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ABSTRACT

The eigenstates of.three—particlés_mqving_in~oner
dimension are classified according to the S plus parity
group. The ordering of the grcound state S, band.is given
‘for a fairly general class of pptentialé; Sufficient conditions
are given both for existence and non-existence of bound states

of a given symmetry.
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I. INTRODUCTION

In this paper we investigate some general properties

-of the bound-state spectrum of thrée'ideptical'particles inter-

acting via two-body potential and moving in one—ﬂimehsiﬁn.

In section II the eigenfuﬁctions ére claésified.
according to their transformation properties under parity and the
group S;3; . Using these criteria the states can be groupéd in two
bands (positive and negative parity} of four states. Aé it
should, each set of four eigenfunctiocns of a band prevides a
basis for the irreducible represéntations of the group S;: two
one-dimensional {one completely symmetric, one completely anti-
symmetric} and_one two-dimensional {of mixed symmetry) .

Sufficient conditions for the existence of the
lowest energy state of each symmetry type are given in section
IIT. It results that the totally symmetric state of positive
parity is always bound if the two-body potential is attractive.
There are sufficient conditions for the existence of the lowest
energy state of the other symmetry types and it-is,pgssible-to
give the ordering of ground-state band (of positive pa:itY) for
a large class of potentials.

Finally in séétion IV we give sufficientléond%ﬁions
for the unboundness of the lowest ehergy, negativelﬁa;ity,
totally symmetric and totally antisymmetric states. -Sufficient
conditions for the unboundness of the fifst“exbitedﬁtbﬁaily .
symmetric state of positive parity are also given: .

The tools used are the k-harmonics method(1}'{éls§
2)

called hyperspherical-harmonics}, the Hall and Post and

(3) (4)

Post theorems and the comparison theorem




II. THE S BANDS

We. consider the time-independent Schrédinger

equation for. three-identical particle- moving in one-dimension

and. interacting via a~twquqdyiatt;active petential Viix,-=x.1).

e . . LIt
Asait:isxwell known, a th;eégbodyv(identical_partiples) problem

in-one?dimensiqn_can:bEaredugedrto:a:one—body'prqblem-in~two—
dimensiﬁn.. Using;the-"hypersbherigal“éoordin&tes&(J), the

hyperradius. p .and the hyperangle &, defined by
7= pcos@. . L =psens ", 0 2.8 <27 (1)

whepe: ' n and: £. are:the.Jaceobi coordinates

s /1_5 Hrmxalls - (2a).
£ o« [2 [—M e _,—.xa.];_ (2b)
R o= XptXar¥s gl o | - (20)

62/2mp

_E'; 2, 201 el Vi, o) blo.n) < .
30, T B0z ¥ierd pr80lo,0) =Eylo,0) (3)

Vip,8) = V{2 plcosd) + V(Y2 plcos (e+-§)|) + VI/2 picos (gﬂ_%gn)'

(4}

4.

If we now use the {k-harmonics) expansion

Ry {p) ike

e
{p,8) = — ' (5)
P kgf_m _17_p A (2m) YA

we get the following infinite set of coupled ordinary differential.

equation

a? 1, 1 B : '
- l;'i'ﬁ'f - (kﬂ..za F]Rk‘p) + kZI_ Vier i (PIR, (e) = ER (p) (B}

where

2w

ei(k'—k)a

1
vk!__k(p) .= ﬁ j( V(Dra) dan ) . (7)
0

Parity operatoer @I and the permutation operators
Pz , Py; and Pzy leave p invariant and transform @ qnté
6 , m-6 , 31 6 and -6 respectively.

From parity invariance of V{p,6) (4} it ﬁnmxuately

foliows that

|
(=

Vk,_k(p) for k'=-k odd ' (Ba)

VP = Y ale) = Vo e . _ (8b)

Using the invariance of V{p,0) under Piz ; PByy

and Pjy;; we get

r
6 ifk'k
o7 SRy, ma8  for k' keén , N integer
Vigrg (P) = 0 from —= 0 o0 .
_ . :

otherwise .
(9}



5.
Dueito“properties {Ba)- angd (9} the system. {6} .

spllts 1nto six 1nf1nlte -sets. of k-values

koéver:  6n ", 2+6n.  and . —2+6n .
L L - £10)
" oxeddict. - 3#6nc .,  T+6n “and - 148n - .

Using property’ (8b) it can be easily verified that
the-solutions-of'the'systemfof a;ﬁﬁionS'W)_Qﬂlbe4jpsaneud1that

R;k{ﬁ) = .:ekigf: - i i . : F11J

Wetshall denote by RE(Q). the solutions such- that
.R__.k (__p )
R_k(ot-:.—Rk(p);

W

kk(p)f and: by Rg(o) the_solutions such that
Thefeigenfunctione of f3) given-by expansion (5) can

how be.classifieda 'Poeitive parity_corrasponds.to k even and

negative parity'to k odd.'.The toteily ermettic_eigenfunction.

of-positiﬁe‘patity-ie giten by the;set 5?{; the:totally.antim

" symmetric eigenfuoction is.qiven by the setU:Gn-(n¥O), and the.

.mixed'symmetry.eigenfunctions.ere;giten'by1the=eetw 2+sﬁ;tr§¥

~2+6n) . 'Thue; the positive:parity gfoundfsteteuband isi 'given. by

@ RE (g} : o
) 1 - 6n "0 o . el
Vel 8) = ———r © [ R coséni {12a)
s _ _'.. So(2w Va N=—c pl_2 S _ . :
e B R : _
: - SO e R () : - ' ' '
(=} S SO 6T e ‘
P I e e R —  siméne: - - (12b)
AT e aele G T SR
0 B Byl
Cdy _(°' &) - (2“) 1/2 L T expi(2+6n}f and c.c..

(12¢)

f 5mtxeq-eymmet:y:elgenfunctlonelarehglven~bygtheﬁeet:jjeﬁn{

-g;ogp :$3{ lntroduced by Slmonov

6.

Asithe set _~2+6n1 equals minus the set 2¥6n“, due

,;to property (11) the elgenfunctlons'glven by the set '~2+6n .

dlffer from (IZGJ only by a phase factor.

The-negatlve parlty totally symmetrlc and totally

"1ant1symmetrlc elgenfunctlons are'glven by set 3+6n__end,the-

{or:;,

:¥1+6n);_fihé,neqetiveiparitylgroond—state'bandfis‘theo given by

ll'_

.@¢( )(p,e) - 51n(3+6n)9 S 13a)

a ’(o,e) = —-cos(3+6n)0 . (13B)

L-?é_](o,a)JT'———mmw explt1+6nm and -c.c.. (13¢)

I
oy
[ 33
|
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{as~ih,the case of the set —2+6n_,;the eigenfunctions . .given by

the: set -1+6n.differ from thoseugivenwbyﬁ'ﬁ+6n, oniy by a

phase:fector),"

The;transformation=propezties'of~the-mixed,symmetry

_eigehfunctions= ¢‘ Foa (¢(+)) can- be ea51ly verlfled using

the complex two—dlmenSLOn 1rredu61ble repzesentatlon of ‘the
H}

Concludlng thlS sectlon we. exam;ne the order of the

! ;states of the: ground—state :53 rband The lowest state Ais.

‘*’(p,e) ‘since-this. state has no centrlfugal barrler (k 0)

_}Due to the centrlfugal barr;er the other symmetry states -Should

~occur  in -the Tolloving order (see’ equation (6} o Vo, 1f.!(+) 0.0,

M

{- ()

wS )(p,e) -Iapparentlj:degenerate)qahd finally wA (p,e}.

The degeneracy'of"wé_g(p,é) -is'easily shown o be only apparent.




If the potential decreases monotonically with the interparticle

distance it is easy to see that wé-)

is lower than $A_) {See
Appendix). Other results concerning the ordering of the states

will be: presented in section IV.

ITY. SUFFICIENT CONDITIONS FOR THE:' EXISTENCE. OF THE LOWEST
ENERGY STATE OF EACH SYMMETRY TYPE -

Truncation of expansion (12) and (13) provides
variational functions and consequently an upper-bound for the
lowest energy state of each symmetry type. Keeping. a single
term in the expansions {12) and {13) the corresponding system
of differential eguations (6) for each symmetry tvpe will be

reduced to a single equation. ' The truncated. equation is

a 2 2 1, 1 ) )
- 3T Rk(D) - (k‘-z) T Rk(ﬂ} + Wk(D)Rk(D} = E'Rk (p} {14)
where Wk(p)-= Ve for k. =1, 2-and & , Wilp) = Vo=V for

the k=3 even solution {associated with: 'PS(_:_)) and: -
Walp} = Vy+Vs for the k=3 odd solution (associated with
(=) ' ’

In principle it is not difficult to find sufficient
conditions for- the existenge of a bound-state for .eguation -(14).
For.this,it“is;necessaryqtoufindné-trial.function ¢(p) such.
that (¢, Hp¢h-< -Ezg{¢,¢r}s where. -Eyn- is the two-particle
binding: energy.

: o ] . {5) oy _ oo =Yoo

Taking Simon's: choice ™", 6.(p) = p~ e ; wWe

obtain

£

(a2_+kz-—%)r‘(2<1.—1) - al(2a) + % T{2041) + ¢ dp o2& & W (6) < ~E,rT(2osl) ,
,
0 {15)

with a>% if kK#£0.

For k=0 the limit a-+l exists giving the

A
condition
©
J e P pvytp) dp < - Esp - % .. (16}
0

This result is a weaker version of a previous result obtained

by the authorsts)

that guarantees the existence of at least
one bound state for N-particle system in one- and two-dimension
when the two-body interaction is globally attractive. For

k#0 a simple condition is obtained by taking «=1

{ dp e P p? e P Wk(p) < -12E28_— (++ k%) . . {(17)
0

1 —-vE [}
Alternatively, taking ¢(p) = p** 2 o 2B as
trial wave-function, the sufficient condition for the existence

of at least one bound state of symmetry k 1is given by

0

[ 2x+1  ~#'Eap P
e e

0

e + 5 '
—Ze 2K . (18)

W (p) @p s -
(4325)

In reference 7 we show that simple sufficient

conditions are obtained by using as trial furction the regular

"and irregular solutions of the modified Helmholtz equation

matched at an arbitrary peoint R (Calogero's sufficﬂxm.amﬁutnxm(m
are chtained in this way). In the present case this type of
trial wave-function gives the following awkward condition for

the existence of a bound state with energy < -a?



.9. | . . T
(=) 0

{R © €1+€3-E,p > 0 and 2e2-E,p <0 the states bg N cand
- . ke - {+) : . : (+)

R J (%)2k+1 a=29p W, (pYdp + R J (%)2 1 e 2ap Wk(p!dp < N might be bound but the first excited state of type ¥g
0 R will be unbound and the ground-state bands will not intercept

R - -the excited state bands.

Mk« 2) ; in (3 parisd
< - 20 | __?ﬁgﬁ 2P 2K 40 _ og [ (k-—%lkzk 200 -2k 4 Finally, using Hall theorem and the comparison
é a é {20) theorem‘4,, it is easy to see that the three-body problem will

have a finite number of bound-states if the potential’ ig -siich

that

IV, SUFFICIENT CONDITICNS FOR THE NON EXISTENCE OF BOUND-STATES

.QF A GIVEN SYMMETRY ﬁf: Volp) -+ 0 . ' {22}

In the case of totally symmetric or totally anti- This condition is satisfied by any finite range

o R (2) .
tat : g o .
symmetric -states Hall and Post (HP) theorem provides: good potential. This is a particular case of a general résult given

. . i =X . . i - : 9
lower bounds Given V(|xl xj]) HP consider the two-body by Sigal( 1
problem

' a2 .
Hyp = = 2 357 + 3V(/Zp) . (21)

If this hamiltonian Hyp has a single bound state then wé—)

is unbound and so is w;+}.

We shall now use Hall (H)(a) theorem. Given

. V({xi-xji) , the two-body problem
ioo a1 ma 1)
1 I 2 dp? ¢ :

provides lower bounds, state by state, for the three-body
bound-state spectrum. If HH’ has three bound states with
energies -¢; <-g, <=3 then if El+€2_EZB < 0 the states
o&7 L wi L ul") will be unbound and so will be the first

excited totally symmetric state of positive parity; if
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APPENDIX

The degeneracy of ws‘)(p,a) and wif)(p,e)- is

shown to be false by examining the system of differential

equations (6} for the radial vectors R§+6n(b) and Rgﬁsn(p)
which enter in wé“)(p,e) (13a) and wif)(p,ai {13b). respec~

tively. For R§+6n(o) the system (6) can be cast in the form

2 o
1 4 [+ {3+6n) E
- {Eﬁ - 2""} Ryven® + 1 [VG.(n'—n) *
] n'=0 .
E E
* Vs{n'+n+1}] Rysen' (P} = B Ry gnle)

(&] .
and- for R3+6n(p} it becomes

1
o |-

d a {3+6n} 0
EE ] Seenle) ¢ 1o [ tarom *

. 0 o
- vG(n+n'+1)] Rasen' {9} = B Ry enl0)

For an interparticle potential mopotonically decreasing in-.the

interparticle distance, the potential is more attractive for

(o] E -} :
Ra*snﬁp) than for Ry, en(P) and the state ¢é )(p'g). will be

lower than wé"(p,e).



