

when they act on the wavefunctions YS , ¥ and Y.

and a, A

k
Thus, using equations {2.2), (2.4) and (3.1) we get for

afBEvyia:

¥(ijk) = U e(ijk) = a} a;f ay U e(000) = a; a;.‘ a; v{000)
and
‘s _ apy _ afy * _k %
v(ijk) = M[ijk] ¥(aBy) = M[ijk] a? a% a% ¥(000)

which allow us to conclude that:

% % g%k o By * ook gk
ay aj ag = M{ijk] ay aj aY

S8imilarly, it can be shown. that

_ kii
al aj ak ¥ = M[YBGJ aa aB aY ¥
a*a_ a_ ¥ = M[qYB] a* a a_ v
8 7y Ta yaBf "B Ta Ty
{3.4)
* _ yaB * y
a, aB aY ¥ = M{YBG] aB a, aY
a* a, a*r v = M|9Y| ar 54 a* vy
a B %y aYB] “y %8 %a

and so on.

We must note that the operator a} a, = ﬁa gives the
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cccupation number of the o state, that is, a: aa ¥ = NGW R
When o=f+#v , for instance, using the results of

section 2 and following the reasoning delineated above, we get

* ok ok - aay % L% & - aya * a% %

aY ag ag ¥ = m[YuaJ ar ar aY ¥ m[Yuu] ag aY ay ¥ )
_ any _ aay
a_Y a, a, ¥ = m[yaa] a, a, aY Y = m[aya] a, aY a, y
{3.5)

a a*a VY = m[aaY] a* a a ¥ = m[yaa] a a_a* v

a "y “o vy ¥ “a o oYo a “a Ty

% * - aya k. %k - ayo % %
al aY a* ¥ = m[yaa] aY aj axl Y = m[aaY] ag a4y aY Y

When the operator a, a; acts row by row on Y

SJ’
¥ and ¥a 0 results,
* - *
a, a; = 1 + ag a, for Ys
a a¥ = 1 + a* a for ¥, and ¥; if N_ = 0,1
o Ta oo : o,
*  _ . . ‘
a,ay = d-afa, for Y. and Ys if N, £2 ,
where d=2 is the order of the statistics {3.6)
* _ - *
a, ay = 1 aj a, for ¥, and ¥,
*  _ _ A% - .
a al = dF ag a, for YA , Wwhere dF 1 is the

order of the Fermi. statistics .

By taking into account the matrices. M and m

(given in appendix 1}, we analyse now the action, row by row,

17,

of the creation and annihilation operators on V¥ :

a) Bosons and Fermions

When a, and a* act on Y. and Y, , we see

k s A
that the following usual commutation relations are satisfied:

* * _ _
[aa ’ aY_ N = [a(l ’ a-Y] + = 0
[%a , a* = 6&7 and, consequently,
(3.7)
N x| = & *
[Nu ' ay_ N = - 60&"{ ay

where the (-) sign corresponds to Y {bosons) and the (+}

s

sign to YA (fermions)

b) Intermediate States

On the other hand, when a, and a; act on the

state Y , we get, for oc#B#v£Fo :

i
o et




% L%k o% _ aBY] % ok %
at al & Y = G{ijk a; aB aY k4
a, a. a, ¥ = G[kjl} a a, a_ ¥
i %y %k vBa) “a "B Ty
* _ ayg *
ag a, a, Y = G{Yug] ag a, a, h'd (3.8}
* - Yo *
a, aB aY ¥ = G{vﬁu} aB a, aY Y
* _ aBy Y *
a, aB ar* ¥ = G[GYB] aY aB ag Y , and sO On...

When a=8£y , we have, for i=2 and 4:

and for i=1 and 3:

a* a* a* v, = * gk g% = * qk oW
Ty "o oTa Ti a3 %o aY Yi 2y aY 2y Yi
aY 2, a, Yl = a, aa aY Yl = 2, aY a, ¥
{3.9)
* - * - *
aa aY aa Yl aY aa am Yl aa au aY Yi
a* a ® = & % = * %
a Xy aa Yl aY aa =3 Yl aa am a Yl
Finally, when a=B8=v , we have
* * ® - -
ar ar a¥ Yi &, a, 2, Yi = 0 for all Yi‘

It is very important to remark that for the

.19,
= * _ *
components ¥, and Y, we have [Nq, aY]+ = GaY aY and
N = - ents Y, and Y3,
[Na ,aY]+ 6WYaY and that for the compon 1 3
% * - * N = - , when N _ £2.
[Nu ,ayj_ GGY ad and [Nq, aY]_ rSaYaY o

This means. that two components of ¥, namely Y. and Y.

have a fermionic behavior when Na:Sd =2 . It is commonly
accepted(s) as a natural requirement, that these relations
remain valid, in general, in the theory of free para-particles.
Here we show that this assumption is actually correct and
consistent.

For the N-particles case, following the above
reasoning and taking into account the general results of Section
2, we obtain, for bosons and fermions, the usual commutation
relations. However, for the intermediate states, the commitation

velations have multilinear matricial forms governed by the

cee OBY ov.
G

] matrices. We are not aware of the exact form
v ijk ...

of these matrices, since they depend on the structure of the
irreducible manifolds. Nevertheless, in principle, they can be
calculated. .

- Summarizing, we can say that for the cne~dimensional
subwspaceé, where the permutation of particles changes the
state-vectors only by a numerical factor (%1}, the commutation
relations are very simple. They are bi-linear single valued

relations with the properties:

(1) The commutation relation between any two operators

does not depend on the position of the remaining ones.
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(2} For Y there are only commutation relations whereas

A
for YS we have only anti-commutation relations.

For the multi-dimensional sub-spaces, where the
symmetry properties of Y under permutations of particles are
defined by a matrix, the commutation relations have multi-linear

matricial forms obeying:

{1} The commutation relation between two operators

depends on the pesition of the remaining ones.

(2'}) It depends on the particular row Yi where it is

applied.

4. PARASTATISTICS AND QUANTUM MECHANICS

As is easy to see, our second quantization procedure
is a natural extension of the usual second guantization method

adopted in the literature(g,.

The well known boson and fermion
commutation relations are obtained as particular cases of our
general expressions when we restrict ourselves to the one-
dimensional subspaces. In our apprcach, the symmetry properties
of the multi-dimensional subspaces, induced by the group of
permutations, are preserved and the occupation numbers Nu =

= 2,3,4,... arise as a natural consegquence of the symmetries

of the wavefunctions ¢ .

As one can verify from equations (3.8) and (3.9},

21,

for N=3 the commutaticn relations for the components Yi are
tri-linear. It is worthy to note that for Y, and ¥, we

have the commutation relations [ﬁa ,a;]+ =8 and

ay a;
[ﬁa ,ayj+ = —60waY , which are peculiar to fermions. On the
other hand, for ¥, and Y; , when Na sd = 2 , the relations
[ﬁa ' a:?]__ = 8, 2y and [ﬁa . aT]_ = -8, a, are satisfied.
This means that Y, and ¥, , when N =2, .show a bosonic
character. However, when Na= 3, ¥ =¥3=0, i.e., it is
impossible to accomodate more than 2 particles in the same state.
Thus, the components ¥: and Y3 do.not_haﬁe a genuine hosonic
hehavior. To sum up we can say that, at.least in the non
relativistic guantum mechanical limit,-the state :¥ does not
have a pure fermionic or bosonic behavior. It is a fermion-
boson hybrid. The same considérations remain also valid when
the system is composed of N particles. If a convenient basis
is chosen for the representation space, as we have done above,
the state vectors for the intermediate states will be constituted
by T-vectors, where <t is the dimension of the n () , showing®
always the hybrid character, analogous to the case N=3.

This work and the preceding one(1)

about para-bosons
and para-fermions in guantum mechanics, are based on several
concepts and results, as those derived from the classical
spectral theory of partial differential equations, that presuppose

(10,11 which, evidently, is'present in our

a classical heritage
wavefunctions and commutation-relations. We are not aware, at

the moment, of a method for generalizing our multilinear
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matricial commutation relations in order to apply them to the
study of relativistic phenomené, which is the main purpose of
gquantum field theory. In elaborating a gquantum field theory we
try to define, in a consistent way, a set of field operators
which are completely characterized by defining all possible
algebraic relations between them. 2 more rigorous formulation
can be given in terms of bounded operators and their algebras,

but this is beyond the scope of the present work(TZ).

In our
concern here, we must expect that the formalism of guantum
theory could give the exact cccupation nmumbers of the particles,
which are the crucial observables and that, in the non relativistic
limit, our wavefunctions and commutaticn relations should be
reproduced.

Let us consider now the generalized method of field

(5)

guantization developed by Green , that is analysed with great

detail in the excellent book by Chnuki and Kamefuchi(13).
Founded on the idea that the hypothesis of complete symmetry or
complete anti-symmetry of the state vector of a system of
particles is stronger than the assumption of the physical

identity of the particles, Green suggested the tri-linear

commutation relations

* * = - ’
l}l}\ a,~oca a}, av]_ = -2 Ghvau . {4.1})
[ak au—c au a, . av:l_ =0

.23,

for the para-fields. The parameter ¢ (o=1 f£for fermions
and o=-1 £for bosons) will characterize the two possible
para-statistics.

To solve the system (4.1) he has also suggested a
decomposition of the para-fields by the now well established

"Green's anzatz"

p
a, = 1 »'¥® (4.2)
o=1

where p is called the order of the para-statistics and the
béa) are fermion fields for o¢=1 and boson fields for o=-1.
Obviously, when in equation (4.2) we put p=1 and substitute
inte (4.1), we get the usual commutation relations for fermions
and bosons.

Despite the fact that Green's formalism has solely
used the quantum field theoretic framework, there is no reason
why para-statistics cannot be applied to the correspending
guantum mechanical description, at least in the non relativistic
limit. There are some differences between the quantum mechanical
approach and that of the asscociated fiéld theory. However,
when the number N of particles is constant, some resemblances
could be expected. Now, if we try to translate éreen's field
thecretic results into our gquantum mechanical language; we fall
in with several difficulties from the onset. The first one is

the decoupling into two kinds of para-statistics implied by the
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two-valuedness of ¢ . The second is the decomposition of the
para-field intc usual fields which belong to one—dimensional
representations of the group of permutations. The third is
the problematic interpretation of the order parameter p . The
difficulties peointed out above seem to disguise the true
character of the symmetries involved in the multi-dimensional
state vector. Thus, it could be inferred that, from a svmmetric
group point of view, it is hard to accept the para-bosons and

para-fermions concepts in Quantum Mechanics.

5. AN INTERPRETATION OF Y STATES

In Sections 1, 2 and 3 we deduced several important
properties of general statistics and its corresponding second

guantization. Some of them can be summarized as follows:

1) Boson and fermion creation and annihilation operators

obey the usual bilinear commutation relations.

2) PFor the general states, the commutation relations hawve
a multi-linear matricial form depending on the structure of.the
irreducible manifelds. These relations impose severe restrictions
on the quantum properties associated to the irreducible sub-
spaces of Lz(aN). The particles must behave like a single
cluster within the irreducible multi-dimensional subspaces of
Lz(eN). Of course, this indicates that there is a strong

correlation among the particles, even in the absence of interaction.
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3} The state vector Y does not have a pure fermionic or
boseonic behavior, but is a fermion-boson hybrid. The occupation

number d for Y states runs from 2 up to N-1.

Furthermore, as a conseguence of establishing a
one~to-cne correspondence between the Young shapes and the
state vectors Y, we get a quantization of the system for each
shape. Also, for the subspaces defined by the symmetric group,

(14): "transitions

there is a Geometric Superselection Rule
between different irreducible subspaces are forbidden".

In this Section we propoée to interpret the hybrid
states Y as corresponding to a new kind of particle which in
the ensuing will be named gentileons. Let us characterize now
the novel features of these particles. Although there is a
wide collection of possible intermediate states, many internal
quantum numbers such as spin, isospin and others arising from
internal symmetries or dynamical arguments can be used to

drastically reduce the available number of states{15}.

These
selection rules wonld depend on ﬁhe specific gentileons
constituting the system. It is important to note that if we
have only N=3 gentileons, there is only one intermediate
four-dimensional state. For N=2, there is no intermediate
state and the system is represented by YA or YS'

On considering the collision problem of two systems
with gentilionic internal structures, we can get some insight

on the geometric properties of gentileons. System 1 is composed

by N1 gentileons with internal symmetries defined by the Young




.26.

shapé Sp (N;) whereas the systgm 2, composed by N» gentileons,
is characterized by the Young shape Sq {N2}. The gentileons
are assumed to be identical and their total number ¥~ =Ni+H2
is conserved during the collision. By taking into account the
Geometric Superselecfion Rule {GSR), we verify that the

symmetries of the internal states are unaltered:
S5 (N S (N T 5 (N S (W) B
P( 1} o+ q( 2} & p( 1} o+ q( z

The ensuing consequences follow from this symmetry
conservation law: two systems canmot coalesce and a free
genti;eon:canqqt.be absorbed or emitted by a system. This
suggests.that, at least, when the number is conserved, gentileons
cannot eséape from a system.

Sticking to this geometric standpoint we can conclude
that the gentileons could be understood as "confined entities”™
with saturation properties. These geometric features are
intrinsic to the gentileons as the total symmetrisation (anti-
symmetrisation} is inherent to the bosons (fermions), not
depending on their physical interpretétion. Thus, they could
be agsimilated to individual real particles or to dfnamical
entities as guantum collective-states._ Nevertheless, one thing
is certain: the gentileons, although:being a consequence of the
general results of guantum mechanics, seem to be quite different
from the usual physical particles, and'thus,-ﬁe have nc illusion

as to whether these interpretations have any completeness or
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broad validity. Anyway, the geometric confinement would explain
why only bosons and fermions have been observed in laboratories
and why gentileons have never been detected as free elementary
particles in the physical world. It is alsc implied that, if
we have a set of identical systems, each one consisting of N
gentileons, and if we identify the evolution space with the
(16)

I

group itself with respect to which the systems are elementary

only two descriptions are possible: bosonic or fermionic.

6. QUARKS AND GENERAL STATISTICS

As an application of the quantum geometric reasoning
developed until now, let us consider the standard SU(3). model
of strongly interacting particles in a non relativistic approxi-

mation for the internal dynamics(17).

If we assume that the
fundamental triplet (npl)} associated with a baryon is constituted
by spin-half gehtileons desgribed by a four-dimensional hybrid

¥ defined on SU{3} space, several interesting poséibilities
are suggested. Naturally, since Y is not necessarily symmetric
of antisymmetric under permutations, no specific symmetrisation
is required for its radial part. Also, by adopting a Y state
for the description of {npA) in SU(3) space, it is clear that
we get the possibility of accomodating two identical particles

in the same guantum state, without assuming parastatistics(18)

or the existence of three triplets of quarks(TB).
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As shown in Section 5, the symmetries of the internal
states of systems formed by gentileons are unaltered in
collisions. In the case of baryons, described by Y states,
this symmetry law accounts for several fundamental properties:
a) bkaryconic number conservation
b} guark confinement and
¢) 3-guark saturation in baryens.

Next, we want to specialize the preceding discussion
to mesons. To this effect, we point cut that the set of
accessible states of a system composed of three gentileons is
completely inequivalent to the set which corresponds to a
system composed of two gentileons. This extremely strong
condition is the basis of the entire discussion on meson states.
Structural differences between baryon and meson quark contents
are expected to oceur. The mesons could not be constructed
with two flavours coming from the baryonic set (npi). Thus we
would be compelled to construct a meson by introducing a new
set of states. This new set is naturally generated by the 3
repregentation of SU(3) . It is worthy to observe that guark
confinement in mesons should also be & consequence of GSR.

The guestion of guark confinement is at the centre
of much current research. In the context of the one-dimensicnal
representations of the symmetric group, the hypothesis that
quarks are some kind of guasiparticles that, like phonons inside
a crystal lattice, have meaning only as dynamic entities inside

the hadrons, is a very reasonable one.
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On the other hand, experiments performed with
electrons at very high energies, have revéaled that protons
and neutrons have their charges concentrated on pointlike
partiéles'named partons. On considering partons and quarks as
being the same thing, we could get a' corpuscular’ interpretation
for the gquarks.

Of course, both interpretations are based upon
familiar concepts of guantum mechanics and probably, the guarks,
being gentileons, require a more complex description than thosge

adopted for the usual particles.
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o o . : a8
APPENDIX 1 - THE MATRICES E, U and M[ﬁ;] 1 [QYE]
' ' ' 1 0 0 0 0
The matrices . E.. and U, seen in eguationsg (2.1) 0 -1/2 /3/2 0 0
and- {2.2);, respectively, are-given by: afy v3/2 1/2 - 0 0
M[MB] | 0 0 172 /372
(12 0 V2. . =1/2 0 -1/2 )
_ 0 0 /372 1/2
1/2/3 /Y3 -1/243  1/2/3 /3 =1/273 . . . .
£ - . _ B _ _
-1/2v/3 1/V3 =1/243  -1/243 1//3  -1/2/3
2) [“gy]
Y Bo
_ -1/2 :
1/2 0 1/2 ] 1/2 R 0 0 o
| 172 =/3/2 0 0
1/v6 1/V/% 1/v6 1/4/6 1/v6 1/v6
(agy) —/3/2 1/2 9 0
M =
1/2 0 172 -t/2 : -1/2 [Yea]
/ / / 0 1/ 0 0 -1/2  =v3/2
1/2v3 1/¥3  «t/2¥3  1/2¥3 -1Y3 -1/273 0 0 -/3/2 1/2
g =
-1/2/3 143 -1/2/3  -1/2/3 /Y3 -1/2v3 0 0 0 Y
1/2 0 -1/2 -1/2 0 1/2 3 [asv]
Bya
| 1//8 —1/V8  -1/4% 14E 1/¥6  =1/v6 | o 0 0 ]
-1/2 =v3/2 0 ]
The matrices M[‘:?g] ;- that are defined by M[S?]\;] = M[U‘BY] V3ir2 1/2 0 0
u P[??Z] U.T ¢ -according _;_o_._equatior_z. (2.4}, are the following: e 0 0 -1/2 -=V/3/2
0 0 ¥3/2  =1/2
0 0 0 0
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