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ABSTRACT

We construct and examine the properties of the
energy-independent potential U which is wavemﬁxmtionda}ﬁxalent
te the usual optical potential U(E). A simplefﬁrocedure is
presented for constructing U in the uniform medium, and
physical examples are discussed. The general result for finite
systemns, & recursive expansion in powers cof U({E}, is used té
investigate the multiple scattering expansion of U ; the
energy-independent potential.is found to have serious short-
comings for direct microscopic construction or phenomenclogical
parametrization. The microscopic theory, as exemplified here
by the multiple scattering approach, deces not lead to a
reliable approximation scheme. Phenomenclogical appreaches to
U are unattractive because the physics dees not guide.the
parametrizaticn effeétively:'the-structure of the nonlocality
is not tied directly to the dynamics; ImDU changes sign;
different elements of the physics, separate in U(E) , are

completely entangled in U .-




Y. INTRODUCTTION

Energy dependent optical potentials arise naturally

in describing multi-channel redction processes via sguivalent

one-channek theorie51:

(€) =P : - S— NV 4
U (e PaQP“+P“_u.._u EF_ana, e

{1}

Bo=les<at > R=1-F, | 2

where Pa projects onte the charnnel & . Ehe Qperator Ua(E)
is explicitly energy dependent, complex, and nonlocal because
of the intermediate coupling to the other'channels. Given
Ua(E) ., the diagonal transition amplitide: in the channel o
is obtained from solution of a standard one-channel Lippmann-~

Schwinger equation:
_ _ . &) (e
T(81=2F, T =Ute)+Uerq )T (e (3)

where GO(E) describes frge propagation in the channel a .

The compleéetely off-shell matriz elements of Ta(E) are giveh
correctly by Bguations #1) and (3}. This is hot terribly
surprising, since a solution for U {E} corresponds to solution
of the full multi-channel problem. Thg optical potential

. approach to reaction theoxy has heen very fruitful since, on
the one'hénd, systematic expansions of the elastic channel
optical potential have been derived microscopically and, on the
other hand, comparatively simple, theoretically motivated
phenomenological representations are available.

Microscopic approaches based on the multiple
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scattering expansion can be organized to build in unitarity
constraints at any level of trihcation with ‘each successive
level of approximation intorporating reaction processes involving

an additional nucleon. For example, the lowest order term
@) > L A
U, (&)= E ti (E) {4)
: oo _

where titE) is the }in-medium).Projectilé—ith-nucleon

_transition matrix, already generates a.good description of

intermediate'and-highéenergynhadroﬁAnucleus-elastic.scattering;
(.

The reactive content associated with O is guasifree mucleon
knockout, which is the dominant rééctibn ﬁéchanism in the low-
density (or peripheral) 1imit; for Eentrai collisions, the. .
strong absorption ("black-disc"} limit is respected. This.~
simple'form, Equation (4}, then provides the starting point;forf
a comparatively simple yet meaningful phenomenologY. with the
target geometry and projectile dynamics separated. For example}
a static zero-range approximation to Eg. (4) yields the iocal

energy-dependent optical pokential

FIU @& ¥ = fﬁ.-}“).fcnt (E) (5)

Even low-energy nuclear reactions have been described with
phenonenological optical potentials tailored according to Eq. -
{5), with gecmetrical aspects still déscribed:by pe{x) , while
the energy-dependent t({E} is replaced by a phenomenological
function of energy. ' . . .

The energy dependence of the microscopic optical
potential, though not a serious complication in so far as the

calculation of the elastic scattering amplitude is concerned,
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does pose formal problems when used in a pérturbative coupled- This is non-local and has a complicated interplay between the
channels description of, e.g., intermediate energy inelastic ‘potential strength (recall that ¢ is complex) and the target
.eXCitation of low lying collective states, The interr_nediaté geometry. Whereas geometrical properties and dynamical features
channel Green -functions, whicf:;fappear naturally in such : of U{E) are clearly separated, this is not so in T . The
perturbative treatments, are not easily amenable to the usual complicated coordinate space StfuCtu?e of U implies that, even
spectral-expansibn as a result of the non-orthogonality of the in a rather simple physical situatibn {as represented by Eq.
scattering s#atesm. ' ' . (6)), energy-independent.optical potentials are not amenable to
Recénfly,,attempts;have_been made?~® to derive an physically-motivated direct phenomenclogical construction.
equivalent energy—indegenaentyoptﬁcalrpotential which, when _ _  Further, while U(E) respectsthe previously mentioned
used in the Schrddinger equatiofi;: generates the same sgattering "pheripheral” and "central" (black disc) limits in a strong
wave funétion as tﬁat obtained: with Uu(E) . The idea . of an absorptian_sitnation, thgse constraints associated with-geamﬁ;y
energy-independent potential is actually not new, and a trivial and unitarity are not observed in expansions of U .
example is the effective mass.appxoximatiﬁn.invpked to treat a Since an effective procedure for microscopically
linearly energy-dependent potential. Mofe explicitiy; given an. . constructing an optical potential must provide a systematic
optical potential.of thQ,foxm:{a séecial case of Equation f5)) expansion which can be truncated at a low ordexr, the wave-

. : ) ) function-egquivalent energy-independent optical potentiél is
<Y_'I ] Ua [é):.lri?‘_)>. =.- CEffV'}XC?-l—"“} (6) ' rather unattractive as a focus for thecretical effort in many
. - o E . situations of relevance to nuclear physics.

the associated.Sch;ﬁdinée: equation . ) o L L ) Our paper is intended to be rather pedagogical.

Several recent papers have discussed the energy-independent

[_V -+ Uo_(E._i?).:]H-L(?) -_—_-E\Poc'v'J o (7) potential2 . The majority emphasizing the attractiveness of
o - ' ' T. oOur intent is to offer a somewhat different construction

may be recast (algebraically). into the iorm-' : _ procedure for U, particularly for the uniform medium, and
)  i 7 then to expand on the shortcomings of -such a potential in a
["?2-{* .-L-J;CF) ]LPb("‘i"‘) =E \Paf.._;“) {8) more systematic fashion than dqne above for the simple effective
mass example. We do this both by explicit construction of g
with the equivalent energy-independent potential .0 given by in cases of physical interest and by developing a multiple
scattering expansién. The coupled channel theory of UI(E)

could equally well be used to demonstrate our arguments, but

KFIU LTS = =L B o i ) (9)

o 1 -0 f cr) the examples drawn from multiple scattering theory, which has
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been empioyed with considerable succesa’aﬁ intermediate energies
will be.sufficient for our purposes.

In Section II, we present a simple methqd for
constructing U in the infinite medium and discuss two examples
in detail, one a phenomenclogical local oﬁtical potential with
quadratic energy dependence, the 6ther a nonlocal optical
potential appropriate for intermediate energy ‘pion scattering,

In Section IITI, a general derivation of the eneréy—independent
optical potential is presented, culminating in a recursive
expansion of T in terms of U(E). While our methods are
slightly different, the first terms in the expansion have been
discussed previously by Ma et al.G. We then go on to use this
expansion in a discussion of multiple scattering. The
difficulties with reactive content which ensue:upon truncating
.the multiple scattering expansion of U are discussed. Section

IV contains a summary of our results.

I1. ENERGY INDEPENDENT POTENTIAL #OR OPTICAL PROPAGATION IN A
UNIFORM MEDIUM

The shortcomings of an equivalent energy-independent
optical potential can be seen by constructing T for propagation
in a uniform medium (i.e., nuclear matter). The Green function

is then diagonal ‘in the initial. and final momenta

<P |1GEL 1> =(2Tf)sg($—?i)6f-p;‘]e) {10
E = kz ; 2m = 4

Translational invariance demands that scattering states are

7.

plane wéveé, with the momentum determined by the poles of the

Green function

-1 _ o '
Glpik) = kz—Pl—Ucpih) =0 (1)

Here Ulp:;k) is the usual energy-dependent complex optical
pofential {or self energy}, with the variation in mom?ntum
corresponding to nonlocality. Recall that for scatte&ing one
solves tﬁe dispersion equaticn, Eg. (11), for the in-me&ium.
momentum p*{k) with E=k2 real. The Green function can then

be re-written as

*
Gepik) = P*(lzs)z(-f)P’ ' (12)

- | -1
_ 2 ‘ (" :
x“‘”“{"*apz Uq»,g)} R =) o0
. P=p (k) P=Pitk): :

'The in-medium wave number is complex, with the imaginary part

giving the optical damping of the wave function. (Néte that
the dispersion equation ﬁay have multiple eigenmode éolutiﬁﬁs-
in general. For simplicity, we shall keep only the optical
eigénmode, which is unambiguous for a weak enough potential
strength. See Reference 7 for a discussion of the Green
function with multiple eigenmodes). The residue at the pole
in Eg. {12) defines the effective k-massg.
The energy-independent potential U{p) is defined
to produce the same pole in p in the associated dispersion

equation




_— -4 —_— .
Gepik) = kR —P-Up) =o (14)

The potential is. defined easily as

. -z . _ '
Up)=ktp —p L (15)

where k({p} is the (complex) solution of Eq. {11} for k with
=} reelk 'This:eolution,is generally-applicable to calc@iation
of gquasiparticle lifetimes in a Leﬁﬁaﬁ represehtation:of the
Green function, not to a study of optical propagation. The

Green functlon has the form

Gpik) = X“’) = ¥(p G C(psik)

k*— kep A o (16).
— -1
fp)= {i—.aﬁ_ U(p k)} . =__( :: ) -
_ k kcp) 3 E=7Ec2,»>

The: Green functlons G- and. [ have the same. pole, since
(p*(k)) = kz ; but,dlffer by’ the effectlve E—mass8 evaluated
at the gquasiparticle pole. This corresponds to the fact that
the eneegy dependent potential Ulp;k)} and effective energy-
independent potential . T(p) are not Fully éff;_sheil equivalent.
We wish to use the'fetmal solution for U(p) , Eg.
{13}, to study cases of'physical'relevance. Thensﬁgﬂe effective

mass result discussed in the introduction is, of course,

recovered trivially

.9.

c)

P = < k_f
_ Pa . (18)
P o= I~ C f

= cp 2
Udp> el yor-ya P

(
2
e

=l

In the infinite medium, p2 plays the role of -VZ . so that

Egs. (18) and.(9)-ag;ee. A less trivial example is presented
by a potential With gquadratic energy dependence. Bauer etal.9
have suggested this form for nucleon.seattering with E £ 200 MeV,
together with a theoretical justificetion related to the
effective mass. Ma et al.® state that the quadratic temnm,
since it is weak, should not modify U very much. This statement
should be viewed with caution. To show this simply, we take a

local potential

2
Utpsrd =C",E° +c1__E__-|-_czE:-/Ea » E=k (19)
where the C1 are dimensionless strength parameters end EO is
an'epergy'scale parameter., We obtain
ZC
(20)
L 2
- F-
C C‘,] C, 2Cs 2
_ 1+ 14 ]
Cz-n l-—C‘I [ ' ey c(,_c)z P
N .
C, p 2 i
—2 I __ 4 O (21)
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Clearly, there is a very complicated interplay in
U, Bg. (20}, among the various terms in U , Eg. (19). in

particular, the energy independent term CO is not isolated

as a separate term in U . Even though C2 .may be small, it
may produce a large effect in il by "interference" with a
c,C
270

large energy-independent potential; fé; example, the’ 1_01
coefficient in the local piece of U may.be significant
{compared to. one} even for a small Cz. Of course, the quadratic
term in U  becomes: large at sufficilently high energy for small
but finite C,, so that one may ﬁot be surprised that T ,
which must repreoduce. the wavefunction adsgociated with U at

all energies, is sfrongly influenced by Cz. One may attempt
to circumvent this problem by introduqing arbitrary high energy
cut off in the original optical potential. However, even in
cases where this is allowed by the physics, the fact remains
that individual contributions té U(E) , which generally have
well defined pﬁysical cOntenf, are completely entangled in U ;
this includes any energy-independent contribution to U{E} .
Thus, one has no real guidance for microscopic theory for direct
phenomenological construction of U .

Another instructive exémple may be drawn from
multiple scattéring theory. We take a first-order enerqy;
dependent optical potential (as in Eguation (5)) with & resonant
~dominated projectile-nucleon transition matrix modeled after

that appropriate for intermediate energy pion scattering

.U( ik):.h" M (22)
F ?\R k- [?z-i-tkz/uf' T:;Pz :

Here, kO corresponds to the resonant 7#N ¢.m. momentum and T

11,

1

to the resonance width, We take k, = 1.25 fm | , I = .55 -,

pion mass w7 fm) , and resonance mass M, = 6.2 fri !

{(note that this is not a particularly narrow resonance). The

k2 dependence of the width has been taken for gonvenience. The- -
p2 term in the denaminator corresponds to inte:mediate.pxqpﬂﬁﬂjsm
of the resonance and produces a corresponding nonlocality in -

the energy-dependent potential:

— 3 s'
GV TS =t = (2B T sk
(aw)?
'k e'LPS S (23)
7T A AP#- 2 ST

2 M 2 2 . kz '] . .
- F s (24}
Po = [h-—k,-f-t—-—-z/uf'
M k - _

[
Uaing Equation (15), the exact wavefunction-equivalenﬁ energy-— .

independent potential is, in:mdmentum representation,

4?]

(Pz ,_)z ([v &) e

U(p) =L (pa )[i+

2 M 2
Q= ket P 26
i-i'iju-Fu/Ei'.
b o= _kedlAe O en

Lo+l kS

The coordinate space representation U{s) is shown in Figure 1

for several values of AR. This parameter, which determines
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the strength:of: -U{p,k} ,  corresponds to the mean free path at
resonancevfer;pion propagation in nuclear matter. For normal
nuclear: matter: den51ty, the mean. free path is l = 1-fm. We
see from: Flgure 1:that: the: range-of: the nonlocality depends
stronglyron.-the: strength- of the optical: potential., - This follows
fromthe: fact: that: the.exact T ; Equation..(25), is nonlinear
in the strength parameter &. Furthermore, note that the
imaginary part of Uls) ghanges sign. These results point out
the difficeltiES*with phenomeeological forms for W: even with
a rather simbie,pictuxe,_ ﬁ,-bes;a_gompiicated_structure not
obviously related to the. underlylng pPhysics.:

' This. dlfflculty is- re;nforced by examining the
M,>= limit of the model problem.l The energyudependent
potential Uk(§) is local: 1n thlS limit; see_Equatlons (23)
and (24}. Surpris;ng;y; the?egerggrindepehdent_potential U(s)
becomes even more nonlocal, as_showh in- Eigure 1. . In fact,

this peculiar behavior can be seen in the lowest order term of

U:
—(L - ; : . ) :
Utp =Uppr= -2 (28)
T R -
U*csy = k"ﬂp/ A._ﬁ""fl-:—-—_e — (29)
: 1 AT 4-1rs '
A kZ
: =
2 k.
®° = — o (30)
= T = (30)
(e

__ek'z{ 1-ipl /RS v QU Y —2i (Ul i)
Mope SLLa@ul/Ez)t My L4 + /K r)®

H_‘+_...:.-

.13,

As MA increases, © decreases, corresponding to greater non-
locality. The energy—inde@endent optical potential U has a
hopelessly complicated, non-intuitive structure.

| | Finally, we comment’ on the noniocality-etructure
for the case of repid'eeergj aependenge'in' U(E), Ehis_siiﬁatiqn

occurs in our simple.ﬁedelfin;the*iimit T-¥0:. Ag;already

- noted, the nonlocality  in the. energy—dependent optlcal potential

is directly associated Wlth the underlying physics. For Equations
(22) and (23), the_nonloca;ity.range is associated with the
propagation disfance of.the resonance dk=_2k0/MAF . fbr_emmqﬂe,
in the limit .mA-+°° . 1"+'0 with a fixed, we still have

U (s) _»-» e "k/‘i

(31}

i.e.,'the nenloqaliiy_is.eti;l finite and characterized by the .
rescnance decay 1en§th. on the other. hand the rapid energy
dependence in U(p,k) generates rapid momentum dependences in
U, and thus a long-range nonlocallty not associated with the

underlylng reactlon dynamlcs. FQ; example,'we obtain

Ufi)(s) ~ e .S(Aff'/_zka_) =e I(M*):

(32)

in the 1iﬁit_described ebove, meaning that the nonlocality
becomes infinite.in'range;" These conclusions -are clearly
1ndependent of the spe01f1c model considered here. We note
that, even with the-lessastrlngent requirement of phase shift:
equivalence, the energy—lndependent potential may develop

similar pathologlcal momentum dependence10
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ITI. ENERGY INDEPENDENT POTENTIAL FOR FINITE SYSTEMS AND THE
MULTIPLE SCATTERING EXPANSION ‘

We start this chapter with a formal derivation of
the wavefunction equivalent energy independent optical potential,
appropriate for scattering from a £inite system. Many of the

3_6, although our discussion differs

results here are not new
somewhat from those previously given; in particular, the symuetry
properties of T for scattering with spin are discussed. We
present a recursive expansion for T in terms of U{E) and
then apply this to a discussion of the multipie scattering
expansion, demonstrating again the shortcomings of U as a -
vehicle for theoretical studies of-hadroh—nucleus scattering,

The energy independent potential equivalent to U(E)

for incoming scattering states is defined by the relation

-—J ‘jft“ U “+) (33)

To solve for ﬁ+ , we introduce the dual states <$i+)|
q

defined such that

“" I’:E > =(2x) §CF-k) - (34)

A formal expression for 5+ follows directly, namely

ja’* U ey |95 >< TS | s

@

We shall assume that there aré no bound states {see Reference 6

for a discussion of U with presence of bound states}, so0

.15,

E+ is unigue by construction. We stress that the dual states

<$“J| are not identical with the dval states normally employed

11. In these theories,

in low energy nuclear reaction theories
the optical potential is assumed, in conflict with Equation (1),
to be'energy indepenendet albeit complex. With this assumption,
the dual states are given simply by the solution of the Schridinger
equation with U replaced by vt and with incoming boundary

conditions. With an energy-dependent potential, the dual state

can be obtained only with sclution of an integral equaticn,

which we now derive. The scattering parts of Iw{+) and
$(+)| are defined by

—t ) — 3 -y ) =l -
<PlEE,_-i->=(-ZIF)£CF—k)-k ¢E; C(p) (36)

Y. 3 . o,
VB> =am S¢p-7) - 4’; Cpo (37)
The orthogonality relation, Equation (34}, then gives

~ = -
4’7: (k)= ifﬁcz) @) #—»_,( ,¢i,"?,,, Lo L (38

Since the scattering part of the incoming scattering wave-—

function is given by

g

+.F) =<F LG, 0> Teg™ k>
LFPlweEl ) 1> (39)

i

we have the formal solution of Equation (38}
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Lo ) . K'Y
45 Ck)i --<2 l _é_ .+K L EIEED Ik> : {40}
¥ I+W(ETP)> _
i .
Here, 7?) . is the momentum operator acting to the right. This
- '
has a clear meaning in a power series expansion

eU’

&

> %E}...(g,}w(&' )[k)

I“"E)ff’> | (41)
(H‘-‘JCE HE> #---

From Equation (35), we have the'matrixfelements of ﬁ+:

P10, 18> =<FITep B f‘”’ kP Tee | k> cp_. ) w2

Unfortunately, solution of the integral equation of $(+),
Equation (38), is generally rather difficult, partly becauée of
the peculiar intertwining of energy and momentum arguments seen
in the expansion, Eguation {41). We shall return to a "Born"
expansion of ﬁ+ below. _

We have been careful to state that U_ is the
equivalent potential only for incoming scattering state. In
genéra;; a different potential must be defined for outgeoing

<3 NU. = < 1uey (43)

The development given above for §+ can be repeated for ﬁ; B

with the result

<F| U—I€>*={<§: I U_'_ ‘F)}’ ol (44)

17,

The expression on the right hand side means that UI(E) should
be replaced by ut(E) everywhere on the right hand side of
Equation (42}, i.e., in T(E) and in $(+}. For scattering
of spin-zero particles, the symmetry <§§U(E)[§> = <§[U(E)[§> ;
together with Equation (44), implies that <B|U_[&> = <$|ﬁ+[§> .
However, this does not apply in general. For example, the
optical potential for scattering spin-r% and spin-zero
particles can be written as

Glu@p>=V. (434 €) +V(oF, t“'; E):.%xp (45)

The relation given by Equation (44) can be seen already in the
first order contribution to ﬁ+ in an expansion in powers of

U(E):

- ""-’-) ~ 3 —) 1 2 —ha . A A
<l U,f |¢>=\4(1,p’iﬁ-p;€i) +\£r¢,p,rg-p;e;;-z Fxq.0
(46)
g —U)

EVOT B> =V, QW5 6) VUSR58 20

This relationship between central and spin-orbit terms in ﬁ+

persists to all orders, as implied by Eguation (44}, although
it must be stressed that the central (spin-orbit). term in the
full U will include contributions from vV, (Vg) in higher
order. We coﬁclude that ﬁ+ r constructed form Equation (35),
is unique6 (in the absence of bound states) but not symmetric.
This is in contrast with phase—shift—equivalent energy-independent:
potential, which are symmetric but non-unigque.

Our thrust will now be to understand the relation-

ship of T to a microscopic theory of the optical potential.

We shall use the multiple scattering theory, which is highly
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devéloped and quite successful. For this purpose, and to show
more directly the relationship of U and U(E), it is useful
to expand Equations l42), (38) and (39} and T(E} in

of U{(E) . We cobtain a recursive expression

G, 18>=[2E, 12, 4,335 WEP1E> W

ST n=g.

Aa[ji’) = 4 . _ 48)

A A
’y AH-I%EW‘%} -4, (7"’.@;)U(E}'j , 50 (49)

.E;-Eg.’

The operators An , for n>0 , p;ay the role of "fluctuation”
operators as. they éxplicitly vanish when the optical potential
is energy independent. The first three terms (n£2)} in this
éxpansion have been explicitly written déwn already by Ma et
21.% . Note that there is no singularity in 4.tq,q") since
the mumerator in Bquation (49) vanishes when g=g' .

The success of the multiple scattering theory rests
upon its prevision of a rapidly convergent expansion of the
optical potential. Successive terms in the expansion correspond
to direct reaction processes involving more and more target
nucleocns. For algebraic simplicity, we work with the optical
potential in ﬁhe fixed-scatterer, large~A limit (the full
optical potential, without approximation, could equally well be
used). The first two terms in an expansion in An&Lq‘) of the

projectile-nucleon t-matrix are then12

-19.

FluEE> = APCFIHLF 5 €)

A a’/ ‘2, al, - = 23
Wy Eei e tdde

(2w)? ‘ c *-Eii --(50)
g sf;';?,e;};'; e_iagt¢czg£' iy e |
where the nuclear two~boay correlatiop function is definea N
through the two-body density p(zl és: o
:C’a’(ﬁfé = f(czi",jy — e pe)

(52)
. - (z).-t - S
fJ:f LR, 5 LX)

The term in the expansion of U(E) have well defined physical
content: the first term corresponds to quasifree nucleon
knockout; the second term includes a correction for projectile
scattering from a correlated paif.l It is the dominance of the
intermediate energy hadron-nucleon reaction cross section by
quasifree scattering that dictates an éxpansion of the o?tical
poténtial in terms of +t{(E}. In the absence of more camplicated
meéhanisms, such as those associated with correlations, the
expansion will naturally truncate. The unitarity constraints
respected by the first order term lead to reasonable results even
in the strong absorption limit, where multinuclecn knockout
becomes impertant.

' In contrast, the expansion of U has none of these

attractive features. Using Egquations (47)-(52), we have the
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expansicn through second order

—_

LFIULIF> =AFG-3) T(Pg:8)

3 ‘ﬁ!{ 7503 tepi€)y

+A s F P ‘I:? 1) VP 2
~f (p-3H £C1->T 4,30 E.-;,)}J

: 17(-'3",{;5;) _ (53)

7-_ I'd
5§

In the absence of correlations

€2} .

Ff (F.q )_ :_,fcﬁ.)fcf.; » : {54)

the second term in U does not vanish; clearly, similar problem
are present in higher order. A truncated U "has no interpretation
in terms of specific reaction mechanisms. It provides no
reliable guidance for phenomeﬁological cénstruction of an energy—
independent optical potential. <Conseguently, although the
microscopic construction of U is formally well-defined, the

expansion is basically meaningless.

Iv. CONCLUSIONS

We have discussed the construction and properties
of the wavefunction-eguivalent energy-independent optical
poten£1a1 T, considered recently by several authorsz-s. A
central question has been whether energy-independent potential
provide an effective approach to direct microscopic or

phenomenclogical construction, recognizing that these two concerns

.21,

are not independent. For example, the multiple scattering approach
to the optical potential, in building in specific reaction
mechanisms in a unitary way, provides a rapidly convergent scheme
and thereby guidance for an effective phenomenclogy based upon
the target geometry and elementary interaction parameters. The
equivalent energy-independent potential U does not share
these advantages. -

The multiple_scatte:ing approach, used here as an
effective example of microscopic construction of U(E) , leads _
to no systematic, reliable truncation scheme for U . Different
physical proceéses become entangled; For example, the 7
of target correlations, which would directly lead to adding a
term to the first orxder U(E) with a specific geometry (i.e.,
p2), has no special signature in U. Thus, phenomencleogical
incorporation of corrections to the basic theory, is very
difficult.

The nonlocality associated with specific physical
mechanisms in U(E} is reflected in a completely non-intuitive
way in U . We saw this in the example of the first orde: U(E)
drawn from the multiple scattering approach to intermediate
energy pion-nucleus scattering. The nonlocality is then just
the propagation or decay distance for the intermediate rescnance.
By contrast, decreasing this propagation distance actually led
to an increase in the nonlocality of U and, in the limit of
small resonance decay width with fixed propagation distance,
the nonlocality range became infinite. Since this nonlocali£y
structure is not obviously tied to the physics, with ImT
changing sign, phenomenological approaches are again basically
without guidance.

Even for cases where a phenomenological local U(E)




.22.

is éppropriate, the associated U may be uncomfortably compli-
cated. For exaﬁple; one might hope that for a U(E} with
separate energy-independent and energy-dependent term, the
former used remain isolated iﬁ 7. l This is not the case, as
shown by the éxample pf a local U{(E) with up to gquadratic
energy dependence. The energy-independent potential is noﬁlocal
and has "interferenqes" between the energy-independent and
energy-dependent terms of U(E) . Since ope'may expect fhat
the different energy—depehdences in U(E) arise from differerit
physical processes, this is again an example of how the physics
get mixed up in going to. T .

Finally, we discussed the symmétry of U . 1In
general, different potential are needed for-incoming‘anq
outgoing scattering states.

In conclusion, while the concept of an energy-
independent optical potential may be of use in limited'contexts
(such as when U{E) has a very weak energy depéndencé), U has
serious shortcomings in not reflecting the underiying physics
ﬁnderstandably. birect microscopic or phenomenological
construction of U is not generally appropriate, so that one
is left with the option of first constructing U(E) and then
U, for example, through the recursive expansion of Equation
(49). 1In practice, this approach appears to offer considerably

more effort for little,
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FIGURE CAPTION

FIG. 1 - The imaginary part of the energy—-independent optical
potential ﬁ'(s) (Eq. (44)) plotted vs. s for several
values of lR {in fm}. The dashed lines correspond
to negative values of Im ﬁ:. The dash-dot line cor-

responds to m, = with Ap = 1 fm.
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