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ABSTRACT

Heavy-ion elastic scattering is discussed as containing
two features: over all optical behavior characterized by
several physical parameters such as the size of the system,fhe
strength of the Coulomb interaction, etc;, and deviations frqm
this behaviour related directly to some aspects of the under-—
lying nuclear structure. Two examples of such deviations are
discussed in detail. The first iz the anomalous back-angle
scattering of no-nuclei. The second example is connected with

the effect of deformation.
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I. INTRODUCTION

In discussing heavy-ion elastic scatteriﬁg one usually
emphasizes at length the wave optical behaviour. Such behaviour
comes about aé a result of several gross properties of the
system. Its relatively large size, the strong absorption present
(diffractioh), strong Coulomb repulsion and nuclear attraction
(refraction, rainbow and glory} and a well-defined surface

g

region (determining the fall-off of gﬁ in the shadow region).

- These features, quite common in most heavy-ion systems, constitute

a convenient and useful "language" with which the elastic
scattering may be described and analyzed.

Nuclei clearly exhibit other features besides the
gross ones mentioned above. These other properties are more
closely related to specific nuclear structure aspects, e.g.,
deformation. Therefore one would expect several importan£
deviations from the optical behavior. Here, we.shall discuss
in detail two such deviations.

The paper is divided into two sections. The first,
section IT deals with the anomalous large~angle scattering of
na-nuclel. We shall concentrate on. direct reaction interpretation
of the anomalous behavicur and leave out completely intermediate
structure resonance explanation. In sectiqn IfT we turn to the
effect of nuclear deformation on él at not too large energies.
A convenient vehicle through which one may discuss the effect
of the coupling to low-lying collective states is leng-range

absorption, which we shall discuss in detail.
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II. ANOMALQUS BACK-ANGLE SCATTERING

A well-known case usually cited as exhibiting
deviations from pure optical behaviour is that referring to
systems behaving anomalously at back angles ({(a-scattering,

160-:-2831‘. , etc.). What one usually discovers in these systems
o}

a
Ruth
by a rather regular angular structure. Further, the excitation

is a large increase in (8) at back angles accompanied

function (n,E} at 6=m exhibits quite a conspicuous
Ruth

intermediate structure with an average width of about 1 MeV.

To put the situation into perspective we show in Fig. 1 a plot

b ' j i
Fig. 1: Cross—sections at 8=180° vs. o y. -
Dashed line is the pure Coulomb elastic °r
scattering cross-section for 1604-2883'_.

Dotted line is the cross—section obtained ar

with the E-18 potential. Full curve is

£
the experimental 180°-excitation function gﬁ'
16, 28 ®
for 0+ "°8i,  and dashed-dotted: one
-
for 160+ BGSi. . “r
at I
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do
: 3
of the experimental excitation function di (E,m) for
1604-2851 and 1604-3051._ One sees clearly that the data sit

at a mid-point between a pure Rutherford-(no nuclear structure
whatsover) and a pure strong absorption, E-18 (nuclear structure
manifested purely optically}.

Several interpretations have been advanced in the
quest for a consistent description of the data. For a detailed
discussion we refer the reader to the recent review by Braun-
Munzinger and Barrettez). These interpretaticns rangé from
a pure resonance, intermediate structure, picture affecting
both the angular distributions and the excitation functions, to
a pure-direct picture involving basically coupled channels
feed-back-type effects. Neither of these extreme pictures
seems to account for all facets of the data. Although recent
measurements of angular distributions of u—transfer_reactions,
as well as inelastic scattering, of systems such as 1604-285i
indicate that a pure, isolated resonance generated, intermediate
structure interpretation of the gross structure of the anomalous
back angle elastic scattering is.not viable, owing to the lack
of clear channels correlations, some type of resonancebased
phenomenon is, however, certainly taking place and generating,
at least the fine structure seen in most excitation functions.

Simple "direct" models have also been proposed for
the purpose of explaining the gross features of the cross
section at back angles. These range from simple changes in the
"normal " optical potentials to simple changes in the "normal"
elastic S-matrix. The necessity for invoking these changes in
the normal "E-18" type description arose from two important
observations; f(a) the quite conspicucus rise in g (1800)

®Ruth
to a value, at Ecm = 35 MeV, almost four orders of magnitude
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bigger than the corresponding "E-18" value, and (b) the pericd

of the angle oscillations, A0, supplies a wvalue of the contributing

angular momentum le(E] through A8 = Eh%ET , which is twice
[

as large as the angular momentum, lE(E) that determines the

period, AE , of the energy oscillation in the 180%-excitation

3¢_(E)
1/ —E— .

n

function, AE
The first anomaly has been accounted for through the
use of the so-called surface transparent potentials. These
optical potentials are characterized by an imaginary part with
very small diffusiveness which results in an increased
reflection. However, these potentials, though guite adequate
in describing the angular distributions, fail dramatically in
describing the second anomaly associated with the excitation
function. This clearly points to the need for a second
important modification of the normal optical E-18 potential,
namely the addition of a small, albeit important parity-dependent
component (proportional to (-)1) , which would not modify the
angular distribution since it contributes mostly at back-angles.
The 180° excitation function would then behave approximately

: 2. (E)
~ sin2 { E2

m| , thus giving rise to a local period AE =

=———2———, permitting the identification 2.(E) = 2_(E) . Ref.
BR.E(EJ ] E

3E
3, exhibits the type cof fit to the E-oscillations obtained by

the Minnesota group with the above-mentiocned two modifications
in the optical potential describing 160-+2851. A fit of a
similar gquality to the E-oscillations in the 180% excitation
function was obtained in Ref. 4 using, as a starting point,
thé S-matrix description (Fig. 2). The elastic S-matrix used
contains a normal optical E-18 type contribution, a parity-

independent "window-like" contribution that peaks at an £

r

-Fig. 2: Tit to the 180°%- oce

Ref. 4.

T
5+ %0,EL.SC.
EXOIT. FUNCT 1

excitation function of

160+285:i. cbtained in o0e

G'/O'n

Qe

glightly lower than the grazing one, and a small parity-dependent
"window". The elastic S-element without the parity-dependent
window was found to resemble very much the one genérated from
the surface transparent optical pdtential. The findings of
Ref. 4 clearly support the conclusions reached by the Minnesota
group concerning the need for a surface—tfansparent, parity-
dependent optical potential.

A possible mechanism that gives rise to the anomalous
behaviour of the heavy-ion system could he the coupling of the
elastic channel to several important a—transfer channels. 1In

the case of 160+28$i , we may associate the parity independent

.

window to the process depicted in Fig. (3). Similarly the
parity dependent window can be attached to the diagram shown in

fig. (3c). This diagram does give rise to a (—}E term since
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it represents an effectlve elastic transfer process.

We endeavour here to present a short account of how
these dlagrams generate £ and E windows.

The Tnmatrlx representlng the scattering in the

elastic and a-transfer channels subspace may be given by

& o

T =T +S52, 7T L2, (1)

Q
where T is diagonal and represents the "optical" E-18-type
contribution, Qo. is the corresponding Miller distorting B

operator

Q=g T

and T' 4is given by

T =vrvgT T - 3

and thus contributes to the transition. (V is assumed to be

non-diagonal in channel space).

The elastic element of T may be generated perturbatiwve

+ Qov é-g—m VGO ("'"\/_Q;H (4)

The second term corresponds to the diagram shown in Fig. (3a,b).
In order to exhibit the general characteristics of

the contributing processes, we shall present a simple evaluation

{5)

of these corrections based on the following approximations
1) consid ly th hell £ 8,8 »-ins(E 1A
} Consider only the on-she part o Gt) Gt + —im (Et—Ht)

2) Use no-recoil.

The partial wave amplitude corresponding to a process
of order n is then given by (ignoring angular momentum

transfer)

2Zh+1 1
(4#7) 7— K“f w0 T |~in .
J-——H +/ 9;:" 2[€-£)¢‘2—
-7

nl

. Iﬂ.”& K) 7/7"[/]1] .
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where I2 in the usual DWBA radial integral, K is given hy

L
a corresponding  integral invelving the dual radial wave
function sj the Q-value and Aj are sbectroscopic factors.
The K,s appearing'in KR are pound state wave numbers. As

" shown in Reﬁ. 5 the product KQIQ has a clear window shape
whose details are determined by, among other things,.the
Sommerfeld parameter, and the K,s.

The elastic transfer diagram shown in Fig. (3¢} can
be evaluated along similar lines. Actually the fit obtained
in Ref. (4) was partly tailored according to the description
given above. The higher the order of the.panSSﬁfE narrowey
the resulting L-window would be, as expected in any- coherent
multistep process.

The preduct KI alsco exhibits an energy—ﬁindow
shapes). To exhibit this characteristic of our anomalous
transfer contribution to the elastic scattering T matrix, we
use a semiclassical description of the transfer process,
6riginally developed for the DWBA amplitude by Brink(7) and
Broglia andg Winthera) , and recently generalized to multistep
transfer processes by Kammuri and Matsuokag) ; The transition
amplitude for a two-step sequential transfer via an intermediate

state m is given by

‘ (2) -2 (1) f/) ,
- ! (
C!.f =( (%) féf{f)c/‘f £ (e)t o)

where f(T) is the one-step form factor given by KMQ).

Specifying the intermediate state to be 12C-+325

and considering elastic scattering f£=i , we obtain for
[
160+28Si )

.10.

Iz)

: 2 ' g.y_s—
' — 2 X —(o-2:4F
Cz':z' - 7”4/'4— 1+ 2 Fme = € 7 45’) (7)
' 2iF o7 AL
where
= 2.5 ., F(x) 1is Dawson's integral
v AL _ . W ,.'NZ are normalization consts.
E:’ﬂgﬁ_ AE = E—-F = E- 17.8

In the above treatment absorption is not taken into
account since it is implicitly assumed that one is considering
only the grazing £ . We modify the above expression by

considering the following e'stimate for the abscrption
oo .
A = e_xP[:— A f‘ We,3(H) C/,,] (8)
! 2
% kew
%

when, as implied, WETS is the imaginary part of the E-18

optical peotential which is used rather widely to describe the

elastic scattering of 160-{-2881 at small angles. The energy
window associated with the round-trip o-transfer contribution
to the elastic scattering is identified as the product A C{i),
which can be written as

' -2 S
A c;.” 2 oxp[- 055 AE — H44 (2E) ] ()

Figure (4) shows the result of applying Eg. (9) to

the 16O-F2851 system, -both for the parity-independent cumponent

of the anomalous E-window, Egq. (9) and the parity-dependent
{3) (3)

wiﬁdow A(:ii swith .Cii calculated following the 'same procedure
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6)
as the one used for evaluating c{%) , Eg. (7). In both cases

“5i+ "0 FLSC
EXCIT. FUNCT.
006 | 8,5 180° £ 5° 7

002

Fig. 4 - Energy windows calculated using Eg. (9}. (From Ref. 6).'

the same anomalous radius parameter, .§==7.6 fm (used
previously in Ref. (é)) was employed.

As one caﬁ see thg_agreement of E2 with the
average trend of the excitation function data is quite good.
The finé structure oscillations,according to our nodel, result
from the interference between Acif) and Acig) (see Figs.
{3a) and (3c}}).

We should stress that there is no a priori reason
that suggests the same value of fo for both Acii) and

Acii) . As a matter of fact it would seem more natural to

(3}

take a smaller value for R in Acii

: (2)
than that in Acii
since the elastic transfer of three @,5 is a higher order

process than the round-trip process of cne o . Furthermore

.12,

the data points themselves show that thre is a second major
peaking at about Ecm =45 MeV.

In Figure 5 we show our result using &'2) «7.36 fm
(3}

and R =5.8 fm.
i T Tt e L
a.o8f- ]
& A ]
2 aosl -
= I )
L?l [ a B 5 ]
- Q < —
baO“' ° : ]
o.02}-
ol X f.. i 0%
20 23 30 35 0 5 50

Een(Mev)

Fig, 5 - Same as Fig. 6, with two values of the anomalous radius.

We could not push the peaking of the A(:ii) to

higher energies, as that would require the use of an anomalous

radius at which WE—18 becomes quite larye and a more exact

. treatment of A would be needed.

The sensitivity of our calculated window functions
to the distance of closest approach of the corresponding )
transfer processes, is a possible indication that the anomalous
back-angle data may furnish invaluable information concerning
the ion-ion interaction at small separation distances. This

fact is intimately related to the clear interplay between the



.13

quasi-elastic, a-transfer processes, and;the:elastic scattering.
An important consegquence of our findings is connected
with the question of de-averaging the 15007150-—excitétion
fuhction data addressed by Frahn and Kauffmann10). These
authors correctly pointed out that as a result of the gquite
common procedure of averaging the data points in an angular
interval -5%s a9 £5° around g = 1800, one would necessarily
end up with smaller over-all excitation functioq than the
180°-one. Clearly when confronted with dynamical models that
supply a 180°—excitaticn function, the data has to be de~averaged.

We would like to point out at this point that this

de-averaging procedure is model ~dependent. It depends crucially
on the value of critical radius attached.to the mechanism
responsible for the energy-structure in the exeitation function.
Therefore, in the light of our multi-step o-transfer model, the
results of Ref. (10) have to be ravised.

To show this, we first consider the results obtained
by Frahn and Kauffmannio). The measured excitation function is
an average of the differential cross section o{8&) over a’
solid angle element AR = 27w sin 8 A0 with an interval A8 =

= {m—a,w) , divided by the Rutherford cross section at B =T ;

this function will be denoted by bp(E)}

F
F({,—') -4 fdo G-@’F) = dﬁwﬂf 9, €) £10)
A2 C{EU‘; F) Ry
sl Fim ol

It is clear that o can be evaluated if the angular
dependence of p(8,E} = G(G,E}/GR(W,E} is known in AR, It
is known, however, that the enhanced large-angle scattering

cross section has a universal structure given by

.14,

Pes E) _—.'G@E)[J;(ﬁ"ﬁ)] ’

e

f(EJE:)T-f[’E) = Gro,E)

where G(B, E} is a sglowly varying function of =1-8 compared
to the Béssel function Jo(ﬁaﬂ. The value { = §-+% >> 1
denotes the anomalous angular momentum of the enhancement -
causing part of the partial-wave S-matrix. It is related to

the radius parameter through

kﬁ (i—-—?——)yz (12)

where E is the "threshold" of the anomaly, E=17.8 Mev .

I

A

The de-averaging function Di{c,E) defined by

R e y
D )—f(a [—cmf‘” 9‘;“95) [TW)]] (3

can be evaluated in good approximation as

S -1 - : '
gD(O(;E): [J;(/le}z.*[q(&\,d)]y _ . (14)

The function D{«,E) . is quite sensitive to the
values of A and accordingly. R. ' To show this we exhibit in

Fig. (6) the above function calculated with the two valies 6f

the anomalous radius referred to above E(z, = 7.36 fm- and
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§‘3) =5.8 £m.

tion D(e,E) o}

0 | I I | ] } L.
20 30 40 50 60 70 80 90 100

Een MeV)

By multiplying the data points of Ref. 2} , in the
energy range 20 MeV < E < 30 MeV with. D(E, 5%  calculated
with §1 =7.36 fm and the points in the energy range
30 <E_ <50 MeV by D(E,5°) with R,=5.8 fm (see Fig. 2J,
we obtain a de-averaged !Boo-excitation function that is more
. reqular, with the second peaking at Ecm==45 MeV attaining
a value very close to tﬁe first major peaking at Ecnlsz3 Mevé
This is in contrast to the finding of Ref. 10) where there was
a great disparity in favor of the second peaking.

It would be quite interesting to test the sensitivitf
of the de-averaging function to the ancmalous radius EQErumanally
by measuring. averaged data for two different values of the

averaging angle interval.

6.

II. STATIC AND DYNAMIC DEFORMATION EFFECTS: LONG RANGE ABSORPTION

Another important case showing, a clear deviation From
the optical behaviour involves the séattering of deformed
targets and/or projectiles at energies close to the Coplomb”
barrier. As a result of the strong Coulomb excitation of
collective states, one expects a gradual depopulation of the
elastic channel, even at sub-barrier energies. A nice example
showing this effect is presented in Fig. 7 involving the systeh

Cnu\ls

3 % & %L - TR U . S-S SR S
k :!J" ! ;? -,E: :.g 1
oiF ¥ o W
g.. i;‘ 4& ]
¥§EZE§EE:3:::====’:] HﬁEE%%E::::::&——' _
CE

1.0
© 08
tgt(ls
> 04
Eg !
oz
o]
o 20 &0 ico 140 180
R o] 16 A
Fig. 7 - Spectra and 5 for the systenm 0O + "Sm, (From
R

Ref., 11).
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*Oe «Pom , A=148, 150 and 152", The strength of the

coupling of the elastic 0% channel to the 2% state increases

148 152

gradually from #ibrational { Sm) to_rotatibnal ( Sm},. as-

ZDNe—spectrum (Fig. {T}a)}. Consequently

the depopulation (absorption) in the 2ONe +152

stronger than either the “"Ne + '2%gn
152Sm)

T4%%m) -

is clearly seeh in the

Sm is much

and ZONE +1488m. The

" o{Ne +

cross—section ratio reaches its smallest value

o {Ne +
of ~0.2 at back angles.

The trend of the data cleariy points to the presence
of long-range absorption to be contrasted with the nuclear
short-range absorption responsible. for the diffractive behaviour
discussed earlier. Actually the short range nuclear absorption,
at the sub-barrier energies involved in the 20Ne+ASm system
under discussion, would give rise to a minor deviation from the
Rutherford scattering, concentrated at angles very close to
180°, ‘

The long-range nature of the absorption referred to
above cannot certainly be accounted for by a change in the-
optical potential, and one has to resort to coupled channels
calculations. A more drastic departure from the optical
behaviour, arising from the same coupled-éhannels effect is
32). The ‘cm energy at which the data were
180_+}84W

shown in Fig. (8}
taken is slightly above the Coulomb barrier of .

and then one would expect a conspicuous "Fresnel" form of

in the forward hemisphere. As one can clearly see the

c
Ruth
long-range absorption is quite strong even in this higher-—

energy case, resulting in a drastic modification of the "Preshel"
shape. Similar features are seen in the 12C4-184w systen

at E = 70 Mev,

Lab

Fig. 8 - L for %0+ 8% a¢
°r

90 MeV. (From Ref. 12). Also shown

o 180+208

in — for
. vy

and 12C-+184w (70 MeV).

Py

Pb (30 Mev)

:zc 1"‘“’
TO Mev

Sty gl

bmad 31 g2l

550 &00 650

LHANNEL NUMBER

N 1 A i 1 1 1 i 1 1 1
20 40 6Q 89 100

B (gq)

A way of simplifying thé énalysis of data sﬁch as the
one above is through the construction of a cémponent in the
optical potential that represents the feed-back of the inelastic
2* channel into the elastic channel. This may easily be done
through Feshbach's theory of the optical potential, which.giﬁea
in the particular case of two channels, the following form of the

polarization potential

Ve

where Voz(;) is the coupling potential and Gé+}(§,?') is

= a2 - Ca : . ’
- P e Crs 0 s
00 1o = \{z(HG;fnr')Vza ro o

the 2%-channel Coulomb-modified Green's function,
When expanded in partial waves, the radial part of

vpol » would necessarily be angular momentum dependent and non-—
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local. However a locally-egquivalent potential may be obtained

approximately through the identification

fVF,Q_Gf.'?') t(kr’) ar’ :V ai.(”(‘?:ﬂchr) (16)

where wzlk,r) represents the radial wave function in the
elastie channel. At sub-barrier energies, wl(k,r) may be
approximated by the regular Coulomb wave function Fg(k,r),

which makes possible the construction of Vpol

13)

{r} . The resulting

expression for {r) may be written as ignoring the

Vpol
energy loss involved in the excitation process,

_.."‘ -
V  (=-im £ £ BGZ}?E-FT—'QEJ-J —I'—iau-f-” 2 21 27J2% 19)
pot- ¢ ’z 32 Zer [1 (1) (Zoyr a?‘) =
] (r)
\ﬂgﬂ
As a result of the assumptlon that the energy loss is

zero V.

pol(r) comes out to be purely negative imaginary. The

situation is reversed in the case of large energy losses, as

l(rj becomes predomlnantly real. The reason is that in the
former case the v1brat10nal perlod is much larger than the
0011151on time (sudden limit), therefore the system simply does
not have enough tlme to react during the collision process and
accordingly no modification are inflicted on the real inter-
action. In the large-energy-loss case (virtual excitation of
giant resonances), the system manages to execute several
vibrations during the collision process, thus resulting in a
change in the effective real ion-ion interaction without
inflicting much change in the absorptive component. For a
detailed discussion on this point see Ref. (14).

The above long-ranged potential is a rather smooth

.20.

function of both & and x . This feature permits the inclusion
g

[
Ruth
in a simple manner. At energies below the Coulomb barrier the

in of the effect arising from the polarization potential
elastic scattering amplitude is dominated by the near-side
Coulomb part. Accordingly only one turning point will contribute.
Since owing to the fact that effect of long range absorption
due to Coulombk excitation is mostly felt at not too high
energies, one expects that the nearside amplitude dominates.
Further, considering the polarization potential as a small
perturbation, we may evaluate the resulting correction to the

total phase shift using the WKB approximation

) 2%}
5 =54 V;u 0 dy (o)
(vl
n

o
where 6£ is the "spherical" complex phase shift and kz(r)

and rt(z) is the corresponding local wave number and turning
point, respectively. Since Vpol(r} is of a long range and
acts in the interwval rt(ﬂ) <r<e, we may replace ka(r] and
rt(il by their Coulcomb forms.

The stationary phase evaluation of the nearside

amplitude fN(B) then yields

V2
expl2i§13-12.6)

—f-()

EESATUY 4?] (19)

-QKF[}- T
1 k Cy)
-F T8 a
. £
At sub-barrier energies, & (Ai) may be considered

predominantly Coulomb with a small correction arising from
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Re qu1 {r} ,

.@(A\ = @M(\) —-i—_-[/ J"P' QQVCV)ACE)J

- (20)
—1 b
where c‘D = +au —_—
(=]
o
Our one-stationary-phase-point approximation for %% '
then reads )
4 ON
da =—L—-- b f.x _A II'“ 7°“ dp
dn 4.8l de € vy (21
. ?t
[
which, upon evaluating b and g% to first order in A5 ,
can be cast into the following
!
O (9) =|4 +—091ta B 4 3 apcstd _d a0
a. 2 z 2 S de
T,
(=] P l
2 I.lmng[.(r)
: QXF[—— -—}—{;_ I - dr {22)

Eor
yi

The above formula was found to be quite adequate in
describing sub-barrier elastic scattering of heévy ions. For

sfrongly deformed nuclei the inclusion of the low lying 2*

.22.

state in evaluating V results in a almost purely absorptive
pelarization potential. The correction Af due to the real
component is quite negligible. Using V' of Egq. (17), then

results in

%ca) = exp[——% tfgce)] >
Raith
Y1 Bie2) gL (
: (f— = -l;-_k—z( Tza j’; ) + BP_:?j: ?")} > (23)
ﬁ | <l > £

g 2 [ttt o) |

The angular function 'g{8) attains its maximum value of unity

at 89=mw, and it vanishes at #&=¢. The solid lines in Fig.

(7a) are simply the of Eg. (23} calculated after

Ruth
approximately accounting for the small energy-loss encountered

in 20Ne+-ASm, through the quantities gT(ET) and gP(EPi

with £ = 21 iE (see Refs. 13 and 14).

In the other extreme of scattering-of spherical nuclei
where Coulomb excitation of low-lying states is negligible, the
virtual excitation of giant resonances come into play. Here

the adiabatic limit gives a purely real f-independent polarization

potential which has the following form for the giant guadrupole

case

\/m cr) ﬂ_‘i-w [g B et + 2— e* B (n)r]/é

ad- pod- z)
s’

\4(2)/? é (24)

i
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(2) 60
where AE is the excitation energy of GQOR (AE - MeV)
A173

and B(E2) is the corresponding reduced excitation probability.

When used in Egs. (6) and (8), we obtain the following

expression for éL 15)
R
) ¢
o _ \'% & 2
—— _.._L-—- 4] Ceord o —_—— ...i -
Tt g | Ml )

g

1.315'@_;4;/1&%—2,10@#;44 7"?6@924.;5;5}

+—;[?‘F04§A—1ﬂ.¢h ~4god Al eon o

-]
L]

- Fe- Aiu’“jﬁ +gse/1.;.q'¢t — 45 aid ‘}

Though guite small, the deviation from unity of

due to the virtual GQR excitation together with other

SRuth
small effects, has been observed recently by Lynch et al.16].
Although we have presented our expression for éL,
R

Eq. {23), that correspond to the case of one real stationary
phase point, adeguate at sub-barrier energies, the generalization
to above barrier energies is guite simple. This comes about
as a result of the rather siow t-dependence of ¥

pol
even in cases involving two stationary phase points, i.e.

(r), which

Coulomb rainbow scattering or Fresnel diffraction, can be
factored out as a commen factor to both contributions. This is
particularly valid near the rainbow angle (or.critical Fresnel

angle}. Therefore we may write in general

.24,

as a9y = S -?/xl)[*——_ % j (2 (9))] | (26)

o
36‘1L Rﬁﬂ

where 1 corresponds to the average value of the two stationary

phase angular momenta. To show the adequacy of the above

description we show in figure (9} the calculation of 3 g
Ruth
for 16O+1B4W at Ep =90 MeV done both though optical model

calculation that included vpol and the result obtained from
Eg. (26} with [c g J calculated with an coptical potential
Ruth’o
that does not contain Vpol' The agreement is very good.
14 T T T 1 T T T ] T
i 180y 41844y
12— 90 MeV //'\\ -
/ \
1.0}~ i—i—}:.}.__ ——™ ]
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Fig. 9 - Dashed curve is [é;] (Eq. 26} obtained with the
optical potential, V=40 MeV ,ow= 9.06 MeV, ro= 1.313 £fm and
a=0.457 fm. Full curve is obtained when Vpol is édded to
the potential above. [From W.Love et al., Phys. Rev. Lett. 39

(1977) 6. The dashed-dotted curve is the result cbtained from Eg. (26).
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