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- ABSTRACT

We present a,simplé argument which shows that the
dynamical mass induced by interactions of massless quarks with
pseudo~particle configurations, behaves like 'p_6 for

asymptotically large guark momenta.




$2.

The idea that instanton dynamics may be responsible

for chiral symmetry breaking was first put forward by Callan,

Dashen and'Gross(1). Subsequently, quantitative calculations )

by Caldi‘z)-indicated that intétactioﬁs of massless quarks with .

instanton gauge field configurations were capable of generating

dynamical quark masses. A detailed'investiqation was carried

(3)

out by Carlitz and Creamer ~for dquarks in the fundamental
representation, and theh by Carneiroc and McDougaLl{4)'for.the
adjoint representation, who found non-trivial solutions of the

equation which generates the dynamical gquark masses.  These

investigafions, done in the dilute"gas approximation, found
that_chirél symmetry breaking séaies for these representations ‘ %
were rathér gimilar, the dynamical masses behaving in both. |
cases for asymptotically large momenta p, like p_6. However
‘these results emerged onlj in consequence of very long and
involved calculations, and it was not clear whether thié
behaviour was accidental or not. | - . f
| In this letter, we preseht a very simple argument, |
valid for any representation of the quark system, which shows

that the dynamical masses induced by the instantons must

necessarily behave like p"G for large quark momenta. To this

end, we consider a multiplet of massless fermion fields wu ’

1<u<2T+1, having isospin T , coupled to SU(2) gaﬁge fields

Apc through the interaction:
Lp(x) = i“lF(x)yp D, ¥ (x) . (1a) .

where Dp denotes the covariant derivative: ' ' -

-iA (T . , {1b)

(Bp )y = ap v pc ' ¢’ uv
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To compute the fermion indlced masses we examine the
propagator S(x-y) deﬁnaiby_the Euclidean functional integral:

1

S(x~y) = N~ JDAHD_‘FD‘P ¥(x) ¥(y) exp J d4x(Lo + L) (2a)

I
Here N denotes gluon and quark.detérminants éhosen so that
the contribution from the perturbative sector is normalized to
unity. Thé Lagrange function Lo includes contributions from
vector and ghost fields. The contribution of a given field
cohfiguration Ap(x) to this functional can be expressed in
terms of the eigenfunctions wi of the operator Y .D:
-iv.D wi(x) = Ai'wi(x) » with eigenvalues li. The integral
over the fermionic fields in (2.a) will be then determined
essentially by the eigenfunctions with zero eigenvalue through

the expression{s):

C(T)

x m.. I Mo (2b)
3=t M xéL,j o
J#L

[where sum over the isotopic index 1<u< 2T+ is to be understood].
Here C{T) detérmines the numbér of zero modes of a fermicon
with isospin T in the field of a pseudoparticle: C(T) =

= % T(T+1) (2T+1). Choosihg a basis which diagonalizes the

dynamical mass m induced by the instantons, mjj is given

by:

=]
i

. .
4 4
34 J d'x d'y wg (x)m(x-y)wa(y) . (2¢c)




Next we consider the integral over the gluon fields

in (2k), using the semiclassical approximation. Since the

. . 1
zero eigenmodes of the Dirac equation have the form: wi(x) =
wi(x~z,p) ; where o denotes the pseudoparticle size centered f'ﬁ

around z , one obtains an integration over =z which has the
form of a convolution. Consequéntly the pseudoparticle contri-
bution to the momentum-space propagator é(p) will have the

form:

. c(T) _, 4T C(T)
S(p) = | dp LW, tpep) ¥ (p,0) T m,. Flp) . (3)
J#1

+In this expression F({p)} 1s proportional to the density of the

instantons and has the important property that it vanishes as
P goes to zero. It may be'shbwn, in the dilute'-gas

approximation, that the contribution to the induced mass is

- effectively determined by the single instanton and anti-

instanton configurations, via the relation:

m(p?) = p2 [é*(p') ; é"(p)] ) (4)

Comparing equations (3) and (4} we see ﬁhe one obﬁahu;essaﬂﬁally |
a complicated integral equation. However, it ié cruc¢ial to %
realize that the mbmentum dependence is determined solely by }
the expression in brackets in equation (3). We will now show

the help of (3) and (4) a behaviour proportional to p""6 for

|
that ¢ (p) behaves asymptotically like p_4 ; Yielding with “
the induced dynamical mass.
\
To this end we consider the solution of the Dirac -

eguation:




Y (8, -~ i A Ty = 0 (5a)

in the background of an instanton or anti-instanton given by:

5 .
At F p
Aua = nll\Ja 3\) Inl1 + (x_.z)z A (5b)
where nt are t‘Hooft(G) antisymmetric symbols: nt =
pva - wR kia
_ F _ - & ey =
= ekza , nk4a = +6ka" Defining ¢ = wL ' we can
rewrite (5), in terms of the 2x 2 matrices a, = (-—13,1)A as
follows:
+ . L |
ozu(au - i Auc Tc)w = 0 | - (6a)
o (3. —ia_ 1 )e8 = 0 (6b)
b e e - ’
.As shown by Jackiw and Rebbi(7), in order to obtain normalizable

eigenfunctions we must have wL= 0 for self-dual fields, and

R
Y =0 for antiself-dual configurations. We will concentrate

from now on, for definitness, on the solutions of eguation (6.b)

corresponding to instanton fields.

Since we are interested in determining the behavior
of @(p) at asymptotic momenta, this means that we must look
in configuration space at the behaviour of wR for wvalues of
x such that [x-z|2 << 02. [Although instantons of all sizes
p may occur, it is important to recall that F(p+0) + 0 in
equation (3) so the above inequality is consistent]. Because
of translational invariance, we can choose the center of the
instanton at the origin and then, .from (5b) and (6b) we

obtain:




1 F
x? (0. 9) s wAﬁ + Z[Oa 549] , (Tai wAﬁ: =0 {7a)
A2
where A - is the index describing the two spacial components of -

wR

It is important to realize that this equation is.
invariant under scale transformations x-+ Ax and consequently
its solution will be a function of zero degree in x. Introducing
a dimensionless parameter Y, = xv/v/gﬁ, we can rewrite (7aj_

~in the following convenient form:

' 3J 9 Al _ _
[Q"§§]AA' - (u.y}AA, y.:§§ Y] a F 2(0 o. y) . a)uu' w = O.. {7b)
We will next show that the solutions of this equation, 'for .

fermions with isospin T, are polinomials of degree 2T in y.
‘To this end we shall employ the spinorial formulation of the
(7)

Dirac equation ; wWhere wAu is represented by a spinor

P ' which is entirely symmetric in its 2T indices.
A;U,]...U2T . _
These indices refer to the 2T+1 components of the isospin T .

In this formulation, using 3 = 3/3y, eguation {(7b}. can be

written as follows:

+ .
3 -y v.d | v, _
(uu)A}Ay[ w” ] i Uyee-Uop

[(0‘ Y O ppn (O a}U,,'V Yarsv Uy« Uy, + PemtatlonS] =0 (8)
In the case of isospin T=1/2, it is readily

verified that the solution is:

(o.x) '
= (.¥)y 5 = Urh  (9a)

Va,
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which represents the small x limit of the exact solution'?)
corresponding to T=1/2. Before describing the general solution,
let us also consider the T =1 case. Making the ansatz:

X , {9b)

Y1

CVan o = Ya.n X o+ UL
A,U1U27 A,U1 U2 _A’UZ

we find that it will satisfy (8) provided }('6beys.thee¥matkm:

o . .
l’UA';UAI [(QU)A'A(BU - ¥y y.a)xU2 B
- whye) (o) X | 4 1en2 = 0 (10a)
£ Talpp A u,v v _ -

The solution to this equation is given by: .
X, = Cyla.y n1)U + Cylany n2)U | {(10b)

.Whéfe c1 “and C2 are constan#s with ﬁTz {?} and Ny = [;J.
Substituting (9%a) and {10b) into the_ansatz (9b), will vield in
‘this case 2 independent solutions, which again Correspond to

the x2 << p2. limit of the exact solution for isospin E‘=1(7).

The general idea is now clear. We make the ansatz:

l'lek;U was U wA;U

1 o LU

F “+ permutations | _ {(11a)
2° 2T :

and substitute it into the spinorial form of the Dirac equation (8).
A detailed analysis shows that this will be & solution provided

F factorizes into functions of the form:

F . =X ¥ e 2 ' (11b)
UZU3...U2T._. u, .U3_ Uy |

where each of the X, Y, ... 2 satisfies equations'analogous




Lo (10a). Therefore, from (11), and making also use of
relations (9a) and (10b), we see that a general solution has

the form:

v = (a.y) (Goyn, ) ven @y n) + permutaticns (12)
: A,U1...U2T U1A i U2 3 U2T

where ny s nj can be any of thé constant spinors n1 - or n2
 described in (10b). One can readily verify that there will be
in general 2T indepéndent solutions, each one characterized
by the numbers 21 and £2 with £17r£2 = 2T~ 1 , which

describe how many times 1., and n, appear in (12).

1 2

We are now in a position to analyse the momentum-
~space propagator S{p) . As we have seen, the above 2T functions
reflect the properties of the zero modes at small distances
and will therefore determine, via eguation (3), the behaviour
of the dynamical mass for large quafk momenta. [All other
C(T) - 2T zero modes appearing in §(p) vanish faster for
asymptotic momenta and hence will not be'relevant for our
purposes]. We proceed now to calculate the Fourier transform

- of the 2T functions described by equation (12). To this end

. - /.2 s
we use, with r = vX , the expreéssion

4 ipx 4ﬂ2 2 : k
d“x eP* Flr) = r dr r J1(pr)F(r) : (13a)
0
(8)

as well as known integrals involving Bessel functions. After

- .a straightforward calculation we find that:

X, eee R S
d4X o1Px 1 . 2T - Sﬂz(iZT) ;% «
(x2) o | P
x {2T(T+T) P, ..-B, =T ﬁ e D 4—pemmﬂ2¢ions-+...} {13b)
Y Vo ViVa V3 Vo |




‘9-

where ﬁv = p,/p and ... denote contributions involving two

or more delta functions. This yields for the Fourier transform

of (12): .
o~ ' 2 .27 a1
Ty = 161° i%% T(T+1) — {(04-13) oo (0P ngy 4
AU . Upg ™ = _ ._p.4_ | Ujfg R E Ml
+ permutatioﬁs};-;..- o . ' (14)

where we have written explicitly-pnly the cOhfributiOn arising
from the first term in (13b). [This is the onlj dne_dxﬁxiunjng

to §(p) for isospins 'T::%‘ and T=1].

-~

Clearly, the p“4 behaviour of P, . is a
. A;U,l ""U2T
direct consequence of the fact that y, . _ is a funétion
: _ : A;U,l_... U-2T
‘©f zero degree in x . Consequently, at large momenta S(p)

will be proportional to p—s, making the dynaﬁical_mass

'm(pz) in (4) behave asymptoticélly like p"6. Finally, it
is perhaps‘wdrthwhile to remark that the coefficient of the
factor p_4 appearing in {14) rises with T, a feature that

may explain the fact(3’4)

that the scale for the dynamical mass
seems to increase with the representation to which the fermion

fields belong.

J.F. thanks Prof. J.C. Taylor for helpful

conversations.
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