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ABSTRACT

We - performed pheneomenclogical renormalization group
calculations for ferroelectric 12- and 16-vertex models on a
square lattice with periodic and helical boundary conditions.
We -considered strips of infinite length and finite widths (n=1
to 7, 8 or 9). The extrapolated values for the transition_
temperature of the 12-vertex model, which has been used for

.assessing the transition in squaric acid, ‘are lower than the
predictions of the Bethe approximation. The estimates for the
critical exponent v .do not allow a definite conclusion about
its asymptotic behavior, although the Ising value v=1 seems
more plausible. The estimates for the 16-vertex model considered
in this paper, which is equivalent to an anisotropic nearest-
neighbor Ising model, show an excellent convergence to the
exact values. Also, we analyze the finite size scaling behavior

of the critical free energy of both models.

I. INTRODUCTION

The so-called phencmenclogical renormalization

(1)

group, proposed by Nightingale é few years ago ; proved to

be a powerful methed for studying the critical behavieor of

two-dimensional model systems(z).

In the present article we
report phenomenological renormalization group calculaticns for
two vertex models on a square lattice.

We first consider a 12-vertex model associated with
the study of the antiferrpelectric phase transition in layéred

hydrogen bonded crystals of squaric acid(G). At low tamperatures,

the crystals of squaric acid show an_antiferroelectrié stacking .

of ferroelectrically ordered layers(4). A ferrcelectric

12-vertex moedel has then been shown to be adequate to. account
for the ordering in the layers. Although 6- and symmetrical
8-vertex models. on a square lattice can be solved exactly, ;he
12-vertex model deoes not seem amenable to an exact treatment.
On the other hand, in a Bethe cluster approximation, which
gives reasonable results. for 6- and 8-vertex models, we have
shown the occurrence of a continuous phase transition. It is
thus of interest to use more powerful methods to investigate
the critical behavier of the. 12-vertex model, and to check the
predictions of the cluster approximation.

The techniques we use are suitable for assessing
the critical behavior of more génerai vertex models on a square

lattice. So, we decided to investigate the critical properties
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of a certain 16-vertex moedel, which is isomorphous to an Ising
model with anisotropic firstrneighbor interactions. Since the
critical singularities of this Ising model are known exactly,
the calculaticons reported in the present paper are a good test
for the reliability of the method. In particular, we reproduce,
with a somewhat better accuracy, earlier phenomenological
renormalization gfoup results for the anisotropic Ising model.
In section II we define the 12- and. 16~vertex
models considered in this article. Also, we briefly review the
equivalence between z 16-vertex model on a squaré lattice and
an anisotropic Ising model with first and second neighbor
interactions and four-spin terms. It showld be noted that the

existence of a phase transition in. the ferroelectric 12-vertex

model on a sqgquare lattice may be_established‘by‘the application-

of é_Peierls argument(s).

(6)

In section IIT we fecall‘a theorem
be Suzuki and Fisher concerning the behavior of thé-zeros
of the partition function for vertex models in the-complex
electric field plane. Argquments based on this thecrem indicate
that the Bethe approximation may be giving an overestimated
value for the critical temperature: This has been confirmed by
our rencrmalization group calculations for the 12~vertex model.
The numerical estimates for the values of the
critical temperature and the exponent v are-given in section
IV. The results for the 16-vertex model show an excellent
convergence. The convergence of the;estimates_for the.exponent

v of the 12-vertex model are much poorer, although the Ising

4.

value v=1 seems indeed more plausible. Some finite size

écaling data for the critical fiee energy of these models are

analyzed in section V. For the l16-vertex model they exhibit

the expected behavior. However, for the 12-vertex model it

seems that corrections to scaling are still importanf even at .
the highest orders (strips of widths =n =8 and 9) we were able

to consider. A summary and some conclusions are presented in

section VI.

II. DEFINITION OF THE MODELS

The vertex configurations of the 16-vertex model
may be numbered as shown in Fig. 1. We will be concerned with

arrow inversion invariant energy levels, eE ; given by

€y =8y =By i ey =8, s Ey o5 =ep =By
€y =eg =By i 89 =egy=E5 i eg=ey, =B {z2.1)
©11 = €5 = By i ey = e = By .

This vertex model can be converted into an Ising model with
first-neighbor,. second-neighbor and four-spin interactions(e).
Let us define Ising~like variables o, on the links of the

original lattice, -such that o, =1, if the arrow on the link
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points up or rightwards, and v, ==1, if it points dewn or
leftwards. The energy of each vertex may then be written as a
function of the four incident Ising spins (see Fig. 2}.

Therefore, we have

J, 6,0, + J, 0.0, +

B0+ 050930 04) = = 3y - WJjo40, + Jy0,0, 9393%
* 949494} - (50504 + I692%4) - 3;019,939, . | (2.2)
where
1 2 '

Iy =~ 3 121.. B, : (2.3a)
I, ‘= —;— (Ez +E, +'E_7-+'E'8‘-) s (E1,7+.- 3.4-_4- Eg + EG-) - (2.3b)
J, = -% (Eé +Ey + By _+.E8)__ ~ (B +By+ B +Eq) (2:3e)
3, = %_ (B, + By +Eg + Bg) - (B, + E4+E.}+E8}.- , {2.3d)
I, = % (E2+E4+E'6+E7) - (By+Ey+ Eg+Eg) (2.3e)
Jg = g (E3#B,+Eg+E.) - (B + By +Eg + Eg) (2.3f)
J6 =-;- (E3+E4+E6+E8) - (E1 +E2+E5+E7} . {2.3g)
I, =% (B + Eg + Ep + Eg) = (B, +Ey+E3+B,) . (2.3h)

. 6.
With the particular choice
E, - - 2011 +R} 5 E, = 27{(1+R) , : _(2.4a}7
] E3_ = 2J(1 - R} ; E4 = ZJ”-_TR) . ) . (2.4b)

the 16—vertex.model-corresponds~to an.-anisotropic Ising model
with interactjions 31 = J3-= J . and J2 = J; =RJ  between nearest
neighbors only. The exact critical témperature.of this model

is given by(7)

' 23 2RI _ ZJ_._ ' [2mrT) ' .
cosh[EEZJ cosh[ifz]_r ;enh[ing + seqh{ET;],- ' (2.5}

and the correlation: length .critical exponent is v=1 {8)_
The fer:oeleétric_12—ve;tex,modells’ is defined by

the energy levels
E,=0 ; .E -E>~0_ ; E.=E ."=_E7_=lE8=E'.>.0. ; E3',__E4 > _(_2.6)

In the Bethe -approximation, it éxhibits a ferroelectiic phase

(3). Using a rigorous version of the

trangition of second order
Peierls argument, provided that E,E">0 , it is possible to

confirm the existence of this phase transition !>},




7.

III. BEHAVIOR OF THE ZEROS OF THE PARTITION FUNCTION

Consider ferroelectric vertex models with the lowest

energy levels defined by e1:=e2==E1 . A theorem proved by

16} aéSertsIthat the zéros of the partition

B

Suzuki and Fisher

: . . R : -Be
function- lie on. a unit circle in a complex e -plane, where

=4 'is_the:o:dering electric field, provided that the condition

is fulfilled. There is thus a limiting temperature T for

0

which the inequality (2.7} turns into an equality.  Below Td

the unit circle theorem holds for these vertex models.

2,=
= E;=E>0; E,, ESJ'EG, E7,-Ea.+-w) '+ as . well as an B-vertex:

For a ferkoelectric 6=vertex model. (E1_=0-; E

model: (E1=D:-32=E-3=E>0;E4. 8"'"’)-.‘

whose. exact solutions are knownﬁsl; fhe.lixﬁting:temperature TOACOinCides

with the transition um@eﬁﬁnme. Numerical - calculations for finite

P L - - 3
=E'>0 ; B ,E B ,E

6-vertex models seem to indicate-that the zeros of the partition

function actually get off tﬁe_unit-circle.for temperatures

above To(g). on the other hand, the zeros of the partition

function for.the-lﬁ-vertex.mddel (2.4) are known to lie on the
(10) ;

unit cirecle at all temperatures. In this case the limiting

temperature. T, bhas no special meaning.

0
There is also a peculiar coincidence between the

‘exact tranSition-tgmpe:ature, Tc , of the 6= and 8-—vertex models

e ' : (2.7

.8.

defined above and the corresponding temperatures, Tc E !
’

predictéd by the Bethe approximation. Since TC'B>T0 for the
12-vertex model, we éuspected that the. Bethe approximation
overestimates- the eritical temperature. The renormalization
group caleulations.presented in this paper were undertaken in

part to clear up this.point;

IV. RENORMALIZATION GROUP CALCULATIONS

. We comsidered vertex models defined on strips.of

infinite. length and finite=width (geometry B, as called by
(11)j;

Brézin The correlation lengths in the longitudinal

-direction were~éalculated by a transfer matrix formalism. The

fenoimalization of the temperature was then obtained via the

‘sealing relation for the correlation length(1’11),

CEpl2)

7y c T . {3.1)
En_qu.) n~1 !

where 2z is an activity, and we choose pairs of strips with

widths n. and n=1 . The fixed point of the recurrence relation
_z} = z'{z} gives estimates for the critical activity z
En(zc n! n (3.2)
En-1§zc,n) n—1 : -




.9,

Estimates for the exponent v may be calculated by a lineaxrjizaticon

of the recurrence relation in the neighborhood of the fixed

point} We thus have

Zn[én(zc,n)/gn-1(zc,n]]

v o= ‘ -1, 3.3
& ~nn/(n-11]

where é E %% .
Two sequences  of estimates were obtained: (i) for

periodic¢ boundary conditiéns, and with the usual definition of

“12).  (ii) for helical

the transfer matrix for vertex models
boundary conditions. Daetails regarding'the definitions and
calculation of the transfer matrices, as well as the determinaticn
of the correlation lengths, are given in the Appendices. 1In
general, the_transfer matrices of vertex médals with periodic
boundary conditions are not hermitian. However, it is maﬁﬂmable
that the ferroelectric 12—ver£ex model obeys the conditions

E, = E4 and E5= E7 . which are- enough for. assuring that the

3
corresponding transfer‘matrix is hermitian,

In Table 1 we display estimates of z = éxp(-E/ch)
and the exponent v for the 12-vertex model with périodic
boundary conditions, for six different values of the ratio
p=E/E'. In the limit p-+0, _the_ 12-vertex model reduces to

a 4-vertex model, and z = 1‘3}

. The values of zch=e>@(—E/kTC’B),
corresponding to the Bethe approximation, and of zo=expLE/de

are also given in Table 1. It is apparent that, in general,

10,

T0< Tc< Tc B for the 12-vertex model. Estimates for this model
' -

submitted to helical boundary conditions are shown in Table 2.

In Figs. (3a) and (3b) the estimates for the 12-vertex model
are displayed graphically.

The estimates for the té-vertex model, which is

‘equivalent to an anisotropic Ising model, are given.in Tables

3 and 4, for periodic and helical boundary.axﬁithim~nﬁpaﬂﬁnehA
These estimates, as well as the exact values of zc:=exp(-Jﬂdb)
and v, are plotted.in Figs. {4a) and {4b}.

The estimates for the 16~vertex model converge to
their asymptotic values faster ihan the correspbnding ones for
the 12¢vertek_model. As a matter of fact, for the 12-vertex

model; the curves =z n and v, Xn display in some cases

X
C,n
a nron-monotonie behavior. We thus conclude that the estimates
for the 12-vertex model, up to the orders we considered, have

e

not reached the regime where their convergence is governed by

the leading irrelevant-variable scaling exponent(13).

This
makes it difficult to-devise a reliable_éxtrapolation scheme
for the estimates, particularly for those of the exponent v,
Therefore, it remains an open guestion whether v has a unique
value for the 12-vertex model. We recall that calculations for
the Bmvertex'model indicate that the phenomenological renor-
malization group technigue may give good results for systems

with nonuniversal critical behavidr(14).

.Nevertheless, some
fits of our estimates for the 12-vertex hodel, with the

allowance of logarithmic corrections, are consistent with the
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assumption that it has a universal critical behavior, with
v=1. These fits, however, are by nec means definitive.

The estimates for the: 16-vertex moﬁel,behave'as
expected.. In Tabia 5 we present results of 3-point £its of

X

functions of the form A+Bn ~ to the estimates. They seem

to be.conéistent with X, = ¥ for z and x, =2 for vn.'

c,n v

This supperts the scaling relation!13+13)

x —x = 1N . C(3.4)

The exponents governing the convergence of ocur estimates seem
to be given by the usual values obtained in the Onsager
formulation of the Ising.modeI‘TS). The'amplitudes{ however,
are,different. Ou; estimates converge more rapidly t&.their

asymptotic values than the corresponding ones obtained via the
{1,16)

Onéager formulation of the transfer matrix " Blso, due

to the way we formulate the Ising model, even in the énisotnxﬂc
case (R#1)}, the direction in which the correlé-tion length is
calculated is equivalent to the direction along which the

widths of the strips are measured.

Iiv. ?INITE SIZE SCALTNG COF THE FREE ENERGY

According to finite size scaling arguments, the

critical free energy.per vertex is asymptotically given by

£ = A + Bn~ ’ (4.1

(17}

where d is the spatial dimensionality of the lattice In
order té verify Eg. (4.1}, we calculated the critical free
energies, fn-, given-by
£n Zn (T} ‘
fnr = - ch Ny {(4.2)

for the 16-vertex Ising model with strips of width n (for the
12-vertex model J should be replaced by E).

. In Table 6 we give values of the critical free-
energy £ for Ising models with width n and periodic
boundéry conditions. Three point fits of functions. of. the ‘form

As+Bn™E

to these values ssem to support the prediction x=2

. {see Table 7). In these calculations, the values of £, converge
faster than in the usual Onsaéer fﬁrmulation of the Ising model .
For the iéotropic case, B=1.188142 in the Onsager formulation,
whereas B=0.537 in our calculationms. .

Similar calculations for the 12-vertex mo@el~are
noet 80 accﬁrate since the exac£ ¢critical temperatures is not
known. Values. for fn obtainad using.tﬁg estimates for éc
of the preceéding sectiph.p;ovided nqn—ﬁonotonic estimates for
B and . We are thus led to. the conblusion that the mﬁm@to&ic

regime has not been attained and, therefore, higher ordexr

coxrections to scaling become relevant.




.13,

V. CONCLUDING REMARKS

We. performed phehomenolbgicai renormalization group
ealculations and used finite size.scaling arguments to anaiyze
the critical behavier of 12- and 16-vertex models on a sguare
lattice,

For a particular 1ﬁ—vertex model, which.is emnxahym

to the anisotropic Ising model with first nelghbor 1nteractlons,'

the RG calculatiohs produced quite accurate results both for
the critical temperature and for the crltlcal exponent v=1 .

‘Also, the behavior of the estimates as a function. of the widths

of the strips used.in the calculatlons is well descrlbed by the

expected asymptotic scaling law. It is thus 90551ble te devise

a reliable extrapolation scheme. We_obtaln'extrapolated values

with relative errors of about 10_3%"for T, and 107 for

v . The critical free energies of  the. strips are also'in geod
:agreement with the expected asymptotic behav1or for- the 16ﬁwmﬁex
Ising model. _

The results for the ferroelectrlc 12-vertex model
are not so well behaved In several_cases, the estimates for
zc ahd v ‘show a nonmonetonic dependence_on the width of the
strips. This is an indication.that the asymptotic regime has
not 'been reached up to the widths we considered. Nevertheless,
the estimates for z, ‘are sufflclently accurate to allow the

conclusion that the Bethe approximation for ‘the 12-vertex model

leads to an overestimated value of- the critieal temperature.

.14,

Although we believe that the correlation length expaonent for

the 12-vertex medel is egual to . the Ising . value, v=1, other

values of v, or even a nonuniversal behavior of the model,
cannot be ruled out by our. estimates.

. All‘ealculatieneiwere-performed for vertex models
defined onrstrips of widths up to n=7 {16—vertex model with
periodic boundary conditions), n=8 (i2-vertex model with periedic
boundary conditions), and n=9 {helical boun&ary conditions).

We believe that it would be feagible to conslder larger strips,
partlcularly in the case, of helical boundary condltlons, and
to use better numerical methods for cbtaining the twoe largest
eigenvalues of the transfer matrix: (we used a. varlatlon of the-

d(18)),_ Nevertheless, since the. estimates seem to

powar metho
converge slowly, it-is doubtful vhether this improvement would
provide a defipitive answer about the value of the critical

exponent v for the 12-vertex model.
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ADDENDIX 1 - TRANSFER MATRIX FOR VERTEX MODELS WITH HELICAL
BOUNDARY CONDITIONS

Consider a vertex model defined on a strip of width
n and length m. The total number of vertices will be N=nm.

(12}

Usually , the transfer matrix with periodic boundary

conditions is defined by

En(d’rer-q:’") .
T(9,¢') = } expl- ——pm—— . (a1.1)
& .

where . ¢ and ¢' label the configurations of two disjoint
sets of n vertical bonds, and._ﬂ labels the confiquration of
the n horizsntal.bonds-between them {see Fig. 5) . The value
of Eh(¢,8:¢’Y is given by the sum of the contributions of the
n vertices whose configurations are defined by ¢, 8 and ¢'.
In the limit m+= , the partition function is_ésymptotically

given by

P

It
S

—_— 1 ’ {21.2)
where 11 is the largest eigenvalue of the matrix T(¢,9') .
Also, the correlation length associated with the vertical
bond-vertical bond correlations in the longitudinal direction

is given by

coRT . we

.16,

where lz is the second largest eigenvalue. Alternatively, we
nay define the vertex model on a strip where the horizontal
bends lay along a helix. These boundary conditions were used
by Kramers and Wannier for the Ising model(19). We may then
number the vertices, as well as the vertical and ‘horizontal
bonds, along the helix, as depicted in Fig. 6, and associate
an I¥Ising spin ov(qn) with each vertical (horizontal) bond
according to the conventions of section II. The hamiltonian

may then be written as

N
H = Elo. , 0 . G G } (a1.4)
i=1 vyt Ry vyt Ry
with
6. =0 ,0 =g O =0 ; {A1.5a)
Vo Vi Vo YN-1 Vi.n VN-n+1
and
g = g . {A1.5hb)
hy hy

The partition function is given by
E. Z N .
Z = )i exp[~E[0 . , Q G ]/k:lzl . (A1.6)
SR O30 O O Vit B Vig' Ry

Let us now group the bonds in N sets of (n+1) bonds defined

by




(a1.7)

U2
o
1]
—_——
=1
<
[
I
—
=]
<
e
3
B
a
]
H
]
=]
qQ
o
t
-
——

with i=1,2, ... ;N » and SN+1 =S.I . The configurations of
each set may be labeled by an index ¢i= 1,2,... ,2N+1 ; and

the partition function (AT1.6) may be rewritten as

'2114-1 2ru-‘i 2n+1

2= I I .1 1 T(9;:0;,4) = Tr TW ,  (a1.8)
$,=1 6,21 S
where
0, if ¢i+1 is not campatible ¢i .
T, by, = (a1.9)

—Vexp[-E(v . h].__1 oV hi)'ﬂﬁlzl . if they are compatible.

It should be remarked that the transfer matrix will be sparse.
Thére will be at most four non zero elements in each line. In
“the limit m+e , the partition function and the correlation

length will be given by

_ LN ' . .
ZN = A1 . ‘ {(A1.10)

and

™
n

Apym-1 ' o
[zn [X;]n] . o (a1.11)

where A1 and A2 are the largest and the sécond 1argest.

‘eigenvalues of the transfer matrix respectively.

.18,

APPENDIX 2 « BLOCK — DIAGONALIZATION OF THE TRANSFER MATRIX OF
VERTEX MODELS. WITH PERIODIC.BOUNDAR¥ CONDITIONS

Before performing numerical calculations with
periodic houndary cqnditions we used symmetry properties to
algebraically block-diagonalize the tfansfe: matrix. As may
he seen in Appendix 1, the stateé which define the transfer
matrix are invariant under rotations of 2n/n, as well as
under the:inQersion of the Arrows. _Therefore, thg symmetry

group to be considered is C

N C,. @ 32 « First, we obtained

‘the character table of this group, with' n between 2 and 8.

We then constructed the unitary matrix § in order to transform
T into T'=8xTx 5?. The computational effort in doing these
caleulation grows wvery fast with n , and this imposed sévere

limitations. on the widths we were able to consider.
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TABLE CAPTIONS

TABLE 1 -

TABLE 2 -

TABLE 3 -

TABLE 4 —

TABEE 5 -~

Estimates of the critical activity zc and the
exponent v for the'ferroelectriC'12-vertex model
with periodic boundary conditions. The subscript n
refers to a comparison between two models with widths
n and n-1. Values of Zo,p = exp[-E/ch'él and
z, = exp E—E/ka] are also given. The parameter p
is given by the ratic E/E', with the energy levels

defined in Eq. (2.6).

Estimates of the critical activity %2, and the
exponent v for the ferroelectric 12-vertex model

with helical boundary conditiqns.

Estimates of z_ = exp E—JIch] and the exponent v
for the particular 16-vertex model defined by Egs.
(2.4}, with periodic boundary conditions. J and RJ
are the exchange parameters of the e@ﬁxaham anisctropic
Ising ﬁodel on the square lattice. The exact values

of zg and v are also given.

Estimates of zZ, and v for the 16-vertex model

defined by Egs. (2.4) with helical houndary conditions.

Three-point fits for the estimates in Table 3 with
functions of the form A& +EBn > , associated with 3

consecutive widths, n,n+1, and n+2.

TABLE 6 - Values of the critical free energy for the 16-vertex

Ising model with periodic boundary conditions,

TABLE 7 - Three-point fits with functions of the form A +Bn *

for the critical free energies of Table 6.




FIGURE CAPTIONS

FIG.
FIG. 2 - Numbering scheme for the four links incident on a vertex.

FIG.

FIG. 4 -

FIG.

FIG.

1 - The fé6-vertex configurations on a square lattice.

3 - Graphs of the estimates for z,

5 -

6 —

and v, as a function
of the widths n, of the ferroelectric 12-vertex model:
{a} estimates of Zo with periodic {pbc) and helical
{hbc) boundary conditions {see Tables 1 and 2);

(b) estimates of v with periodic boundary conditions
(see Table 1} and with helical boundary conditions
(see Table 2). We display results for several values

of the parameter p=E/E'.-

Graphs of the estimates, as a function of the widths
n, for the particular 16-vertex model defined by Egs.
(2.4} (see Tables 3 and 4): (a) estimatés of Zot with
periodic (pbe} and helical (hkc) boundary conditions;
(b} estimates of v, with periodic (pbec) and helical

{hbe) boundary conditions.

Two rows of vertical bonds and a row of horizontal
bonds for a vertex model with periodic boundary

conditions and width n=4.

A lattice with n=4 and m=6 submitted to helical

boundary conditions.

TABLE 1

- -1 -

p=2 zc,B=0'1-”57 ZO=0.055728 p=1 zc,B_ 3 2g = 0.2

n zc'n vn n zc,n vn

3 0.15711500 | 1.32281 3 0.28363586 1.05740

4 0.12713754 1.03601 4 0.29328729 0.95892

5 | 0.1%1242518 0.97044 5 0.28704290 0.92826

6 0.10525549 0,95852 6 0.28013124 0.92822

7 0.10171230 0.96418 7 0.27519931 0.93767

8 0.09991605 0.97162 8 0.27207939 0.948861

! L = 0.3 = - 0,58 = 0.5

pe3 zc'Bz-.—z- zO-O. 9939 p—§ zch_ 58975 zg = 0.

n Zc,n ’ vn .n zc,n ’ vn

3 0.42472724 0.92601 3 0.50742270 0.89502

4 0,45779363 0.87494 4 0.54334948 0.84354
5 0.46783721 0.84634 5 -0.55938466 0.80881

6 | 0.246903156 0.84402 6 0.56563497 0.79395

7 0.46740729 0.85684 -7 0.56736360 - 0.79627

8 0,46524498 0.87566 8 0.56715959 0.80967

1 _ . _ i ~ _

Py zc,B = 0.64780 25 = 0.57195 pP=g zc,B =0.68914 zy = 0.62340

n zc,n Vo n zé,n Vn

3 0.56410369 0.88735 3 -_ 0.60625166 0.88739

4 0.59872374. 0.83059 4 0.63868220 0.82563

5 0.61657382 0.79203 5 0.65671836 0.78448

6 0.62536962 0.76870 6 0.66669694 ¢.75633
7 0.62930096 0.76068 7 0.67197126 0.74083

8 0.63071520- 0.76489 8 | 0.67454728 0.73690




Zc =0.64360

P = 2 p = 1
n Zc,n vy n zc,n Vo
3 0.052959817 1.33108 3 0.19417511 1.27706
4 0.078346631 1.15129 4 0.23339737 1.11834
5 0.090241482 1.063686 5 0.25204825 1.04047
& 0.,094997287 1.02277 6. 0.26068100 1.00307
7 0.096751839 1.00443 7 0.26456503 0.98657
8 0.097352212 0.99687 8 0.26623155 0.97885
9 0.097526405 0.99314 9 0.26692300 0.98011
=1 =1
=3 P=3
n zc,n \)n n zc,n vn
3 0.38299787 1.25108 3 0.49262761 1.2490.6
4 0.41870541 1.10051 4 0.52247557 1.09774
5 0.43664550 1.02298 5 0.53779513 1.01947
& 0.44630372 0.98231 6 0.54653687 0.97621
7 0.45166761 0.96122 7 0.55181607 0.95162
8 0.45467562 0.95106 8. 0.55510245 0.93822
9 0.45636544 0.94888 9 0.55718220 0.93177
1 _1
b= E P = 5
n zc,n v n Zoon Vo
3 0.56495065 1.24484 3 0.61683873 1.24517
4 0.59030387 1.09738 4 0.63882430 1.09813
5 0.60344838 1.01907 5 0.65028434 1.01974
& 0.67116536 0.97450 6 0.65712219 0.97429
7 0.61603964 0.94982 7 0.66153092 0.84615
8 0.61922218 0.93203 8 0.66451919 0.92341
9 0.62135662 0.92321 9 0.66659980 0.91886_

TABLE 2

v =1
n zc,n vn
3 0.63969666 1.03928
4 0.64205922 1.02131
5 0.64294361 1.01329
6 0.64317412 1.00894
7 0.64333632 1.00659
R=2 z_ =0,73736 v=1
n zc,n v,
3 0.73507046 1.04256
4 0.73649549 1.02562
5 0.73694490 1.01775
6 0.73712829 1.01339
7 0.73721644 1.01068
TABLE 3




_R=1'ZC

R=1
n gc,n Vo
3 ' 0.624858 1.06027
4 0.635628 1.03877
5 0.639540 1,02639
6 0.641271 1.01886
7 0.642147 1.01412
8 0.642634 1.01094
9 0.642926 1.00860

R=2
n zc,n Vi
3 0.716229 1.16008
4 0.726435 1.10592
5 0.730778 1.07725
6 0.732993 1.05993
7 0.734264 1.04841
8 0.735056 1.04032
9 0.735582 1.03452

TABLE 4

A B X
0.64358 -0.14020 3.2656
0.64359 -0.13464 3.2312
0.64359_ -0,.13062 3.2093
R = Y
A B b4
1.00018 0.41017 2.1395
0.99910 0.35904 2.0073
1.00192 0.80376 2.6461
R= ' Zg
A B X
0.73733 —0.10%17 3.4600
0.73734 -0.09262 3.3859
0.73735 -0.08578 3.3309
R= ,.\J
A B X
1.00363 0.34489 1.9857
1.00289 0.31852 1.9042
1.00232 0.28928 1.8211

TABLE 5




R=1
n £(0,n" Y
2 -4.35935
3 ~4.28347
4 -4.25534
.5 -4.24283
6 ~4.23571
7 ~4,23139

TABLE 6

R=2
n £(0,n" 1)
2 -6.48424
3 -6.38193
4 -6.34500
5 -6.43769
6 -6.31823
7 -6.31250

n A B X
2 «4,21759 -0.52539 1.8899
3 ~4,21872 -0.54208 1.9342
4 -4.21917 -0.55794 1.9637
5 -4.21917 -0.55762 1.9633
R=2
n A B X
2 -6.29473. ~0.71442 1.9145
-4 ~6,29598 -0.73361 1.9517
4 -6.29632 -0.74632 1.9692
5 -0.75379 1.9776

~5.29644

TABLE 7
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