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HOMOTOPY: AND--STATISTICS IN QUANTUM THEORY

NORMANDO C. FERNANDES & MAURO" CATTANI

Institute.of Physics, Univefsify of SSq Paula; Brasil.

The descriptfon of a system of N pafficles'is given in

terms of the space. of motiohs U int?oddced:bnyQuriau. TEe cor-

respending quantizable manifold ¥’ i{s introduced and its homotopy’

group HI(U’) is exhibited: Some. general ideas on’the geometrical
quantization of U' are presentéd and the relations of fhis'quaﬁ-

tization procedure with the characters of HI(U') aré_djstussed.

1, INTRODUCTION

The usual form oF'Quantﬂm‘Mechaﬁit5 expfe§§es‘everything

in terms of ‘three propositions: a) a .state is a vector ¥ in a
Hilbert space; pb) an observable is a selfadjo?nc operater - 4 Tn

this space; . ¢) the connection between .a) .and b) being that the ex-

pectation value of an operator .4 'in the state ¥ is (Aw;ﬁj1.'THe

dynamical aspect of the theory is brought. to Tight bythe require~-

ment that ‘the equations of_motién shall be.expressible in the Ha-
miltonian'form. .This is necessary for a transitioh from classical

to quantum theory to be feas;bie

It is posslblez to glve a complete descrnptlon of _Claéf
sical Mechanics in terms of-symplect|C'gBQmetr¥ and - Ham!!tbnian

functions. For a dynamical system with Eﬂdeg%eesﬂof freedom we

define the corresponding configuration space’ as an arbitrary dif-
ferent{abfemmanifo!d M of dimension 'E'; The -totangent bundle

¥ M, of ‘M, admits a natural symplectic-structure definmed by the

This work is dedicated to Prof. Mario Schoenberg on his 70th

:birthday.-Ffdm him we have learned the most important and beauti-

ful lesson-of ail: '"Before being a scientist, be a man".

exact Liouville two-form. . A dynamical state of the system, in

S . . L L s * i
the Hamiltonian formalism, is a point of : M = 7 M , which, in the

usual .language, is .the. classical phase spacé. But this choice of
phase space is not'satiéfactpry_s?nce,,in several distinct - prob-

lems, it s eséenfial.td.ihtro&ucé'chaﬁges-cf the:claSSical vari-

"ab1es which do not respect the contangent structure of M. With

th!s in-mind, several. authors3 k-have enlarge@'the ‘definition of
phase. space, in order-to-lntrodUCe;ﬁeformations'of the Poisson-Lie
alggbras,ﬁdéterwiﬁing"interebfihg.forhét.algebras; This approach,

which;could;iead]td-ajnew;dESCr{ption of ‘the usual quantum me-

_chaniés, wil!jnqt_bé*folloﬁedihere._

Our'task in this work :5'to study-hdw'the decomposition

gtm

nf the representaticn Htlbert space for ‘the symmetr:c group

of ¥ eiements is related to the-homotopy group_of the"confngura—

_tion background" of ¥ particles. In order to focus attention on

(¥}

the group-thépreti;'eésential aspeﬁts ofﬁIS ,.unamcumbered with
incoﬁvenient observer—dependent'cEassical phase'space.descﬁptions,
we go back to the ploneerlng work of - Sourlaus Probably,  as has
been_recentiy emphasazed6, Souriau's method oF identifyihg clas=
sical dynamicéi systems, whlch replaces the usual phase space by
the gldbai_space-of mot]ons, perhaps marks the beglnnlng of the
breakthrough

specifying claSSanl mechanics. . Thus, for a

system consnsting of N indepéndent e]ementary particles of mass

- m, we consider the "conftguratlon background” as be1ng the space

of motions U of the particles. This space 'is dufferentiabte

manifold defined as the quotient U = V/kerrfaﬁ)_ of the evohmlon.

.space V. by the characteristic foliation of thé'_ presymplectic

structure da. The 2-form du descends to U gnvzng rise to the

5ymp1eﬁtic structure of'the'sbace_of mdtions_ U: The‘symplectlc

.manifold U is homéomorphic to a sphere since, . non - relativisti-

cally, for N equal mass particles the space oF-motiqns has an a




priori equal population on such a sphere. This means that U is
simply connected. If it is defined -as the covering..space of a
manifold ¢’ to be defined later os a quantizable differentiable
manifoid; the homotopy group HI(U') of U' will be identical to

S(N) of the definition of the covering.

the permutation-group

. it has been proposed by Souriau that the connected mani-
“fold U’ has as many non-equlvalent quantlzat:ons as the distinct
chafacters of its homotopy group. . Now; due to the-indistiﬁguish~

abnllty of the- partlcles, our-space.oF'motions U which describeﬁ

the system, admlts a. coverlng (U,S(N),F) » where: U, as.defined

above, is an open set -in the'quotient-manifold U1>oy-x ;,_x UN =

2

ﬁé[ng'the permutation group of N elements and

U]’ ]IV/S(N) ', S(N)
1
mapping.of U into’ UY.
iﬁ_a preceding papetYIWe have given a representation of

(#)

k) 'io_a Hitbert space.  We have also established. a connectioan

between the muitidimenéfonal irreducible .subspaces and the gene-

: : L T - )
ralized guantum statistics. of Gentile . ~For the case ¥ = J we
: ) . . L B . : 3}
have shown explicitely the representative matrices of: S( } , con-
structing multidimensional state vectors f_. Besides the usual

completely .symmetric state vector {bosons) and- comphetely an-

tisymmétric state vector- YA {fermions} we:Have written the hybrid

¥ {four components), named state veotorwfor_gentiieons, which could

be.interpoeted as. a new quantii&tion for the system of 3 parti-
cles. These results can be easily generallzed for. N particles,
giving rtse to severai new quantizatlons compatible with the pos=
tulates of guantum mechanics.

In this work, pursuing the above. line of reasoning a

Iltt]e further, we might wish to construct the homotopy group T, (),
showlng for the non trivial case’ ¥ = 3 that we have 3 d:s:lnct'

oﬁaracters x; . X_ and X. This.problem isltypicai of those which

¥, the space. .of motjons,of,oné-particle. F is.a_djfferenpiableo

are extensively studied in the classical theory of homotopy; and
the methods of the latter lead to the identification of the char-

5 ()

acters. of ﬁI(U') and and, ceonsequently, to new quantiza-
tions. We do not give a complete, rigorous formulation of the
problem of geometrical quantization, but indicate the direction
for the:construction-of ouch_a‘formulapion in the case of General

Statistics. . A discussion of these results, some topological con-

clusions. .and. contrasts are also.given.

2.. THE- SPACE OF MOTIONS:

1n the description of a-dynamfcal system, “thére are
several passible choices of the representativemsbaces.. ihusJ for
Newtonian mechanics, the space. .time backg;ound of phenomena itself

is used to specify the system. Rigorously speakfng, the classical

" space time is a fiber bundle, the time being defined as’ the base

space.. At a time %, the_correépqnding fiber.is.the_instantaneous
configoration.spaco R; ». spanned by vectors. r. _The structurai
group is. the Euclideah groop;of‘ioometries-(dfsplacemanfs). When
we pass. to fﬁe Hamiltonianoformuléifon of C]assjcal Mechanics, the
approprlate geometric background is def;ned as the phase space €
of the system. The cIaSSjoal phase space.of a mechanical system
has a naturéi.symp]octic s;ructure. Itis defload_as the cotangent
bundle T M of a differentiable manifold M - of dimension  n

But, as has been stressed by Souriau5

» the configuration space
aod the,phase_space are not qomp;tible with Galiltei (or _Lorentz)
transformations of space time, in the sense that Qo can not give
a precise definition of them which.is referentiat-independent. I'n
order ‘to amend this situotfon we fntroduce the time variabie E.as

an additional coordinate axis, building the so called evolution -

space- ¥ of the system. |In that-monner, the (6r + I) vector.




. 0f course, U is an open set of U, x U

<4 Y
.

ka

{2.1)

«
il

wiil_represént a point of. V. OF course, V is.a (6n + 1) dimen-
sional differentiab1e manifbld. We’ deflne the phase space at a
instant t.; as betng the submanlfold Sy c v deflned by the

o
equation & =-to. St s easy ‘to -see. that the mapplng [yl + ¢t is

dif?érentiabfé[ cﬁuracter|ZLng:the phase space as an imbedded mani-

foldz of V.-

But, if we’Wish.;6.tunstruut“au;ahOniéaI' formalism fqr
the refatfvi5tic (Gafileaﬁ or. Lorehtzian) mechanics of many par—
ticles,_ftfis not theuevolut{on Space _V, 'uuﬁ its quotient U =

= V[kgr (d&) "by: the character;stnc foliationof the presymplectuc

structure dm wh:ch must be : adopted for the descrlption of the-

s'ystem5 The, 2= form dm descends to. U and ‘thus gives  rise to

the symplectlc structure of the space of motiehs (¥,c), with o =

= dw. This symplectlflcatlon of a contact manifold by means of
the charactertsttc fo1:at:on is a’ standard settlngz. The integral
Ieaves of the Fol:atlon project upon curves of the space time, the
worldl!neS'correspondung ‘to the.p055|ble motions. With the pur-

pase of studying the poss:ble quantizatlons of . a 'éystem af . W

'|denticaj particles, 1et us specrfy the. symp]ectlc mani fold U .

1 2
due to the identify of the particles, th¢'Ptrue" space of motions

is not [ UZ.TN. ()

group S(H) . -Naturally, the symmetric group defines an equiva~

but the quotfeﬁt' { vy ]N/S

Tence relation:

if a typieal vector of | UIIH is written as

i equé?sfii,xz,.t{.;¢ﬁ. Naturally, dim U”;*diﬁz[ul}_fé ¥ dim U, .

XX Uy = ["1] . But

by the symmetric

we call & the equivalence class

'(m-'“ -

[ = 29 ¢mb'[%here is a- permutatlon e 8 “so that . °

(x ):’

ThlS characterizes the: man:fold of motlons U of .a system of W

"ldent1ca] parttclesuas the,setiofugheﬂx, & becng composed oF non

1

AF an;intefnai degree.of.ffeedom'is'to'be"incTudéd for each par-

'.tlcle, it is suff|C|ent to enlarge “the . phase spaceby def|n|ng the

direct’ product of the, usuaI one wuth an approprlate coadjonu orbltq

3. THE HOMOTOPY GROUP

In sectaon 2 we' have deflned the space oF motlons J of

a system of w |dent|cal parttcles as the partltuon of" [U ] by

s(”).‘_ }H

the permutation group Formally9 ‘this partltion oF [u

1
is a dISJOEHt Famlly D oF subsets of ‘{U } '_whose union [is [&]”

This defines an equ:valence relatlon R7 of the partltnon TP which
N

is the subset fUII x.[UI] LA consustlng:pfgall.paxrs (zz,xz) such
that. =z, and =, belong to the same member of ¥, or, briefly,
R=U{Dxp:De DV }. If 3 =’fy«'} is the pro-

-1 -
jectionuof [UIJN into D, then R = {(xz,zz) .r(zz)'='r(x2}}.
Quantum mechanlcally, due to the indiétinguishability,

a system of ¥ non-interacting part:cles must be described by a

new space of motions U'. ‘It is easy to see5 that the ¢triplet

S(N) F)

where F is a differentiable mapping of ¥ in;o v,




.7.

const|tute5 a coverlng of U’ . Of course, ut is an orbit of U
under the. actlon of: S(N) —The:mappiﬁg_ F, in.a certainfmanner,
|ntroduoe$,the'lndlqunguishability ?n-_U'a'_ (u, S(N) B). L is a

universaf'ooéerihg:of.'U"since it ¢can Be.proved-that v, besides
5 |s SImpIy connected9 Thus, the homotopy group

)

'belng quant:zable

nI(Uf) coln5|des thh

..13

!n the, c' ' ;{_}epiué_deno;e-- the:représentative
_matr:ces of S€3) ,.f;ﬂ'
10 o /E) (1
Te e . 2. 2
-1 5 _71: /g g e ‘/g R 1
) 1 v ST
. - @ - TLTa TR e T Tz B
m. = S y.m = . X , ma = . . o
(e E B Sl R ST A A R S
T 2 2. S 2
(3.1
IR 11 o ' i a(3)
It is well known that in the symmetric group 5
thereris:theﬁnormel subgroup A(s) of index 2 coosisffng.of the’

".even pepmuta;ioﬁs;' Also, there ex1st5 an element a-of. order 2in

3 the coeet: S‘zl { (3) .q%_#.IJ-' Th:s is obv1ous since aH trans- .
-positions remain In_ S(_) (3) lﬁ._our notation ( r
=. {ml ,mz . 3 y,; a = m4.= 3 ; whereT og Fs'a.Eauilxmatrlx_-and
the who]e group cam be wrltten as’
LoglEd =k;4(31-@_m' _ R u‘.(zlz)

where A =. { I o } 'OF'coorse, A is responSJb]e for: the trans-'

pos:tions and thus, CSY is obte[ned_from ‘ (3) .oy addlng fhe
|mproper matrlces (det ;.1)[ ffom:the EoooIQQiFet»Po:nt‘qu1ew5
(3) decomposes lnto-two ejeoee.s{noe'the  determiﬁaht changes
'fcontlnuously along a path in_.S(S}; .ng path 1eede from _A(s) to

NENENEE

which contains the improper elements.

the region

'symmetric gtoupiz consists in considering the factopgroup )

have deflned

The. usual approach te the problem of representing the

(3),,(3)
st2)

as isomarphic with Then, there exlists an irreducible re-

presehtetion'of 3(3).-whﬁch is. induced by the single faithful ir-
reducibie-repnesentation{of_ 3(3) . This altefnating-reoresenpaP
tfon_assiQh;_Eo-;he_ideotixyfthe number 1 .and to the: trensmﬁition
the_numbefu;i_ .of_éogrgé.”;his:Pfopgdure, th;“ is equivalent to
taking ehe.repﬁesentetfdn'of. 5(3) upon the_multfp]icegive group
of complex oombéfs of;ﬁoao}i:J;.can.be‘asspciatgd to_ithe' repre-
seneatiOn used in our earfier.ﬁorkt3. wiﬁh-the alﬁe?neting. re-
presentation we can construct a. representatlon assocuated to. the

RS2

primitive one. Ln-fact, snnce the characters of b - arfe, .2,

jI amd. . 0, ;the-twoorepreeentaxlons ‘are equ:valent,: In this work
wé.are-not concerped_wfth:tﬂe_alte(nating'reofesehfatjon since.it
is weede@ oue oy takfnooiﬁto.account the_physical releﬁante of the
interﬁediatenirreduoib1e four dimeﬁéioﬁelHSUBSpece oF' vt We
"3 tﬁe'genpi]iooic stafe-ﬁectors'ae beJonging to this
submanifold ‘of ﬁ' and in thls paper wWe consader the -pa;hs in
th:s connected. subman!fold ' .
(3)

We_now'COhsider the productﬁspéce A 8 A. Since the

homotop# group of the pfoouctﬂepaee 4(3).9 A is the direct .sum’

N ¥ L R
-and A’ » our next task is .to

403

of’the'homoiopy groups. of

1dent1fy the correSpondung elements of the twe groups. - First of

(3}

al1 we. note ‘that. topologlcally A “and. tha coset

plus the |dentlty are. homeomorphnc. Due to this: fact and.knowing

that the homotopy graup of A(3)

2 -2 T4

_is given by the_mép'ofthe_qhtle
Y, “ + ¥ = I , where XI and .Y as components. oFethe gen;

1 ¥ 2
titionic state-vectors are-defined-previously13, the matrices my
and g defined In {3.1) ere taken as generators of the homotopy

aroup. ni(Ats)) because the map cah be written fn;he gentilionic

subspace as

5 (8) C 403

113




¥ ¥ ,. o _ = HeH ' (3.3)

" where. Ias-ie,theZZ-rowed:identjty,matrix(.Tﬁis_is poseibie-eince

there EXlStS a transformatlon matrlx

.resu]t

where V' ls any: §J¢4* representattve m&tr|x of (3)‘33 TheISame

occurs thh DBirac equatlons whlch may he treated

the four. equatsons |nto two sets of two equatlons and treating the -

Fnvariance. propertues of’ these equatlons by meansof two component,

spinors.. In 50- doung we - restrlct the! spln transformatlons of the

four- component Splnorsto those . tnvo!v1ng a oertelm;pelrlng;oﬁ-the'"

components{ The_DlraC“equattons,'however, have invariance.pfogep--e

ties, under the'lerger-groop of, I;near homogeneous transformatlons

(pTOJECttVe grOUp) whlch underltes the four component theory

I that MERner,. the homotopy group of U’ can_ be wrltten

as.

o= . (4 (.3)").-- 8 -_ﬁ_'f_,(s(s')'“ . ._4-(:3)_) - 'z, 8.2,

2

where Z,. 'i's the cyclic group of order 2. This is'ndtoa.surprir'

sing, resu1t fdr“two reasons: 'the F:rst one:’ 1s the: presence of A

gld)

in the decompos:tlon of

‘¥!  being a non- orlentable mani fold admlts @ double coverlng mani=-

fora!%:

This very. important result on the homotopy group of U’ :

eanﬁbe-understood.as.beingjonefof the:topological origins . of the

existence. of. two kinds of statisticsuin Nature. We see that the

state—vectors belonging to the genttllonlc sub—manlfold must, from

) the stat:stlcal pount of v1ew, ‘present eharacterastncs faIllng

B';whfch gives .the desired: S

decomposrng_

(3.5)

'and the- second onets the . fact that_

o E “Quant . (W) (group of qoéntomorphisﬁs of W) and:

one of the two usual stafistics.
in our preceding'paper13, we . have: suggested: that the
conststut:ng quarks of a: baryon shou!d obey Genttie stat:stlcs

This. hypothesns is .not in confllct w:th our: present results since

we know ‘that 3 baryon . Seems- to' obey: Ferm;hegtatlstlcsu- wessha]i_

return to;thisxpoint'{etter{

4. GEOMETRICAL.QUANTIZATION

Ailifesults-pneSented,in sec.-3'sound deeeptiveIYISMmIe

~énough. 'Nevertheless- our: formulat|on of the representation’ of

3
( ) “and the correspondlng homotopy group will be.capable of. cov-
er:ng the whole problem . .of: geometrnca! quant:zat:on developed by

Sour:au?. ‘Let us. consider:the: actlon ‘of: the torus: . I°° on  the

16 2

:manlfold U T isa compact Lie group of dlmen5|on those Lie
Calgebra i -the algebra of quatern:ons (the CllfFord algehra Cy B

* The compactness. of” T, assureScheuex1stence_of arunptary,repre -

sentation of- 3(3); In our probtem thiS“can be-easiiy seen i f we

:dentlfy the set of representatlve matrices (3 1) with the opera-

© tor equatlon

,"R.:W,_‘.JJ_Z)—L_ = "R($) R(y). = .'exp'-[-f?.: (/2 +. 31@/2)]-‘-”},
- exp{i-c'f (.;:. ¢/2+; _.11!['2)-]- o (4.1)
where. ;iand ‘m are_unit'vectore.founaterniontspace, G are the
. Paufi'mattiogs,ana "¢ and 'ﬁl_ate the-ango!ar.vaoiaoles ofl 7% -
-=.31 x SI? The ftrstrexpooentjal is a convenient numerical phase..
"This corfesponds to takinﬁ therfepresentatlon of (3) on. the

torus sz' and -to deflnlng the three characters of the represen—
tation.' Hence a quantnzatlon (w,?") of U, where W¥.is a pre-
5ymplect|c manlfo]d and _P“ is-a map such that P" @ +a with

&€ Can U




i
i
|
|

11

(group of symplectomorphisms of U} can be defined. Also, there

exists a homomorphism K of Can U into ker {P)

kK o= X, (4.2}

where ¥ is a character of .Can U. This means the that isomor-
phic 1liftings of Can U are taken into one-to-one correspondence
5

with the characters of Can U. Now, if U is monoquantizable”,

all symplectomorphisms of U can be lifted and we will be able to

* - .
define the. quantizations (¥, P ) of U with the quantemorphisms

e ¥ being the 1iftings gf'the,elements of Can U.

One knows: that the space of motions Af N idéntical-par—
ticles, being a direct product of N simply connected manifolds,
is simply connected. Thus, U:is'monoquantizable and,hasla quan-
ﬁization (¥, P*); the group Can U having an isomorphic. 1ift-
ing - Quant (W) on W. HNaturally, Quant (W) is a dfscketng:oup
of. ¥ inducing a quantization (W',P'*) om ', whefe W' is the

gquotient manifold ' W/ Quant (W} ~ and wherg«the—ofbits_are deFined

as .
£f = arbit.of £ under guant (W) -
w, ,(627)7 = w (88) (6.3)
E"F{m}

pr{ety

F{z) being defined by the cevering (¥, Cen U, F) of v,

On the background of these general notions concerning.

1iftings, we now state the follbwingxresult-due to Souriausz a.

guantizable connected manifold- U' -has: the, same nuymber of’ non-
equivalent guantizations as there are distinct characters. of its
homotopy group: Ty -

This statement, in the case: ¥ = 3, suggests the pos-

_sibility of assigning to Uf three well defined'qumﬁizaﬁons since,

according to §3, the homotopy group T

7 Was three characters.

12,

The problem of guantization of u is not completely
selved yet. The partition 3(3) induces in the manifold U’ a
structure consisting of three irreducible manifolds. At first

sight it might appear that three distinct quantizations could be

 defined.~ Nevertheless, the presence of A in the decomposition

of 3(3) has led us to. the homotopy group Zz_for the gentilionic
5ubmanifold of U'. Thus, some care must be taken on the defini-
Fion of: the quantizations. ‘That the liftings exist and have the
property.of:unfqueness, is assured by the global properties of -
U1§. In:that:manner, we ;an define_thé liftings of the homotopy
c‘as$¢$ Qf U' and.the orbits of Ta' acting on W. fhis pefmits
tq_exfeﬁd.thergeometrical reasoning deve]opeg by S_ouriau5 when
congtruﬁﬁing the wave‘eduatjons aﬁd the wave functions.

| No éthen particle besides Fermions and Bosons has - been
détécted in éxperiments._ If déntiiionic particles exist,  for
which the Exclusion Pnincfple is nb; obeyed, they‘érqbablycan not
be detected.-”This éstonishing éqnf}nement coul&-be atributed, in:
our scheme, to. the presence.of A in the decomposition of é(&).

The treatment of the case of W partiéles is essentially the same

as for the case . ¥ = 3. Some further implications. of the multi-

d?mensionality of the state-vectors will be discussed in the next

section.

5, CONCLUSIONS AND COMMENTS -

in this work we have.outlined a set of results on the
hoﬁotopy group_of_é_quantizable manifold U’ representing indis-
tinguishable particles Fn the case N = 3. We have reached the
coﬁﬁlﬁsioﬁ that theuﬁbﬁotopy group consists of three elements {one

for each equivalence class}. Me have solved explicitly the ¥ = §

problem since, like.the homology groups, the homotepy groups are

topelogical invariants of a manifolﬂ; uniike the homology groups,




at

E

Our ex-
5(3)

howeéver, no general method for computing them is krown.

plicit caiculatton of the representative matrices of

13

has

permitted. us to draw some conclusions on the peculiar nature of

the statistical behavior of the §-particle system.

The topological properties of the symmetries generated

5(8)

by ‘on the system of 3 particles are élearly exhibited by

the torus defined by (4.1). To ohtain the_matriceé_tor{esponding

L3

to wé need to rotate with angles ¢ = 2n/3 and ¢n/3 around

the principal axis perpendicular to the-plane containing the great

parallel. The matrices representing the coset 5(3) - A(;) are

‘obtained by rotating an angle V¥ = 7 on the meridians of the torus.
Thus, the gauge space associated with the torus has three angular.

quantization numbers., 2n/3, 4v/3 and 7. which. tabel ;He in=-

equivalent states -of the system.

. According to our previousxworkis, thefe are sﬁbétantiaJ
differences between gentileons on.ﬁne-hand énd:bosansanﬂ'fermions
on the other hand. In this paper we havé stressed;some_tdpologf—
cal consequences of taking into accoung.the multi-dimensional méni-
folds associated with the representation of S‘N?. We see .that
there are also very important tqﬁoldgféai qist{nctions between
gentileans and usual Bosons and Fermions? it_may'be_that the most
important is the topological confinement of the former. It is
worthwhile to note that we have mot introduced specific Vphygical

models besides the three propositions enounced in  the  fntroduc-

.tion. For this reason we will not be able to write & - built-in

relation between some physical observables, such as.-the spin. and
the iso-spin and the characters of the homotopy gfoup; We believe
that this relationship could also be. Furnished by "the  topology.

This will be our future aim.
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