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ABSTRACT

The difficulties of obtaining for the harmonic
oscillator a well defined unitary transformation to action-angle
variables were overcome by M. Moshinsky and T.H. Seligman
through the introduction of a spinlike variable (ambiguity
- spin) from a classical point of view. The difficulty of
defining a unitary phase operator for the harmonic oscillator
was overcome by Roger G. Newton also through the introduction
of a spinlike variable (named duplication spin by us) but within
-4 guantum framework. We investigate here the relation between
the ambiguity spin and the duplication spin by introducing these
two type of spins in the canonical transformation to action-
angle variables. Doing this we are able to obtain both well

defined unitary transformation and phase operator.

?Financially supported by FAPESP.

t. INTRODUCTION

The use of action-angle variables for the description
of physical systems is quite helpful specially in semiclassical

Y pue as is well knwon, the introduction of guantum

analysis
action-angle variable for the harmonic oscillator (HQ) hamiltonian
presents some difficulties. The problem of determining the
quantum unitary transformation(z} indqcea by the classical
canonical transformation to action—angle-variﬁﬂesnms investigated
by M. Moshinsky and P. Seligman(a). The problem of ;he-unﬁzuity
of the angle operator was investigated by R.G..Ngwton(4); The
root of the difficulties ehcountered in both proElems 1ieé in

(3}

the lower boundedness of the energy spectrum and for

. periodicity of the wave functions of the harmonic oscillator

hamiltonian. In both works, the difficulties were overcome
through the introduction of spinlike variables.

The ambiguity spins introduced by Moshinsky and
(3}

Seligman label different sheets of the original phase-space
guaranteeing the bijectivity of the mapping of phase-spaces.
One of the ambiguity spins corresponds to parity invariance of
the canonical transformation and the other one corresponds to
the 2mn translation invariance of the transformation.

The two-valued spin variabple {it will be called
here duplication spin) introduced by Newton(4) duplicates the
Hilbert space, a vector in the enlarged gpace having two
components, the upper component COrréqunding te the physical
state. In the enlarged Hilbert space there exist a complete
orthormal set of phase states so that the angle operator is
unitary.

In the present work we investigate the_relétionship

between the ambiguity spin, introduéed by Moshinsky and Selkmﬁn(m
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within- a classical framework, and the duplication spin, introduced

(4} within a quantum framework. Studying the following

by Newton:
canonical transformation to action-angle variables for the one-

dimensional HO {we are using h=1, m=1 and w=1}
J = % (p? + g%} ' (1.1a)
¢ = tan 5= B (1.1b}

we show: that the duplication spin plays a role eguivalent to

3} yith respect to the determination

the parity ambiguity spir
of the,qﬁantum unifary transfdrmation iﬁduced by the classical
canonical transformation (1). However, the duplication spin is
absolutely necessary to guarantee the unitarity of the (gquantum)
phase operator ei¢.. On the other hand, the introduction of
the ambiguity spin related to the translation invariance of the
phase variable (¢ +~ ¢ + 2nm) allows to cbtain a complete and
orthonormal set of phase states with ¢ e (== ,w) and the

(4}

restriction of ¢¢ (-m,w} is removed. In section 2 we

summa:izé the: results cbtained by R. Newtcn(4) ahd Moshinsky
and Seligman ‘3. .

In section 3 the duplicatioﬁ spin and the tnﬂﬁlmjxm
ambiguity spin are introduced for the canonical transformation
{1) and the quahtum unifary-cﬁerator corresponding to this
canonical transformation is obtained. 1In section 4 the quantum
phase operator ei¢ is obtained using the Mello-Moshinsky

(6,3)

transformation In section 5 the complete and orthoncrmal

set of eigenstates of e1¢ is obtained. In section 6 the
action J in ¢-representation is shown to be [— i é%} and

the conclusions are summarized in section 7.

.4.

(3)

{4) AND THE AMBIGUITY SPIN - b

2. THE DUPLICATION SPIN
BRIEF ACCOUNT

The introduction of the duplicaticon spin (with
components + and -} doubles the Hilbert space.H . A wvector

|{b> of the enlarged Hilbert space H will have two components,

each one being a vector |b> of the original space H ,_the

upper compenent haﬁing spin + component and the lower spin -

JB% >

Hb> = . ) (2.1)

b->

The physical results are given by the upper component and are
recovered by projection.

Giﬁen the eigenstates |n> of the HO hamiltonian,
with eigenvalues (ni-%, ;0 =0,1, ..., the two component

orthonormal basis ||m> in the enlarged Hilbert space H is

given by

lIn> = ' (2.2)

0 .
r if e Bt

[-n-1>

where now -w<n <« (integer).

The operators in H (they will carry a caret) are
2x 2 matrices which are given in terms of the operatcrs in H.
The number operator N, the raising and lowering operators, ﬁf

and £, are defined as follows



. (w0 ] _+ E' py) . E 0 _
N=}t oy E‘= EJ ’ E = + r (2.3}

where N, E+ and E are the correspending operators in H ,

K{n> = nin> ,E+|n> = |n+1> , E|n> = (1—6n0}1n—1> , n=0,1,2...

(2.4)
and’ P, 1is the projector on the HO ground-state,
By = [0><0\

It is easy to verify that

B iin> = nfin> , &ijn> = |[ne1>

(2.5)

sc that E is a unitary operator even though the cerresponding
E 1s not.

Given any operator © in H , there exist at least
two choices for the corresponding operator & in R which

give identical physical results (upper component)

For the HO hamiltonian the first alternative is the

simplest one,

1
f) . . {2.7)

corresponding to eigenvalues (n-r%)

giving a spectrum that is not bounded from below (the other

o= 0,%1,£2, (., thus

, and E|ln> = [In-1> , n=0,+1,22,. ..

.6.

alternative gives a spectfum doubly degenerate).

The presence of negative integers in the spectrum
of the number operator N results in the existence of a unitary
phase operator e_i¢ and of its canonically coqjugate operator
—j_g%. The eigenstates |[¢> of the phase .operator form a
complete orthonormal set provided

-MT<h <y ’

<ole’> = Sl¢=¢'} , _ (2.8)
. _
[d¢|¢><¢l = 1.
=T
{3)

The ambiguity spin’ is also introduced to enlarge.
the space. It is related to symmetry invariances of a cancnical
transformation and the labels of the irreducible representations
of the symmetry group {ambiguity group) are the. components of

the ambiguity spin. As is well-known(z)

the guantum unitary
transformation is not well defined when the corresponding
operators do not have the same spectrum. This problem may be
eliminated by the introduction of tﬁe ambiguity spin. In the
particular case of the one-dimensional HO ,. Moshinsky and

{3)

Seligman defined the canonical transformation to action-

angle variables by the. equations
17l = 3 ®*a® {2-92)
¢ = = - tan”? (5) , {2.9b)

and their inverse




L (g-ip} = i.J‘l/Z{exp{irb—J N ' {z.10a)
/3 ' [Tl

X (geipy = expf-,i¢-+l+]|3[35 . (2.10b)
e SR

The above transformations remain invariant unéer
translations. ¢ >.¢ + 2w (m,arbitrary.integek) and under the
inversion {4 ,J} ~ {(-¢.,-F) - The ambiguity group. is given by
the semi-direct product of the abelian: group. T of translations
by 2T witﬁ-the inversion group I: TAI. TPhe irreducible
representations of the ambiguity group  TA.I are. charact.e]_:ized
by the continuous parameter ) (translation spin), 0=Xx<1 ,
and: the discxeﬁeugatameter-.o=,t1 {parity spin). The
translﬁtion;and’ﬁarity'invariance:of the transformation (2.9)
resnlts in the whole plane:’ (¢;p) being mapped om . a strip between

$ = 2mm, - and _¢;:2ﬁ1m+1) qﬁ;theauppgr:half;(@wJ}'plape and

again on the lower half (¢, Tk plane. -Consiﬁering then a_double

denumerable- infinite sets. of. sheets of the- {g,p) phase space
the mapping {q,p) % {9.J) is bijective. Another way of considering
this bijective mapping,is'to-takefazsingle sheet. phase space
(g.p) énd:ménggcomponen;-functions.Labeled:by'the ambiguity
spin X and. ¢. = Thus-the introduction.of % and- ¢ allows
to-obtain-a,unitazy.representation-oE;thg_qanoqical transformation
leading to. action-angle . variables forgﬁhe_ﬁo . Correspondence
be:ween.qpexato;s_can,also.ha obtqined: ;hé operator corresponding
to |J] haviné_é continuumuspgctrum"(as it should due to. the
bijectivity: of the mapping} . It is noted ﬁhat in guantum

2

mechanics the operator 1 (p?+q?) , associated to |[J| by the
transformation, has the spectrum n4—% ,n=0,1,... . i

Now, while the introduction- of the duplication spin

.8.

allows to obtain a unitary phase opekator with eigenstates
forming a complete orthonormal set for =-n1<¢ <1 , it does not
allow to obtain the unitary operator transforming to action-
angie variables. On the other hand, the ambiguity spins provide
a unitary operator transforming to action-angle variables but
do not give a unitary phase operator. In crder t¢ get both things, we

shall replace the parity spin by the duplication spin. And sc

. we define the canonical transformation by (1.%) which does not

have parity invariance and intrcduce the duplicatiocn spin.

3. THE UNITARY TRANSFORMATION FOR AMBIGUITY AND DUPLICATION
SPINS ' '

The canonical transformation {1.1) can be given by

the following implicit equations

, o _

—11/‘ (priq) = a oi* (3.1a)

(2) 72 :
—id- L

(2—;%— (p-iq) = e i g% | (3.1b)

The mapping of the phase-space (q,p) on the phase{

space {¢$,J} 1is not bijective for two reasons:

(i} Points (¢,J} on the lower half plane, J<0 , are not

images of any peint on the (g,p} plane.

(ii) All peints (¢+27m , J) , m arbitrary integer, are mapped
on the same peint (q,p) (the transformaticn is invariant

under the abelian group T of translations by 2n).

Distinction between the points on (q,p) corresponding

to ($+2wm , J) will be made by introducing the ambiguity spin(BI-
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as described in section 2. The inclusion of the lower-half (4¢,J)
plane will be achieved by duplicating the éhase—space (q,p}
via the introduction of the duplicaficn 9pin(4) aiso described
in section 2. The enlarged (q,p} space so cobtained will be
called intermediate space.
As we have seen, the ambiguity group T is
characterized by the parameter )} restricted te the interval
COEACT, Again, instead of considering the mapping of infinite
denumberable sheets (q,p) on the upper half (¢$,J) plane we shall
consider a single sheet phase-space (g,p) and functions having
infinite nondenumerable components labeled by X . Now, the
loﬁer haif plane, 3<0, is introduced via the duplication spin
which doubles the phase-space {(g,p}. Each A component will
have two components characterized by the duplication spin
compenents + and - . The guantum final Hilbert space H

associated with {¢,J) will have states with single component

while the enlarged intermediate Hilbert space H will have

states with nondenumeragble infinite double components labeled

by A aﬁd by the duplicaticon spin components + or - . So, the

basis giVeﬁ by (2.2) will be here the X component of the two -
component orthonormal basis in the enlarged intermediate ﬁilbert
space H . . This two—-component X component will be denoﬁed by

j|n>A . iee.,

At
o

; if n

(3.2)

o
i, if n=<o0 ,

|-n-1>jl

~w<n<® , integer, Q0 A< .

~10.

Following the procedure of Moshinsky and Sélrmun(m
we consider now the complete set (orthonormal) of states in the

final Bilbert space H

1

—— 7 expl{ivg"}
{2.".) 1/2 !

{as in ref. {3) we shall adopt the convention-that variables

carrying a double prime refer to the final Hilbert space} and

write the real variable v in terms of the ambiguity spin A,

Vv =n+dl , n=0,%1,%2, ... and 0£A<1

1
so that for a fixed A , the functions {2w) /2 exp{i{n+A}g")
provide a basis for the irreducible representations of the
ambiguity group T(B,. In the momentum representation, the

corresponding set, §(p"-v} , will be decomposed is subsets
${p"-(n+X)) , o = 0,21, ... and O0si<1T. (3.3)

And the unitafy representation of the canonical transformation
(3.1} (or (1.1)} are obtained from the basis (3.3) for the
irreducible representations of the ambiguity group T . The
subset §{p"~ (n+d)) , n = 0,21, ... , for a given -1,; must be
mapped conte the corresponding component Ern>k (3.2} in the

enlarged intermedizte Hilbert space #. In the momentum

representation ||n> is given hy
wn(p‘)}
;s if nzo
0 JA
EPY
‘J}n(P') = (3.4}
0 1
! ¢ if n<o ,
( Il’—-n—1{p,)111\
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where - . (") = <p’|n> . are the eigenfunctions of the HO

hamiltonianhtne;efpre-satigfying:the equation

1 a7 1 2 _ Ty e . s _
(_'5 " +5 P! )-wn(p?) = (n-hz).wn(p_} .. I integer2 0 . (3.5}
ap’
S0, for each A wvalue,_;hedeigenfuncticnsﬁof-the
momentum,: S{p! = (n+r}) . ére mappeﬂ-oﬁto*the,eigenfunctipns.

@3(94): of the: : HO:  hamiltorian, and the matrix elements
<piiuA§Q">- Qf}the¢unita;yﬁtransfgrmationucor:asponding-to the
canonical transﬁormaﬁign-t3g]} are given by

"3

o' it p™ = I BheNS(T - med)) . (3.6)
. Nz
For the full unitary operator . U’ we propose the
following formal expression:
1

U = }[ ar v’ B , '_ 2.7
;

where 13')-k is. & projector that acting on an arbitrary state of
the final::Hilbert: space: selects: that. part associated with A .
it should'be-rem&rked,that:the«unitarity condition: take. the

following: form,

. .
<p'iu u|p"> = S{p'-p") ,

(3.8)

+ 1 1] 113

<p'|UG |p"> = §{p'-p")

0
1 Jleo-an ] .
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4. CORRESPONDENCE OF OPERATORS IN THE {ENLARGED]) INTERMEDIATE
AND FINAL HXILBERT SPACES

The correspondence of operators in the enlarged
intermediate Hilbert space H and operators in the final
Hilbert space is obtained by using the MelloQMoshinsky (MM}

equations(B’G).

These equations consist of differential
equations for the unitary representation of the operator U
associated to a canoniecal transformation. Any classical

canonical transformation can be given by implicit eguations,

Fip,q) F{Q,P)

(4.1)

G(g,p} G{g.p)

[}

with the following condition on the Poisson brackets

F,G = 1{F,
F.elgp &g, p

The unitary operator U that performs the trans-
formation of operators d,p onto operators 0Q,P is given by

-1 -1
Q = UgU . P = UpU . (4.2)

The above equation is well defined(z) only when operators g,p
and operators Q,P have the same spectra, which classically
means that the mapping of the phase-spaces is bijective.

For any function that is a power series of p,q,

it follows from {(4.2) that

U K(g,p) UT = K{(Q,P)

or,



L1300
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K{Q,P) U = UKI(qg,p) - 7
= I B2en smT+1= (med) =
. Nime—
Particularly for F(g,p) and. G(gq,p} (given in
(4.1)) eguation {4.2) reads = e ' o \
= e ] §ipnsiet - (m = %P <priut|pt> , {4.4)
n=-—«
Flg,p) U = UF({qa,p)
where -we have made use of the property that the hyperdiffevential
Glg,pl U = UG{g,p) .

operator exp —Eﬁ changes p" into p"+1.
1% 3p

) Writing equation {4.4) in the form
which in the momentum representation coanstitute the MM

(6,3)

equations + 3 *

- =t
El<p* ju* |p> ='[[e ap] ] ' |t pr>

- R
[FT(i—,p"):' <p'luip">

. 3
F(l — l) <p'lu " -
o7+ P P lUlp 5

and comparing with the MM equations (4.3} .{remembering that p"

(4.3)
3 ¥ 3 * is the momentum in the final space, ‘i.e., J} we see that the
G{i ng. r p') <P'iU|P"> = G (1 ap_n r P") <P.iUip"> - ~+ id
operator EA corresponds to et ? . Therefore, making use of
the projector BA ;, we have
For each A component there are raising and
- - k3
lowering operators, EI and EA given by (2.3). The raising . .
i =T ar el g _ oi¢
. _ - e B = e . (4.5a}
and lowering operator for the whole intermediate space H can
+ e . . - ¢
be written formally as E° = E} [[6(-2")|] amd E = EHs-211]
Analcgously,
respectively. We shall now obtain the operator, in the final
Hilbert space, corresponding to these raising and lowering . )
B o= M {4.5b)

operators in the intermediate Hilbert space (we shall do the

explicit deriwvaticn for E+ only}). [ . .
) For each XA walue the HO hamiltonian in the

Taking initially a single X component, we apply

intermediate space f is B, = (ﬁA+-%) (N given by (2.3))
EI to both sides of equation (3.6) (unitary representation of

A
and the full HO hamiltonian operator in the intermediate space

A
U obtainin : ~ - -
) 9 is H = HAEIG(A—A')Ii . Applying HA on both sides of equaticn

{3.6) we get

- o o
Eptittipos [ B 0 6" - b)) = ] Uh 7 5" - ) =
N=m N=—te N 3 R
B, <p' ot pr> = (n+%) PR p S - @) = (p“+1§—;\)<p‘ o [p"> ,

n=—m
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so:that
= (Feg—Ak
the:efoie
. k%
B = ék (J+‘2‘-—A) B . t4.6}
. .;. _ . .

It can easily be verified that the operator in the right hand
- side of (4.6) has spectrum (n+%51 L R=0,%1,22, aen .
We .shall now use the same procedure to find the
-ope:atq;ﬁin%;hgaﬁﬁ;e;médiateienlgrggd;Hilbgrt space corresponding
to: the: action: J:(given: by .ptl.. Apprying p" on both sides

of:(3.6}fwef§et

prept (Ut fpt> = ] # (*)p"8 (p" = (neA}) =

n=—"
T sA 1 n :
= I (DB (SR -(ned)) T
n=—"
therefore:.
fuqx.J = J e ,1[(ﬁl+l)d{A~A')|| ; (4.7}
°  . . .
soqthaf.theﬂppe;ator I{(ﬁiéA{&(A—X'yi| has a eontinuum’

spectrumm1ikemthe¥actionn.J# (ag: it should in order to have a

well definediope;ath. T).
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4. COMPLETENESS RELATION FOR THE EIGENSTATES OF el¢

Let |¢'> be eigenstate of et? .

R [ (5.1)

The eigenstates |p"> of the action ¥ can be

written as
|p"> = |n+a> s 0<A< . n=0,+1,%2, ..., {5.2)
for which the orthogonality takes the form
<n+ A|n' +A'> =ann,GU-w) - w.ﬂ:

The eigenstates |[¢'> can be expanded in terms of

the states (5.2}

j$'> = ———1—7- ax AT s {5.4)
(2m 72 n ! o :

Using this expansion (5.4) for eigenstates [¢'>
we shall obtain the orthogonality relation
2

@t = o {d?\ I a3 exaa{i[(n+)s)¢'-(n'+?\')¢']} <nsd |n'+ht> =
n,

n'=—m

3

0 0
i

%[dxz aﬁmwwn+mwuw}

n=—o

o
where we have used the orthogonality (5.3). Using the.identity
{Poisson formula)(T)

=

) exp[in(:p'-rb")] = 7 8{¢'-¢"-2nm} ,
N==oo

N==—t0



7.
we get

1
<pren> =«J;-j-dl-exp[ilt¢'—¢")] T S(¢p'~p"-2nw) =
2T n=-—o°
Q.

(e —g™) o
e =] T S{e'—¢"-2n7) .
(gt —¢") e
Now, as
eix 1
Lim —s—— = 6 .
x+2nm i no

it follows the: orthogonality
<pTlev> = 8{e'-8") {5.5)

without any resiriction on the range of 4' or ¢".
To obtain the completeness relation we first
calculate <|¢'> where | > is an arbitrary state in the final

Hilbert space,

1 1

pt s 1 ;
<do'> = | ar <ined><msd e’ = | X § <|ners —— exp[}1(n+l)¢i .
1 [ n:z-'.m [ n=—x (2m) 2

a o

This relation can be inverted giving

J a«p[mnww] <lg'> gt = <[n'nt>

—m

(2m ¥

which is the same as

<|n'+i'> = [ de' <|g'><¢' |n'+a’>

-

.-18.

so that formally

[ gt Jé'e<er| = 1 . {5.6)

]

(Notice the range of integration, (=,w), instead of (-w,+7}

in (2.8)}.

6. REPRESENTATIONS ¢ AND J

In deriving the corxrespondence hetween operators in

the intermediate enlarged Hilbert space and the Final Hilbert

space we have assumed J to be diagonal and: in-. this . representation

$ = i g% - We shall first show that J = - i 2 in a

E]
representation in which e *% is diagonal (we follow Newton's

procedure in ref. 4). We have

i o e

or, more gehnerally, .

[e_id’ . J+h(e'i¢)] = oi¢ . ' (6.1)

where' h 1is an arbitrary function of 1%

Equation (6.1} in the representation ¢! given in

(5.4) is

<t 1e™™ Gme™)) - (Fn(ei) a1 g = < le™ i gm>

from which it follows that
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=1 -_i¢! - Lty = 8 ¢‘-¢‘“, ,_@ 1_4"
<! | (F+hle 1y for> = e—_ﬁ)%;?i;ﬁ- Slo'—=") = Teemy = ~iag CICAECE

or,

'<¢ﬁL¢|¢g?ﬂ = ;.hfe??¢fr}.sféF-¢ﬂl . (6.2)
" Now ;. using_thé bésis that diagoﬁalises J {in form

(5.2)), we have .
I ei(n+A)¢'

<¢‘|J|n+A; = (n+r) <! |n+r) = (n+X} —

{6.3)

However, usihg' (6.2). and the Completeneés relation (5.6)

we get

<! ItJIrH'A-) = r d¢n- <¢‘| |-I|,§-!!>-<¢" in+l> = _(2_1)_?: {-laiﬁ +h(e—i¢', }ei(n+l]¢l _
. A3

-

(ned)  ilaeldet | RETP)  imedded

e {6.4)
(2n) 7% {2m) 2

Comparison of (6.3} and {6.4) gives. h=0 so that’

in ¢ representation

J =_. - iﬁ .'__. : R ) ’ (6.5)

As the action-angle (final) Hilbert space has the
same structure: of the position-momerntum Hilbert space, it

(2)

follows. that

¢=_ia—3. S BB

.20,

7. CONCLUSIONS

We have enlarged the HD Hilbert space by introducing
the ambiguity.spin A (associate&'to the abelian group T of
translations by 2%} and the duplication spin (which. allows
the definition of a number operator for the HO that has
integral eigenvalues of both signs). As a result, we have been
able to obtain a well defined guantum unitary operator leading

-i¢

to action-angle wvariables and -a unitary phase opérato; e
The eigenstates of the phase operator form é compléte ortho-
normal set with -w<g¢<e= ({5.5) and (5.6)) the restriction
-T<¢<m present in (2.8) being eliminated. As iﬁ reference

3, the operator corresponding to the action J has a continuum
’ : 2 2

spectrum (4.7) but at the same time, the operator B

2 r
asSociated to J wia the transformation (1.1), has spectrum .

(n+3) , no=0,%1,42, ...
So, the duplication: spin combined with the ambiguity
spin allows teo cbtain all the features of each one .cf them plus

the elimination of the restriction -m<¢ <.
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