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ABSTRACT

Varying.one parameter, the solution of nonlinear
15% order différential equation with time delay T is Fourier
analysed. After the Hopf bifurcation, periodfdoubling
shenomenon always occurs when <t is one of the fixef parameters
{both for small and large T} . -Varying T ,.tﬁere are . values of
the  fixed parameters for which no périod-doubling oCcCcurs.
"Chaos™ foliows. the pericd-doubling sequeﬁce and the rate at
which "chaos" is:approached is: very close to- the
universal § - 4.6692016... characterising the peried-doubling

sequence to chaos in nonlinear difference equations.

+Financially supported by CNPqg.

Rich dynamical behaviour is a common feature of
nonlinear first order difference and differential equatiocns

depending on parameters‘1'3),

The simple first order nonlinear
difference equations (noninvertible maps of the interval)(i"a),
for instance, can give rise to cascades of periocdic orbits by
generic period doubling bifurcation process which goes on until
a critical value of the parameter is reached beyond which
periodicity ends ("period doubling route to chaos“(s)). The
universality of this period doubling bifurcation sequence is
not only qualitative(1—7), it also is quantitative(s_g).
Feigenbaum(ﬁ) has shown that the peried doubling seguence for
non-area-preserving maps is characterized by twe universal
constants, o =2.502907875.., and 6=4.6692016... . The
constant « 1is the asymptotic value of the scaling of the
transformation while ¢ is the asymptotic value of the ratio
between the ranges of parameter values in which successive
cycles appear and then become unstable.

First order nonlinear differential equations with
time delay may exhibit even richer dynamical behaviour. Some—

time ago, Perez, Malta and Coutinho(10) proposed the following

nonlinear eguation with time delay T
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i dently of the initial conditions, whenever T
to describe isclated population of Drosophila Sturtevantis sets, indeperdently 4

passed through T 3) the equilibrium point ﬁ became unstable

flies (oscillations in isolated population of these flies were H

(11}, and the population started to oscillate around . More

observed by Tadei and Mourdo By linearizing around the

= s 4 A detailed calculations were performed for the sets a=4.0 ,
equilibrium point N , sufficient conditions for the stability

3 Ny =406 and a=3.2 , Npg=320 with upu=1.0 (in both cases).
of the equilibrium population were obtained. Violation of these - = -

In the former case, as T Wwas increased beyond Ty

bifurcation), the oscillations seemed to have a single frequency

for a certain range of but then a an bump started to

. {Hopf ;
sufficient conditions constitute necessary conditions for an i

oscillatory behaviour of the population. It was established

that oscillations in the population. result from a Hopf

develop suggesting that a second frequency was being introduced
bhifurcation occurring at a value Ty of the time delay parareter. P 99 & 4 Y g !

two frequencies remaining in a certain range and, finall
all these conditions were verified by numerically solving q 9 9 ! Y

d the illations acgquired 1 .
equation (1) assuming for b(Nt) and: A(Nt) the following beyond a value Te osci i g a caplex structure

. For the second set of parameters, on the other hand, as 1
simple form

was increased the oscillations seemed to have always a single

Nt ' frequency. The systematic introduction of new frequencies :
all - . for 'Nt = Ny
o i
BN.) = (2) {new bumps in the graphs} in the sclutions as 1 was increased
t - ’ ,
[0 for Nt > N, for some sets of parameters lead us to conjecture that the l

pericd doubling phenomena“"a)

could also be present in this
and equation {1}. In fact, this very equation is also used to
describe an optical cavity filled with nonlinear dielectric
A‘Nt) - const = . medium 1rrad1ated‘w1th a laser light of constant intensity and,

(12) {

indeed, Ikeda, Kondo and Akimoto showed the existence of

For b(Nt) and A‘Nt) of form (2) o is given the period doubling cascade in this eguation by comparing

by the graphs of the sclutions as function of the parameters i{no

Fourier analysis was performed).

T I - N (3) In this work we present the results of Fourier
H

analysis of the solutions of equation (2} (i) fixing a and

Ny and varying the time-delay Tt and (ii} fixing 7t and a/Ng

i o= sin’ (- N )

| 2u—-a i '

< B < 7

]

and varying a (u is always 1.0}.

Results with 1t varying are given in Table 1

Several sets of parameters (a, N, , u) were {a=3.200, HNo=320) and in Table 2 (a=4.000, N, =400). As

considered and <1 varied over a wide range. For all parameters
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the previous numerical studies(10) nhag indicated, for ﬁhe first
parameter set the sclution contains always a single dominant
frequency {seg figure 1) the period T being approximately
equal to the corresponding T value (see Table 1}. The second
set of parameters, on the other hand, exhibits period doubling
at the values 1= Tk given in the 3rd column of Table 2 (see
figures 2 and 3 of the power spectrum for T3 <1t =2.850¢<+,

and T, <T=3.160¢<71, respectively). The ratios of the.ranges

of 1 values at which the period of the solution doubles,

b = —=rl ko (4)

(given in the 4th column of Table 2) are very close to the
universal (asymptotic) value 6 = 4.6692016... associated to
nonlinear difference equations {non area-preserving maps)(s,.
The value of <t at which "chaos" starts is T = 3.260 .

Results with a varying are given in Table 3
{t=30.000) and in Table 4 (1 = 3.260, which is Tc for
2=4.000), a/Ng =.010 in both cases. For both values of <,
after fhe Hopf bifurcation period-doubling is obtained at values

a=a  given in the 3rd column of Tables 3 and 4 (see figqures 4

and 5 of the power spectrum for a,_<a= 3.400 <ay and

H
a=13.500>a, , respectively). The values of 5? ,

a; = aj

™

ay -~ &z

h

are given in the 4t column of Tables 3 and 4.

For 1=23.260 the determination of a, is very

difficult so that the corresponding 6? is rather uncertain.

.6,

For 1 =30.000 the "chaos" region starts at a, ¥ 3.57 and for

T=3.260 it starts at & =4.0 (as it should as T2 3.260 is
the value of 1 at which chaos starts for a=4.000 fixed).
These critical valves were determined using the corresponding
8, wvalue as we do not have the asymptotic § wvalue (they were
verified numerically).

From this numerical analysis we conclude that
fixing = and varying a , after the Hopf bifurcation period-
doubling always occurs. Only if the time delay is very small
no pericd-doubling is observed as in this case no-mxﬁ bifurcation
can occur (for 71-+0 the stationary solution of equation (1) is
stable(10)). On the other hand, fixing & ‘and varying T,
there seems to exist a minimum value of a (amin = 3.25) for
occurring period doubling,therefore.the existence of Hopf
bifurcation is necessary but not sufficient for period-doubling
to occur.

These numerical results also indicate that the §
value for this time delayed rnionlinear equation is very close to
the & wvalue of non Area-preserving maps suggesting that the
time delay incorporates into the differential equation the

dan 3

f
behaviour of the difference eguation associated to it (Tﬂ§==oj'
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TABLE 1

T T
3.9 4.8
7.0 7.9

12.1% 13.0
16.5 17.4
35.0 35.9
50.90 50.9
15¢.0 150.6

T
T T T 6k

1.2100 1.8
2.4000 3.2
2.5000 3.3

T, =-2.5111
2,6000 6.8
3.0900 7.9

Tz = 3.1000 6y = 4,730
3.1060 15.9
3.2240 16.3

Tas = 3.2245 42, = 4.560
3.2280 32.3
3.2510 32.5

Ty = 3.2518 63 = 4.550
3.2525 66.6
3.25783 121.3 Tg = 3.25782




TABLE 4

TABLE 3
) a
a T ay 87
3.2500 30.9
3.5000 61.6 a, = 3.4396
“4.659
3.5500 122.9 a, = 3.5449%
3.5700 245.8 a, = 3.5675

a T a, 6?
3.700 4.1
3.900 8.2 ay = 3.8117
w509
3.980 16.5 a, = 3.9625
3.995 32.6 a; = 3.9921




FIGURE CAPTIONS

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

Power spectrum for

Power spectrum for

No =400 , u=1.000 .

Power spectrum for

Ne = 400 , p=1.000

Power spectrum for

a/Ng=.010 .

Power spectrum for

a/Ng; = .010

T=50.0 , a=23.200

T1<T-“-2.350<T2 B
T2 <T=2.850<T1,; ,
a,<a=3.400<a,; ,

H

a; <a=3.500<a, ,

s Ng =320 .
a=4.000 ,
a=4.000 ,
7= 30.000 ,
T =30.000
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