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Introduction

The predominant feature of sub-barrier heavy-icn

‘elastic scattering is the point Coulomb repulsion. However it

is quite well-known that deviations from this pure Rutherford
scattering does arise as a conseguence of Coulomb excitation

6f nuclear eollective states. These excitation prddéésés are
bf a long-range nature and thus occur at distances equal to or
larger than the Coulomb distance of closest approach;

) 1
Recent measurements !

of angular distributions of
elastically scattered light heavy projectiles from deformed
target-nuclei, have clearly exhibited these deviations in the

form of a long-range abscorption arising from the strong

Coulomb excitation of low-lying collective states.

Aside from these deviations, other, élbeit
smaller, ones occur és a result of several factors. The
excitations of the high~lying coliective giant mﬁltipole
resonances, atomic screening,.relativistic cor:éctions and

. . s . . L2
vaccum polarization, are usually cited in this connection ).

Owing to the smallness of these latter deviations
(v1.0%) thelr clear identification is a challenge to

3) have presented

experimentalists. Recently, Lynch et al.
a clear evidence of these effects in the sub-barrier elastic
scattering of closed-shell heavy-ion- systems, where Coulomb

excitations of low-lying collective ‘states are:negligible,

Prior to these measurements several theorists have
calculated numerically the deviationé arising from the excitation

of the giant dipole resonance, relativistic effects, as well as




3.

4
atomic screening. Baur et al. )

have derived, within first-order
classical perturbation theory, closed expressions for these

deviations.

The purpose of the present paper is to extend
the calculation of Ref. 4} to include the Coulomb excitation of
giant quadrupole and octupole resonances as well as the
relativistic corrections. Further, a careful verification of
the validity of the classical calculation is provided through

comparison with coupled channels calculations.

The paper is organized as follows. In Section II
a detailed discussion of the adiabatic polarization potential
arising from the Coulomb couplings to giant multipele resonances
iz given. 1In Section III the relativistic corrections are
carefully analyzed. Closed form expressions for the corfesponding
deviations from the point Coulomb (Rutherford) scattering, are
presented in Section IV. Comparison with C.C. calculations, and
the resulting trivially eéuivalent local pelarization potentials,
is then given.in Section V. Concluaing remarks and discussion

are the subject of Section VI.

A brief summary account of some of our results

has been presented previcusly {Ref. 3).

II. Adigbatic Giant Multipole Polarization Potentials

The amplitude for the excitation of a vibrational
state of multipolarity i, and excitation energy AEA, using the

first-order time-dependent theory of Coulomb excitation, is

given by

ABE /n W

o) = f<n1 VCree) l°>€

The interaction v{r(t)) has a matrix element <n}V(r)|0>

propertional to[r(t”uk_l. We therefore have for ak(m)
oo .
A ooy = O éxP[LAEAtA/ﬁLj » (2)
A +
9 L ren)

where C is a constant. The largest contribution to the integral
in Eg. (2) comes from the vicinity of the c¢lassical turning
. - ‘ . . 1.
point, rtp = r{0). Thus by expanding r (t}= Tip + == Fep
and keeping lowest order terms in t, one obtains the simple

t2,

estimate

Ay(eo) = ¢ Z— [2Vee  oxpl- [ 2Vep 0 (3)
A r’\*l G, b O,

where ¥

tp is the radial acceleration at the classical turning

peint and wy = AEA/ﬁ. Introducing the average collision time

‘ , h finall
rcg“ T‘t%’/.r'l:f we have finally

2
ol co) _@__x_ 2 o / wa”!.‘cp”] (4a)
l’

= T fr {4b)
AT ;\f. e Aﬂ E

T, b

where 7 is the Sommerfeld parameter, 'z =22 e_z/‘hv , v
o : [ T

being the asymptotic relative velocity.
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For heavy ion scattering at low energies, n»>1,
AE
A

EC.PL

therefore one expects u = ¥2 n  to be much

ATcoll

larger than unity for the excitation of low-lying collective

GR
A

accordingly very little amount of flux is lost from the

states (giant resonances. This indicates that a- (») << 1
elastic channel. ©On the other hand, ax{m): 1l for the
excitation of low-lying collective states, which reflects the

need to incorporate into the elastic channel optical potential

the resulting absorptive long-range component ,

As a consequence of the smallness of afR(m) at
sub~barrier energies, one expects that the pelarization
potentials obtained from e.g. coupled channels calculation,
te be predominantly real. This is borne out by actual C.C.

calculations (see discussion to follow).

The ‘adiabatic polarization potential of multi-
polarity A was calculated 26 years ago by Alder et al.sj

using second-order perturbation theory, The result is

A
v() R 1 B(EA,oqm)J/rsz
ad-paf. P (2;\1_,\-'-‘- E —E (5}
o h 4
n¥e
We can estimate the strength of q;;éo
energy-weighted sum rule. This is accomplished by writing

1(r) by the use of the

6.
B(Erjoon) BLEA o) (B~ Ey)
%9— Eh. (Ei_’Eh)z

N nte

QU S BEx; E- E
(AEA)Z 0->n)( )

SCEXN)

@ EA)Z‘

it
|

(6)

where we have introduced the familiar notation for the EW sum

rule 7}

S (EA) :Z B(EA;0->n) (€.-E,) e
n

and denoted the excitation émnergy of the A-pole giant resonance
by AEK'
Bohr and Mottelson 7 derived a classical model-—

independent expression for S{EX), which we write below

S(EL) = 4.8 NAZ [ez‘ﬁ: Mev ]

2 z ZA—2
Steay = G b 2 R) R ma]

A2 2




where N is the neutron number, m is the maSs_of the nucleqn
and R is. the radius of”thg_nﬁcleus}f

In terms of §(EA) and 8E, our adiabatic |
polarization potential, Eg. (5), may now be wrltten as,
after allow1ng fcr the mutual exc1tatlon of both target (T)

and projectile (p)

2
v(?«) ) = _ kme? [2,,31'.(&',\) .. = SP(EA)]
wre @ U (aEmF T ey
. TR [Me] (9)
Clearly the above expression fox V(A) l.(r) should be

ad.po
used in the discussion of heavYQion elastic scattering at

sub-barrier energies. At center-~of-mass energies above the
barfier the above form should be considered. valid for
r > Rc , where Rc is the radius of the charge distribution.
At separation distances smaller than R.s the form of

v;g)pol (r} becomes

o) A M2 2
2A+3 (v
\étcl-pa!. "‘( .,_z) dd: poﬁ A+l %c) ] (o)

v )

where ad pol.

(Rc) is given by Eg. (9) .

In our dlscu551on to follow we con31der sub-barrier

elastic scatterlng only and therefore Eq. {(9) suffices. To get

a feeling about the magnitude of the effect, we give below general

expressions for the isovector g-“nt dipole (A=1l, T=1) resonance

component and the isoscalar giant guadrupole resonance

(A=2, T=0) component of vad.pol.(r} 8)

) S3T Np 2 frt
Vad bo!(r} = —&.F Xl0 A'/3+z H%]z T/r [Mev].

{11)

{2 T=o

Vad.poﬁ (r)= —o- ozo&(A % /-\ )z /y-é [ Mey]

The above expressions were obtained by inserting the
expressions for S(EA), Eg. (8), intec Bg. (9) and using for
the radius parameter (R=r0 A1/3 Im), the election scattering
value r0=l.2 fm. For the excitation energies AEA=1 and

) -1 -1/3
AEA—Z ; we have used the empirical values 80,04 /3 MeV and 60.0A /

MeV,
respectively. For nuclei with masses A<40, the expression of

AEA—l given above is not valid and one should instead use the

following
. G4-65 I¥'4
ABs L ® T~ s Me] =

which follows reasonabkly well the systematics of the giant
dipole resonance energies of light nuclei (A < 40}

Finally, one may easily add the contribution of

(23

ad.pol.(r) of

the isovector giant guadrupole rescnance to V
Eg. (1lb), by recognizing that *he excitation energy of the

{,=2, T=1) resonance is almost twice that of the isoscalar

- rescance, thus one obtains (see Eg. {9))



tz) T=1

. (R T=0o
dd-?ol. (N =+

1 oy (13)

T Vad pot.

Therefore the added contributions of the A=2, T=0 and A=2

T=1 resonances bhecome

@ /3 l)z 2_2
V) == — _5_. o020 § .
Vadpoi- % -0z BJMPfﬂT )ZPET /r (14)
[Mev]
There has been some recent experimental discussion concerning

the isoscalar giant octupole resonanceg).

The excitation
energy seems to be roughly 150 A‘l/a MeV. For the purpose of
completeness, we give below the polarization potential

arising from the coupling to the giant 3~ resonance. It is

(3)

-3 Z_2 g
= - Y% [M
\/dcf.r_bof-{” = -3.56x10(A_+A, )zP"zT/ [Mev] (15

Potentials of higher multipolarities, may also be easily
evaluated from our general expression Eg, (9). However these
are of a lesser importance, as the strength of the coupling
goes down with i.

The giant multipole polarization potentials for
*=l, 2 and 3 have been calculated for the systems 'fo 4+ 2%%pp
and 2°%pb + 29%pp at E.y=78 MeV and 567 MeV, corresponding
approximétely to their respective Coulomb barrier heights.

The results are shown in figure (1), Equations (10}, (1L),

_region where, again, V

10.

(L2) and (13) have been used for the purpose. For comparison,

we also show in figure {1} the ion-ion nuclear interaction

constructed form the Christensen—WintherlO’, empirical

- R1 R r -R1-R» .
fprmula, Vn(r] = 50 Ri+E, exp[} a, ] r with
R, = 1.233 2% = 0.978 a7/ [fm] and a_ = 0.63 £m.
1 1 1 v

. _ (A)
- It is c¢lear from the figure that V(r) becomes

moré important than Vn(r) at distances r > 17 fm. This leads
to the conclusion that any unambiguous "observation" of the
physical effects generated by V{i} in the elastic scattering
of heavy ions is possible only with energies that correspond
to distances of closest approach larger than 17 fm. This
seems to be the case studied by Lynch et al.3). Furthermore
inelaétic procesies popuiating discrete states, would be
sensitive to Vér; » through the form factor, in the samne
(A)>Vh- It would be of interest to
investigate further this last point.

Before proceeding to use these potentials we
would like to investigate the guantum mechanical de?ivaticn
of the adiabatic real potenﬁial to see how quantum mechanical
calculations might exhibit the energy and angular momentum
independence in the potentials (in contrast to pronocunced
enerdy and angular momentum dependence in the nonadiabatic
potentials representing real flux loss}).

The general form for the nonlocal potential

exactly representing the effect of Coulomb excitation on

the elastic channel (ignoring reorientation} may be written




1i.

for a given initial orbital angular momentum g )

T Fa 2
Ucr,ty =28 AT o2prend S Uonolod -
1 e (antl)y”

5" £

4 4 . '
yAIrL gl Arl ?f"h "'<’Hl,(kp,)‘_">) {16)

where FE,(kz,r<}, HR,(kz,r>) are regular and outgoing Coulomb
wave functions at the monentum ks of the excited state. This

expression may be written equivalently

2 z
Uiu,r’) = —:{_fiz (2§+,)zez Banyt Y {foholso>
1] i’

(2]
. /
. i 4 ifdk F’;,U:.-,Y) ?:\,kJV) an
N Ry~ R™+1E

o

Now if the potential is weak in strength its lowest order

effect in Born approximation is a source plr)

SIS (18)

n
-
.
-
=
-
R
T

E 2 A

where k, is the ground state momentum. The integral over r'

is then

bos ' N e i
ar E‘,":ﬁ,r P Frik v’ (19)
< X

12.

and we note that I(k) is small if k=k, and it makes its main
contribution when k=k,. Thus we ignore the principal part
of the integral over k, factor out the denominator by setting

k=k;y;, and obtain

, 2
Ular,r’) = n’f}.ﬂ)’*zPCz Beent S'%ozolros” .
1 L ? = vy 3
’ TAH A gj--E jck 'Zf‘k’v} EE;‘ &7 (20)
e o

Asymptotically, ¥, becomes a sine function and so the integral

Z
over k is equal to (w/2)8{r-r’") 12) and we can perform the
sum over &' to yield
2 z
Ucrrly = HB_ u® & BEOT 4 ¢ o (21)

@ae PESE, yan

which is equivalent to the local potential (Eg. 5).

It should be clear that what we ﬁave calculated
above, Eq. (21) is the contribution to the potential Ug(r,r')
arising from the principal part of the Coulomb Green's
function. This part is completely dominant over the
contribution arising from the delta function (imaginary) part
of the Coulomb Green's function, when the adiabaticity parameter,
£ =, -n, >> 1. Therefore, one may estimate the non adiazbhatic
contribution to the giant resonance polarization potentials by

simply calculating the delta function contribution,

f;',)i.'f;.'f". = AR E atmoza T

, V-
:{,Lo}.o;_l_o}» -
R Y
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LA 1 _
——-"'-YA-P' Wi E}th") E‘Chhr’) (22)

The trivially eguivalent local potential is giwven by
AU trr') = =Mi bw etpeEnt
L KT avy- a> .
B -
L7 VRSP TR WLy
2 Rtkprat re, <A
where a02 is the, symmetrized, half the distance of

(23)

closest approach for head~on collision and I;,i ”2'”0) is
the Coulomb excitation radial matrix element. Tgis matrix
element approaches the classical orbital integral Iku(e,g) 2),
HERL-2T, in the limit 'nu n, >> 1, which is certainly attained

at subbarrier energies. In the limit -5 >> 1,
sin 8/2

Iku(e,g) may be approximated by the expressianz)

aw
T B, = - ,i I .
A PoF P& (A-p+9) -3 (aien + %))
— -1 Atpmrd
. E(A Moty (L) 2 (24)

which ciearly shows that in the back-angle region Ilu is very

small, thus rendering &Uék}(r) insignificant.

Our expression for AUéA)(r) ’ Bg. (22), is
Fg'(khjr}

Fz(k,r}

not very useful, as it inveclves the ratio

However the effect of AU on the wave function may be

estimated easily to be

14.

. ' 2

A ~ _2Mt 4ar CZB(EA)T ZI A £-' < I?‘{ (25)
Y kt= G+ a2 ool °>[1’£:1°'11")]

3g

which goes approximately as e at © = 189°

ITI. Effects of Relativity

We consider Coulomb elastic scattering of a
spin zero projectile on a spin zero target. A classical

Hamiltonian may be written down which contains relativistic
1

MC?
takes the following form in the center of mass system

effects to first order in This Darwin Hamiltonian

Z - . 2 4
H - P (M:“'mz} 2'1%1.3 . P =:" 1 o4 ~)
2, T T yer Ve e
r
ZZ,e” ( P+ Pr ) (26)
amm, cz r

The first two terms on the right hand side are the usual non
relativistic forms. The third term arises from the momentum
correction of special relativity. “The fourth term comes
from the magnetic interaction arising from the motion of a

finite mass target.
To evaluate the effect of these last two terms
we begin by rewriting the radial momentum P

2
1 <

27)
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where L is the orbital angular momentum of the scattering
system. Furthermore, only in these correctién terms we make
use of the zeroth order expression for p?

oam owm, Cmmer\ :
= E — Zi==e .
P (m+m)( iTs. ) (28}

where E is the assymptotic center of mass kKinetic energy.

If one makes these substitutions and collects

terms the Hamiltonian beccomes

Z 2
H = Pmamy . (5 4wy — v, m, ) >
;Lmtmz R'Cm‘,\,mz)m.mlaz
Zz
P EE (1, (et ey £
T (W +m, ) mm, C2

z 2 2 2 (29)
(o 4+ WMy, 3 mg ) (%,%ze_)
Am, +my) wmywm, c?
Z
2
'Zl2ze L_.
2z e
2m,mzc T
The effects cof the last two terms (in 12 and
2 : r
L } will be calculated by classical perturbation theory
3
r

in Section 1V,

16.

iV. Evaluation of the cross-section

In this section, we derive closed expressions
for the cross section of heavy ion elastic scattering in
the combined Coulomb plus giant multipole polarization
potentials and "relativistic" pontential discussed in Section
ITI. Since the Sommerfeld parameter of the HI system at
sub-barrier energies is quite large, we are allowed toc use
clagsical scattering theory. The exact form of the criterion
for the applicability of classical description of scattering

was considered by BohrlB) and is given by

‘ aa’(h)l << ecb) ’ {30}

where 4 is the de Broglie wave length of relative motion,
and O(b) is the classical deflection function. Thus as
long as the deflection function does not exhibit rapid
variation with the impact parameter,_b, classical mechanics

is adeguate. In our case B(b) is different from the Ruther-
ford deflection function 6,(b) = 2 tan ! T, a slowly

kb
varing function of b, by a very small deviation which, as

we show below, is also slowly varying with b. Accordingly

we are quite justified in using classical scattering theory

dg
an -

polarization potentials is rather small, we calculate their

to calculate Further, since the effect of the

effect using first order classical perturbation theory.

Namely, writing for the deflection function

Brby = O (k) + A ™0 NEEY



AG(A) is given byl4) - .
obtaining,
) L2 1 % 2 V(M (41 () -
AR — L. jy (v Jcp] Y cos
- 1 i — . 2
E b [b ad . pof. Q0 =- 2 -———jfﬂ— “wI5P iz h Aln b
& . ‘QEq‘l’ 4";"1.‘¢ e
o
where ¢U is defined by
+ 15 dinch, cosd, & i b
- HPo COLF, — 2 cosgh An J (35}
¢ = E- & (32) ° ° ®
Th iabl le ¢, which is depicted in Fig. (2) Ag™? v c;s ' L
e wvaria. e angie s WNlC is epilcte in 1g. . C5d- - 2
0 —'—%z%-:, — [—3!5@-}-4—&:?&%4&
defines the trajectory eguation for Coulomb scattering L a Al 3 °
1 .. 4 CO? _ T d — .
= [c—osef-" c:e—aqu 1207%74&?(: +# 348 wﬁwcﬁ
The classical cross—sectlon,
- 3
do- k db — ale wﬁmﬁ-f-smﬁ/ﬁhgﬁg]
=17 Anmg | de : ‘ (36)
attains the following form when AB(K) is included to
first order (3) :
€3) \/ x
[
Ao = . E" 3 %: [—:50!5‘4> +a7Fi0 46/.:.'»?5
OE o
48 2 e s
— /51320 qé, Aln'ds 4+ 2240 ﬁmﬁ
) ey
3 1d 33 - .3
'i'-z-Aﬁ Cﬂt-%- —2-3; AB ] £33) +150/5‘/uw7§a94¢; — 17RO codp Al
o
at 0 =7, ¢U = 0 and, pa M o 0. Therefore  the value 3 #
L) P Alh — dery
of the cross section at © =1 is +464s ?fi, ‘}‘z go m‘?ﬁ é J {37)
As shown in figure {3), the three angular deviations have similar
(A} ' C
cl!.\'-{“}_io;%’nh (1) [i + d_ A8 (x ] (34) behavior, all peaking at an intermediate angle. Further they
° ) attain zeroc value at ¢,=0 and n/2 which correspond o 6=0 and
We now apply our formulae given above for A = 1, 2 and 3, T, respectively, see Eg. (32).

When inserted in Egq. (33) for the cross—section,

Bgs. (35}, (36) and (37), give the following expressions
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) 3
cld"u') _ 4 Frut. {i—- A Lol ‘ﬁ.[ 3 (lflémz‘#o
da T 4n 2Ea? amTd L 2

+ 3'3'""?3)“"% (29 + q-écmzeﬁ)mﬁfmﬁ]} (38)

(2) (z)
d _ da‘auﬂ. {4_ N

2 2E ab 4»"’4» [('_”i_‘“‘"’ —Fetng) -

. (——3:; $ +4 20 g&amlf'qba =120 v ,4;»"‘%

— 25 4-94750,4.4.“.9%’ —;/owqﬁéﬁhgk

+3ced1544»~gcf3)+ (40 & 4im 4, codh

_._[;.goq’:’/l{:hg?'?cadé — St o 44;»19%

o

. 4
+96041—p,,9%; - Abw 4%)]} {39)

and

(3}
4 _ iﬂ;&«ﬁ_{i Mo [%.,. Lot ]
dn 80E af ’*75 2 °

. G.f;p/s /r,zj + 27720 é /uf?s — 15/ 75/:;»4;4

+ 2340 4 /Lm ¢ ¥ fgo»’ScpA;& .4;;.;’ /;?;/oaasflmnf

+%4<J’co.ré4mé — 0 o1 g e .73) +

# L (55410 corfaing ~éa¢ga}fmsg4¢},f.;§

‘ c '
.,l-/.?{‘#Détm;éM?f-—;;p-yo Amzjf -+

: . €
o 7§60 At % ~26208 4in % 3 £t0 A;“g%ﬂf

(40}

20.
We write the percentage deviation

a
Aot )E[clcr”‘) d(’_ﬁ’.uﬂ ]/4“'ﬁucu.
12

in the following form

(1
4 )
Ag ) - Vo 94D

2Ea¥

AT V& 4%, (a1)
$E af

AO__(3) — 0(3) 3f.Sc)s)
$6Ea?

(1) (2} (3)
The three universal functions g(8} , g(e}) and gl(6)

are
shown in Fig. (4}. As one clearly sees all universal functicns attain
their maximum value at 0=180°, Further they have zero contribution at
8=0 . This inplies that measurement of these effects should be made in
the backward hemisphere. We should mention that Eq. (38) for A=l1,
has been previously obtained by Baur et a1.4).

A simple measure of actM) may be
chtained by setting 0=180°, after tedious calculation we find

(1) LI )
AT T (9mTr) = 366 E Vv,
(_2" 2-2_32)‘“'

€2) s {2)
(.2, e )¢ °
2 Ea 3
AO_()(Q:‘-TF): .00 E o‘)
(@2, e2) 8

(3}

Note that vV, is intrinsically negative.

8ince the numerical factors appearing in the
expressions above vary very slowly with i, one may, to get

an corder of magnitude estimate of DU(A, r write a general

expression valid for any A

() 2A+L
AT Tpemy By
(2 / ?,_)z)&z o : (43)
_ i e



) :
. {2) . 2A+2
with V"' given b . (r) (see Bg. (9)).
o9 y ¥ V,d-po!- a
The calculation of the deviation AG{R) due

to relativistic effects is straighforward and follows the
same lines as the ones used to evaluate AG(A) above, As
we have seen in section III, there are two "polarization™

terms arising from special relativity (Eg. (29)}, namely

\/CR’») _ Mf'_nl_wl?z—-;-— 3I~\,\~(,_ [2,%2_&7-

1 - - (44)
AlMmEmImm, ez N Y
2
VCB) z =, e? L
2 =~ z (45}
2, m, 02 r

The corresponding changes in the classical deflection

function, Egs. (31}, (32) may be easily evaluated

. . -
A6(£)= W?‘-i—vu?_-{-e.m.“dz_ (2, 2,¢*) ao‘tzdke-

+ 2(mrw)ymwm, 0t E a®

'[—‘R'\'J‘M‘E“”d’o] (46)

(RY z z
Ab __Z‘rzz.e AWM, M2 o E_ o (47)
2T T amywmy e Gty LA “h]

Summing Egs. (46} and (47), we obtain the total change in

the deflection function due to relativistic effects

(R-) a = z | «
AB = '/TZ_EE‘ G—Ot‘]:'o[“‘h’t"zmz'#’o] (48)
0,
where Yy = — , is the reduced mass.

m o+ m
1 2

The effect on the Rutherford cross section then obtains

21,

. 22,
from Eg. (33)

. _ 2
.d(r(m = 0. $4 + 2E tan 2 .
———t—— TR /u C_L .

dse a2
-[T'z-c,oi'a(ﬁinﬁ-kﬁ—-ﬂ) —cssz_g.]} (49)

R
The corresponding universal angle-function g{ﬁ} defined

-through

Ac_(mz _aE 9£R) (50}

is shown in Fig. (5).

Note that in Eg. (49) there is no dependence on
Z1Zy; in the relativistic correction term; a 1l/a? has cancelied
the numerator of the potential. At 180° the angle dependent
coefficient of 2Ecm/u c®* is -2/3, and it remains negative
going to «~1/2 at 30° and to -78/8 at small angles. For an
infinite mass target p is equal to the projectile mass, and
2 Ecm/u c? is equal to vi/c?!., For a finite mass target
relaéivistic magnetic effects enter in, and their lowest order
effect in combination with the lowest order relativistic
scalar potential term is to cause the mass, u ; in Eg. (21)
to be equal to the reduced mass of the system. For the case
of spin 1/2 electron scattering a similar relativistic cor-
rection has been derived to lowest order in %,%.e?/hc (which
is inappropriate here), but it only includes the cos?8/2 term

in the sguare bracketsls).

We present in Table I the results obtained from -

Eg. {42) for several heavy-ion systems with
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E taken to be equal to the height of the Coulomb barrier

ék) are calculated

at 1.44 (Aé/3 + A%/3) fm. The strengths V
from Egs. (8) and (9). The effect on the cross section is

as large as 2% for the summed effect of dipole,.quadrupole

and octopole excitations with two heavy nuclei and about

0.6% for 180 on a heavy nucleus. Though the octopole
excitation is quite small, the guadrupcle one is not negligible,
a little less than half that of the dipole. The relativistic
effect is largest for uranium on uranium (.8%) but not much

less for any of the other cases,

3 were done

Since the experiments of Lynch et al.
at very low energies, the dipole effect (which goes as E?)
is relatively more important than the quadropole effect
{which goes as EJ) when compared to our calculation of 78 MeV
160 gn 298phL., The highest energy measured was 55.7 MeV which
corresponds to a distance of closest approach, 2.0(Aé/3+Aé/3)fm.
At this energy we calculate guadrupole contribution of Actz)
- .03% at 150°, to be added to the dipole contribution of
~.2% obtained by these authors with a vél) = ~2,24x10%[MeV fm],

slightly larger in magnitude than our Vél)

a6 (R

value., ©Our formula

for agrees with the angular curve for 50 Mev 160+208pp

3)

calculated numerically by Lynch et al., and we alsc agree with

their energy dependent calculation of the relativistic effect.

V. Comparison with Coupled Channels Calculation and TELP

To investigate the validity of our classical
calculation repcrted above we have performed several computer

calculations for the quadrupole case. We take as our test’

24 .

case the isoscalar quadrupole giant rescnance in 208Ph excited
by 78 MeV (cm) !8C. The sum rule gives us B{E2) of 8055 e’fm"
which with EX = 10.13 MeV corresponds to a polarization

potential of =-53035/rf® MeV.

Figure 6 shows an angular distribution of the
ratic to Rutherford cross section from cur analytical formula
Eg. 24, Alsc on the same Figure are the results of an optical
model code evaluation of the cross section with the potential
-53035/r% and alsc results of a Coulomb excitation coupled
channels calculation with ne petential but with guadrupole

coupling te the 10.13 MeV state with the above B(E2) strength.

All three calculations agree to within about a percent of the

deviation from Rutherford scattering at all angles. This

not only assures us that the Classical scattering theory
provides a very accurate cross section for the 1/r® potential,
but that the adiabatic polarization potential truly and
accurétely represents the effects of channel coupling when

used teo providea cross section calculation.

It is interesting to consider the potential
further. If one has solved a set of coupled Schroedinger
equations for a given partial wave, then cne may define a
trivially equivalent local potential to represent the effect

of the off-diagonal coupling upon the elastic channel

b 2 2,040 7
[ +¥ - 2050 - 2 ven ] =

H

X o= 2 N X o) s
}';—..* Vej £ $z TeLp xﬁ,

where X, (r) is the full solution of the coupled channels
h . i
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problem, not just the homogeneous part.

Figure 7 shows the results of computing the
VTELP for three initial orbital angular momenta in our test
case compared with the analytical 1/r® potential in the
¢rucial turning point region for each partial wave. As one
moves out from the turning point one sees the "hair" seen in

optical potentials previously calculatedll'lm

in the “sudden"
case of coupling to low lying states. An exploratory
calculation at a lower energy (64 MeV {cm)) verifies that
VTELP is also enerqy independent in the sense that the values
of VTELP always approximated the energy independent 1/r®

potential in the turning point regions.

VI. Conclusion

In this paper we have presented a detailed
discussion of the small deviations, in the sub-barrier elastic
scattering, of heavy ions, that arise from virtual giant
resonance excitation and relativistic correction. We have
found that these effects manifest themselves unambiguously at
center of mass energies corresponding to Coulomb distances of
‘closest appreoach larger than about 17 fm.

Using a perturbative classical scattering
calculation, we have assessed the importance of these
polarization potentials in the elastic scattering cross section.
We have found that it is more than sufficient to consider the
dipcle and quadrupole together with the relativistic correction

petentials in considering the 1% deviation from pure Rutherford

scattering.

26.

Our classical calculation of the giant quadrupole
polarization effect on the cross section has been compared
with exact coupled channels calculation and the agreement was
found to be excelent. The trivially equivalent local "polarization”
potentials for quadrupole case was constructed from the CC
6

calculation and was found to approximate excedingly well the r -

potential used in the paper.
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Table Caption ' ~ Figure Captions

TABLE 1 - Adiabatic polarization potentials due to giant dipole, Figure 1 - The giant multipole polarization potentials for

’ = 16 208
quadrupole and octupole excitations are tabulated. A=1,2 and 3 for the systems (a) '°0 + Pb and

208 208 —
Percentage reduction in 180° cross sections are also (b) Pb + Pb at Eem = 78.0 MeV and 56?'0 Mev,

shown for cach contribution as well as for the respectively. Alsoc shown is the Christensen-Winther

relativistic effects. Reductions are angular, potential.

ry Iy - ]
zelative only to the (sin 6/2) Rutherford dis- Figure 2 - The Coulomb scattering variables (see Eg. (32)).

tribution.

Figure 3 - The angular deviations, Ap =1 , rpt=2 and apt=3 .

plotted vs. the center of mass angles.

Figure 4 - The universal functions g(l)(e) ' g(z’(e)_ and
g(3}(e) + Eq. (41), plotted vs. the center of mass
angle.

g(R}(G) associated with

Figure 5 - The universal function
the relativistic effects, Eg. (50), plotted vs. the

center of mass angle.

Figure 6 - Cross sections as ratio to Rutherford for 78 Mev {c.m.)
180 + 2"%ph  with parameters in the text. Optical
medel and coupled channels calculations were

performed with the code CHORKlT).

Figure 7 - Comparison of trivially eguivalent potential computed

with the code CHORKlT)

for orbital aﬁgular momenta
0, 40, 80 with the analytical form. Parameters are

the same as for Figure 1 (see text).




(1) (2} (3) (R) (1) (2) (3) {R)
System Esom. Vo Vo Ve v, Ag Ag Ag Ag
(Mev) | (Mev fm*) | (Mev fm®) | (MeV £fm°) (%) (%) (%) (%)
“oar 4 26%ca | 130 | 6.24x10° |3.05x10° |9.45x10°% |8.73x 10" |0.66 | 0.24 5.26 x 10" | 0.582
wopp . 1%8%gm | 128 | 5.71x10% [2.81 x10° |8.34%10° |8.74x10"° |0.66 | 0.24 [5.37x107°| 0.583
160 + l48gm 64 | 1.08x10° |4.99x10" [1.44x10° |9.52%x107° |0.40 | 0.176 |4.76 %2077 | 0.635
1804+ 2%%pp 78 | 1.89x10° |9.45x10% |3.43%x10° |1.13x107% |0.42 | 0.168 4.84%x10"° | 0.753
zo8pp , 299pp | 557 | 1.57% 105 |1,39%107 |6.70 %107 |1.17x107% |1.192| 0.44 8.32x10"°{ 0.780
238y 4 238 683 | 2.45x 105 |2.30x107 |1.20x10% |1.23x1077 [1.30 | 0.46 B.77x107°| 0.820
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