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AbstracF

A: polarization potential is defined in terms of the Feshbach projection
opergtpr.formalisﬁ-tourepresent the effect upon the elastic channel of the
coupling: to hon-elastic chanmels in heavy ion scattering. The polarization
potential represents coupling to specific surface degrees of freedom of the
particular reaction considered and it is contrasted to the complememtary global
approaches for the volgmg‘gotenpialnsqgh_gsrthe folding model and the proximity
potential. The coupled- channels method is used both as. a source of exact model
solutions for comparison with. the various approgimate_potential forms and also
as a numerical means of coastructieg trivially equivalent local potentials. The
imaginary Coulomb.polarization potential is due in lowest order to quadrupole
coupling. to the lowest collective 2F state of a.omecleus. It is considered in
detail since it provides the insight of closed analytical forms in various
ap;;ro:_{.i_.ma.tiogs‘_.‘. Multistep: cql;.;p_li,ug to. higher states, en_ergy. loss and off-energy
shellﬁeffééts.are alsb considered analytically. The real Coulomb polarization
potential due to the virtual excitation of multipole giamt rescnances, and the
polarization potential arising from relativistip coppections, are investigated
in detail. Polarization potential components due to nuclear coupling are
investigated numerically for-inelastic-scattering and particle.transfer,
Approximate analytical expressions for the nuclear polarization potengial are
surveyed and tested numerically. _Analytical cross section appfoacﬁeé_are

contrasted with the pplarization_pqtential approach épd with qqupléd:chgnngls.

I. Introduction

In heavy ion reactions, strong direct channel coupling effects are quite
commonplace. A well known example 1s multiple Coulomb excitation of deformed
nuclei. There are many instances where a simple one-chanmel description of the
elaétic_scattering_requires ilon-ion interactiéns that are not reproducible by
microscopic or éemimicroscopic {e.g. double— or single~folding) caleulation.
This indicates that strong channel coupling ig coming into play and is generat-
ing dynamical polérization components to be added to the bare potential,

In re?en;_years there have been several papers published which dealt with
the caleulation of these polarizati§n potentials., In particular the Coulomb
polarization potential that arises from the Coulomb coupling of the entrance
channel fo the inelastig collective channels, has been derived and discussed in
great dgtéil. Short-ranged nuclear polarization potentials arising from the
nuclear coupling to inelastic and transfer chennels, have also been considered.

The great advantage.in obtaining closed form, albeit approximate, expres—
sions for these polarizatign potentials, is obvious. Coupled channel
caleculations c%n be réndered doable with usual DWBA codes with the use of.the
appropriate:disfprting potentials. Furthermore, closed expressions for the
elastie séattg;ing amplitudes can be achleved, which prevides ips;ght into the
directzréggfiqn;me¢hanism.

) The.?u:éése*pf this %eporg is to review the topic of heavy fon polarization

poteptialg;_ We do not attempt to start from the fundamental microscopic level

of ;hefhucleon—nugieqn interaction, Rather, our purpose, given a nuclear model,

is to Subpiywﬁoténtials that should be added to the bare ion—ion potential. which
are assumed te be given a priori. Our study should, therefore, go hand in‘hand

with‘cou?led channel calculations which we purport to simplify and illumiﬁate.




The Report is organized as follows. Im Section 2, the formal structure of
the polarization potential is discussed within Feshbach's projection operator
method. We also discuss the semiclassical inversion method. Im Section 3, we
discuss .in detail the Céulomh polarization potential. This chapter constitutes
the bulk of our review, since these potentlals can be obtained in simple closed
form. The on-enérgy shell approximation used in the derivation is assessed by
considering approximétely the effects of the off -shell terms. ihe adiabatic
Coulomb polarization pétential arising from the virtual exclitation of glant
multipole resonance is then considered. We also derive and diséuss the
relativistic polarization potentials that comes about as a consequence of the
relativistic corrections to Rutherford scattering. In Chapter 4, closed
expressions for the sub-barrier elastic scattering cross section ratio to
Rutherford are derived. These expressions contain the effect of the
polarizacion potentials derived in Chapter 3. In Sectlon 5 we discuss the
background volume or bare potential in the context of a simple geometrical
model, the proximity potential. In Chapter 6, the short range nuclear
polarizati;n potentials are briefly discussed, and finally, in Chapter 7,

concluding remarks are made,

2. Polarization Potentials In Heavy—ion Scattetiug

2.1 TIntroduction
In this section we give a de;ailed discussion of the dynamic
polarization coﬁponent of the_géneralized optical potential appropriatg for
heévy—ionfcollision phenomena.
The term:pqlérizafion-potential wight suggest some femporary

macroscopic: shape’ or: orientation change . induced in one or both of the heavy

nuclei invol#ed in 2 heavy-ion elastic scattering experiment. This is a good
physical description, for example, of the strong coupling of the lowest
collective gquadrupole (2V) state to the ground state in a heavy-fon reaction on
an even-even nucleus. However, we would like to generalize the concept of a
polarization potential to the representation of any particular direct couplings
to the elastic channel Iin a heavy—ion reaction by an optical potential
component. Thus we are not specifically interested im the volume part of the
heavy~ion optical potential, such as might be generated theoretically by a
density folding procedure, but in surface components and,.;u tﬁe'case.pf Couvlomb
excitation, long range components.

A hasic framework for discussing the polarization potgﬁtié}.is found
iﬁ the Feshbach projection opefator formalism [1]. The P space which is treated
explicitly is the elastic. channel while all other channels are grouped into the

Q@ space. Une then has for the elastic channel optical potential

¥ 1
W(E, L) = (u,o¢°|v|¢o¢o) + (9,0, PY0 sgmorre P[0t 2.1

where round brackets indicate integration over intrinsic coordinates of the two
puclel and P and Q are projection operators onto the P or { space. The firse
term of Bqg. (2.1) is the volume-poteﬁtial;'ﬁhich mighé be generated by some
density folding or muclear matter apﬁroach as we will indicate in Sectiﬁn 5. We”
will treat this term only relatively briefly so as to provide a background for
the treatment of peolarization potential components.which fall maturally within
the second term. .

We would like to make some conneétion also witﬂ the féasonablf

successful theory of microscopic optical potenﬁials for the nucleon—nucleus
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interaction.” One certainiy. cannot expect to be as successful in a fundamental
sense in céﬁstructiﬁg';hehéntirE"genetalizéd optical potential from the
nucleon-nucléou:iﬁtéréﬁtibn;’ One must point out the difference emphasized by
Héhaux'[2}-betweéﬁwtﬁggﬁﬁgﬁqhénélogical optical, potemtial which has.a simple
radial shape,and-depéﬁdgsémoothly-ou t;#ggt mass. pumber- on- the one hand and the
generalizé&aoppiéél'ﬁ#&giigfiging5E;omﬁppgput§tionai-ﬁodels_which may have a
compliéatéd non—locality,IW£ld energylaépenﬁenée and stfdng ¢ dependence,. In
the nucleon—nucleus ga§e~some spéégsé%ﬁaéﬁhgd,iﬁnobtaining-computed optical
Poteﬁtials which ha#e-désirable?gﬁoqth Proﬁergiés of a phenomenclogical optical’
potential, 7

In our heavy ion-case;tﬁerExis.a natural break between the volume part
of the optical potential énd_the:sﬁrfa;evpatts arising from coupling of low
lying states. For the most part the volume optical potential will be treated
completely'phenomeuologically by a fit to data, perhaps in terms of global
potentials.

With distorted:waves thus assumed‘for the background we come naturally
to the donsidgration:gf-couﬁied-chanﬁéls,: As an extension of the DWBA, coupled
channels has been very successful in:;ePIQSEFting_cross sections for low lying
inelastic excitations. We.will extensively use conpled channels as. a model of
an exact theory with all_thé qouplings put in fully to which we can compare
results of pélari;atiqn-?ctepgialg ;al;ulgted for the same: physical systems. In
such comparisans,:aisoi-oue realizes a;prime-motivation for considering
polarization potential representations of coupled channels. Results of a
coupled qhanngls code can at times sgemjlike the. cutput of a "black box,” A
real or imaginary potential on-the p;ﬂer-hénd is something a physicist thinks he

understands something.about,

It is just this insight into the nature of the scattering through the
potential phat stands out most clearly in the analytical fesults for the long
range poiariz;tibb'potentials due to the effects of Coulomb. excitation. The
striking_sucteés of this approach for the Coulomb excitation problem will

privide a substantial part of this rgviéw.

2.2 Theory of the Dynamic Components of the Gemeralized Optical Model
Poténtial '
.The-dyﬁémic component of the opticél model potential as was menticned

alreaﬂy in the introduction to this section is given by

ByEE = G0, |V0 b 0v]ucs ) | 2.2)
where g, ¢y refer to the ground state wave function of the target and
projectiie nuclei respectively, V is the interaction that couples. the elastic
chamnel to the channels contained in Q. The same V couples amoﬁg the different
channeis in @, since QHOQ = QH,Q + QVQ, where H, is the piece of H which is
diagonal in channel space.

A particularlf transparent form of Up may be obtained bﬁ,using_the

spectral expansiop of the O-space Green's function,

5
1 1
vy = (u.oq,.o’vo )‘Q TR e [y 6,) | S £2.3)

i 1

+ .
where {|¢6i)>| are the exact solutions of the coupled channels equations

pertaining to the Q—subspace, The above equation, Eq.. (2.3), shows clearly that




Up may be written'as a sum-involving contributions from the different channels

.Iin Qy

=YW ' IR o (2.8)

Owing'to the-presenoe'of the'fnctor”le in:the‘dnspece'breen‘s functlon)'the
potential UD-is non-Hermitian... The'imaginary-part of Ub:is'responsible for
the removal of flux from the elastic cﬁannel; The forn.(2.4)'of'ﬂb indicates
that the absorption which arise from ImUD may be considefed as a sum of

absorptions due to the populations of the different channels 'in 0. This has an

immediate consequence on the total réaction cross section extracted from elastic

scattering. From unitarity we have. (see Appendix D

@ F P pn o> s
‘where mgt)s_is.the.exaot;_elasticféhannel'wave-function.k and-ﬁ are the -
astptotlc wave number and the clm. enetgy respectively, Equation (2-5) may be
reﬁritten-as.a sum, with the nelp of-En..(Z.ﬁ) - o .

oplQ) =
R i

i

R. “(2.6)

4]
1

I~

which is certainly the expeoted resnlt. VThe argument Q inlaR'is used to
remind the reader that other-processes e.g. fusion, which-are not contained in

G, also contribute to ggr. Thus gR(Q) 1s that part of oR whlch is directly

connected. with the. Q—channels. Incidentally, all other absorption processes not -

described by Q, are’ usualIY'accounted for by us1ng a volume imaglnary part
whose geometry is closely-connected'to.that of thezstatic, real, .component - of
the optical potential, In c0ntrast, all the terms contributing to UD, Eq.

(2.4), are surface peaked (see discussion below).

-9

Equation (l.3)_isrnot very useful from the practical point of view. For
the purpesé of developing approximate analytic expressions for Up, it 1s more
convenient to develop an appropriate expansion for the. O—Space Green -]
function, We accomplish this by -studylng in.detail. the structure of G(+)

For this purpose we write for the projection operator Q,ithe.following -
¢=q+4q R - S (22D
where q 1Is the projection operator for a particular channel in @ and qQ'=0'g=0.
The 51gnificance of q will become clear later,
Simple operator algebra would then permit us to! write the following

expression for Uy

- (o vev] |
(wb%lch viwo_%) o
' ﬁ(zzﬁ)

+ (1;; ¢ I(v + vc("')v),Q'G(+)Q (vc(ﬂv ) Yoo ) .
where we have introduced the bare q—channel Green's function G( )defined ,"
through

&P - @ - 89~y F 1ey71 L . R ¢ ) T
q aq Ve : SR e TR
_The quantitf.qu = q%q refers to the reorleﬁtatldn:matrixfelementTin-*

channel q.
TheISecond term on tﬁe'RHS'ofltn. (2.8) ‘exhibits cléarlfftne_multistep

nature of absorption in- coupled charinels phenomena. " Thé First ‘term 6m the .other

hand represents the effect of a partlcular channel on ‘the .elastic potential.

.The long—range absorption potentials of Love ‘et al. 13] and ‘Baltz et al. {4} are

R : + o
based on this first tern with the fnrther neglect of qu in Gé ) {Eq. (2.91).

This last restrictioulwas removed in Ref. [5]. The multistep term in'ﬁn was
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also considered recently in connection with mltiple Coulomb excitation  [6],[7]

Several approximations were utilized im all these attempts, A full account of

-.the matter is given in the next section.

in Eg. {(2.8) the channel q was unspecified. However, the
decomposition above is guite convenient in cases where one particular channel is
strongly coupled to the elastic chapmel and thus has to be considered
explicitly. Then the Q'-part of rhe full Q-subspace may be treated on the
average in the form of an optical potential im channel q. In certain instances
the nature .of the coupling may force the. channel q to act as a pure “doorway”

comecting the elastic channel to the Q'-subspace. In such a case tlie potential

Up acquires the form

. ) (Pone o proaPer
= (0 ¢o [¥Gq vV + ch v GQ Q ng_ VI_&GQO? (2.10)

The above form of Unl, considered in great detail in Sectiom 3, would arise in
the case of pure quadrupole Coulomb excitation of a quadrupole "deformed
even—even nucleus. The channel q would then correspond.to the first excited 2+
and 0' to the other members of the ground rotational band (4+,.6+, cesds
Coupling higher than the,quaﬁrupole_(e.g. he;adecapole)'may be included through
the direct coupling term V that appears in the second term of Eq. (2.8).
Clearly an exact evaluation of Un_is ppseible oely mumerically., In
order to exhibit the salient features of the physies involved in multistep
absorption, awalytic calenlation of Up is called for. This is geﬁerally not
possible exactly. Several approximations are required. One possible startiug
point is to use an on-energy—shell approximation for the bare channel Green's

funetion Gé.) This amounts to taking the system to Infinity after each

transition and bringing it back for the next. Though such an approximation

- 11 -

considers only part of the physics involved, it does supply a simple algebraic
solution eo:UD,.as will be shown in the next sectiom.

'_ Ohee the oni-shell caleulations are carried out exactly one may then
consider off-sheil effects in an approximate way, This 1s the method which we
follow in pue treafment of sub=barrier multiple Coulomb excitation effects on
heavy—ion elastic scattering.’

As a resule of the multistep nature of Up, ome would pecessarily end
up dealing with energy- and angular momentum—dependent complex non-local
interaction. The.dependence on angular-momentum and energy does not lead to
ﬁajor complications. However, the non-locality of Up would render phe optical
model analysis of elastic scattering rather cumbersome.

. One possible way of removing the non-locality, is to define, and
eventually calculate, an equive;ent local potential Uﬁ. This.is accomplished

via

uL(r)¢(r) - atr LRcR DD (2.11)

where w(T') is the exact elastie chaﬁnel‘wave‘function. As such,Bq. (2.11), as
it staeds, is not very useful since it requires, for the solution of U%(?),

the a priori kmowledge of the wave function which contains the effect of Up
itself._ZNEVerfheless Eq. (2.11) could be used to construct U%(?) numerically
using & coupled channel descfiption of w(%).‘ In our diecussinn of the Coulomb
polarizafion potential in Sectiom 3, we.shall use Eq. (2.11) to obtain the
equiveienf local potential by using lowest order approximafion for w(f) by
treating Up as ; small perturﬁation. In the cases studied we f£ind this
approximation (replacing w(;) by the Coulomb wave function) to be valid to

-1

lowest order in the small quantity n~ ! where n is the Sommerfeld parameter.
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Eq. (2.11) may also be written in the following simpie forms

2 .
ERESIER AR ¢ (R S B SHEN | (2.12)
¢
oxr
Loy RE. 1 2 s 1 2 . '
Uy =5 | THE) - == v (D] : (213

(D) b{r}
where UD(;) is the statiec, folding, componerit of the ion~ion potential énd
¢(§) is the solution of the optical Schrvdinger equation in the absence of

Up. For a:given partial wave, g, we may write, from Eq. (2.13)

2 . 2 S Sk : .
g AT | N S -
T =5 [ 505 57 WP 5ty L7 4O L W

where W, (r) and ¢,(r) are radial wave functions.. Sincé heavy;ién”féacgioﬁsn

at above-barrier energies.are characteriéed-by strong'abéqrﬁti@n_in the .interior
reginn, the potential U%,z(r) gfvéq,in?Eq._(Z,lé), in the. case dﬁ'short—range,_
nuclear couplings.(inelastic;_trausfe;g etc;), pEHks atound:thg_graiing anguiar
momentum, Lo . This is so.since fon‘Idw.ﬁéftia}.waves-bpth_férms on the.RES of
Eq.(2,14) are small, whereas for g >.2g;'¢£ Fendé:tdwards bp at r >'r%,_

the classical Eurning point. The:only_region'in zﬂsﬁacefwhere
one- finds an appreciable contribution to U%;E is. centered around Lge Thig
clearly indfcates that U%,ﬂ(r) has a window-like form in g-space. Similar
arguments can-be-made tc.show that_ug,lﬁr) is surface peaked in_r—space {zee
Chapter 6).

In the particular case of long-range Coulomb coupling,.thé-above

arguments do not hold. Considering the case of sub-barrier elastie scattering,

one expects U%'E(r) to exhiblit leng-ranged g and r dependences. Thus ¢y(r)

.13 -

would be basically:;he,fqﬁction dg(r) multiplied by a damping factor which

attains maximum effeétrat-ﬁackﬁard.angles (smallest distance of closest

" approach}. This:ﬁése‘hiil be fully discussed in the next section,

2.3 The S&udaést}:él :‘Inv.;rsion Methad
Another :way. of qdnsfguctiug Uy .is based;dn;ngnman!sfpﬁth;iytgg:é}
method. &he_#étsionrpf this'meghpd:developed_by Eechqkas_[&j séems_to;be
particularly éppropriate for treating many—body cullisioq pﬁenomen;.. In .
héavy—ion processes, oﬁe expects a semlelassical desceription tO'Se appropriate.

This entails therdefiﬁition of an avéfﬁgé:cléséiéél'trajéctbfy that describes

the relative motion, In such a case the path integral may be eiéluateﬂ usiﬁg

stationary phase approximations, The reéulting amplitude may then be used to
obtain the optical-potential as we demonstrate below.
We first recall Feynman's expressfion for the elastic transition
amplitude describing the seattering by an optical potential U, + Up
t .
1 > i .0 ’
Koo(tl,to) = { D(r)exp[.i; S[r(F)]] _ . o £2,15)
Sty . .
whére ?(t) is a path for the relative coordinate satisfying end point'(houqdary)
conditions appropriate for a scattering problem and the path integral exténds

over all possible paths satisfying these conditions. The classieal action

integral, S{;(t)} is given by

ST} = [ at[ 3o - 0 (B - (D] (2.16)

where Uo(%) is a known piece of the optical potential (e.g. folding model
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componént);- For UD(f)'to représent corréctly the effects on thé elastic
channel due to its coupling to other channels, it must be ;dch.as to give for
Koo.at any time"ti-idénticéliresﬂitéiaS{thdse-bbtéined from 2 microscopic
description of the reactiom.

Let us. assume now that the- tntiinglé wotion of thée two heavy fons are
described by a Hamiltouian H, with gigenstatéé'{!i)} and energles feyl. The

time evolution operator? of-the.intgracting'system_obeys the equation

m 3 v = [y +9E©,010 4 (2.17)
whe;e V(f(t),a) is_a poteu;ia; which-rep;gsents.the coupling betveen :ela;iye
motiqg, dgsér;?ed sy ?(;),_gnd thg interﬂ;#_(iqtriusic) coordinates {£}.
Equgtiq# 62.17)'is,to—bé solved with the Boundary‘con@ition U=I at t=t, for a
given path E(t). fhe amplitude K, for- the s&stem to remzain in the ground

state at time t, is given by

t
| I
Roo(t10tg) = [ D))o £ 5,1 <ofuit,c e )]0 (2.18)

o
where the "free” action.Soif(t)I ig giveﬁ by
s [F(t)] = tldt(-i: g @& ' ' (2.19
o { 7 U o't ] -19)
. Lk, D . o
Assuming'thenvalidityloffthe semiclzasiecal: description of the collision process,
we may then evalvate Kyo{ty.ty} of Eq. (2.15) and Eq. (2.18) using fhé

stationary phase approximation. We then obtain the following identification

=

A
exp{f'%i{: ae UpE N = O ee0lo (2.20)

o

- 15 -

where %cg(t) is the real classical trajectory that obeys the Newtonian

equations of motion

5 . > + -
wr, + ¥ Re UpE,,) + F Re U, = 0 (2.21)
or
3 >
uf,, ~h ¥ Imen <|U(rc£,t1,to)|0)

_(2u22)
+¥Re UE ) =0
In most cases of practical interest in heavy-iom ccllision phenomena, the effect
éf Un.on the trajectory is small, Therefore a very good approximation for

N .
Tcg would be.

-
b

+
Cufg, ¥ ¥ Re U E ) =0 - (2.23)

which can be solved omce Uo(?) is given. For the application of the_
semic¢lassical formalism to the case of sub-barrier absorption due to Couloumb
excitation, one usually assumes that U, is given by the Coulomb
monopole-~monopole interaction which would then 1@“& to a pure Rutherford
trajectory for %cz' Corrections due to nuclear effects, may be made through
classical perturbati;n theory. . .

Since the dynamic potential defined in Eq. (2.11) represents the
ave?age effect of channel.coupling on the elastic channel wave function, which
is cogpbsed to Ingoing and outgoing componentg, one expects to obtaiQ‘équivalent
results for U% within the semiclassical theory describéd above,_through the
evaluafinu of what we might call the algebraic average of twe comp;nents of
U%; one defined on the outgoing and the other on fhe_ingoing branches_of.the
classical trajectory ;Cl' These two components of Ug are given by (see .

Eq.. (2.20)}.




~ 16 =

+* : .
<0 V(r,t',to) o> . ) (2.24)

where v(r) is the local relative velocity. The semiclassical equivalent local

potential U% is then: given by (for a given impact parameter)

Ug.ﬂ(t)g_% rug.(f) (r) + U;(.—.)(r)_.] . L (2.25)

3, _The Coulemb Polarization Potecrtial

3.1 Early‘ﬂbrk

The original comprehensive treatment of the semiclassical theory of
Coulomb excitation did'nct treat the loss of particle flux {nto excited channels
in terms of an absorptive optical potential. However, in the adiabatic limit,
where the freﬁuencies of the virtual excitations are large compared to the
inverse collision time, several authors obtained from a perturbation calculation
a real polarization potential to represent the effects of such wirtupal
excltations in the form [9]

22 ¢ 1 I B(EA i+Z)

e . N (3.1)
" act (e £ 2% 4y EE, o

Vpol(r) = 45 Z

We note that for quadrupole excitation, which is of major interest for us in
this work, the real adiabatic polarization potential falls off as r_s, although
the adiabatic approximation is inappropriate for our casés of heavy ions
incident on rotatiomal nuclel., We shall discuss the adiabatie polarization
potential in some detail in Section 3.6.

The  interest in.an 1maginary optical potentlal t0 Tepresent the

effects of flux Loss dne ‘to -Coulomb excitation was given impetus by experlmental

results of heavy fon induced elastie scattering on rotational nuclei above the

Coulomb barrier. Figure 3.1 shows Brookhaven data for 90 MeV 1Bg 4 184y [10]
elastic scattering with the damping of the characteristic Fresnel pattern
brought about by Coulomb excitation. Weber et al. fitted their similar MeV 16q
data with an imaginary potential component with .a r—6+3 dependence [11]. The
Brookhaven analysis was in ‘terins- of .2 coupled: channels. calenlation which
included Covlomb excitation.

While the=ccﬁpled_cﬁannelsgana%ysié ‘was awcompletély_gdequate_;réat-
ment of the quokhaven=data,—proﬁuéing:ap}egcellentjfitgtb'the.ela;tic,sca;ter—.
iﬂg cross section, the:e.wés:still:a'csnsi&erablé'intergst in the. theoretical
construction ﬁf é.ﬁotenfiai'td brqﬂune_thé_experimental éffec;.' Love,nTgrésgwa

and Satchler [3] produced a neggtive imaginary potential which, apart from fi-

‘nite size correc:ions,fhas'a‘tadial'&epeﬂﬁencé of rf§(I—ZIZéeZ/EQ.m_r)fl/Z.

This potentiéllﬁas very successful in-ieproducing,;he,Erpékhavén,data.
Furthermore, illustrative calculations-doue by these authors,indicated the.'-

importance of -Coulomb absorption in- ahove Coulomb elastic scatteting with

heavier projectiles (Fig. 3.2).

In deriving their potential; Love, Terasawa an&-Sétchlgr made several:

‘approximations. The first was to use plane waves forms for both the waye

functions and the Green function used-inacdﬁstruéting the trivially'équivalent
local potential. If this was the only approximation then this potential woul&
be the plane wave limit of- the z—dependent potential of Baltz et al. (see below)
which it is not,- In_their derivatiqn Love, Terasawa and Satchler made a further
apprpkim?tiéﬁ‘ﬁhééé'ﬁalidit§~is impossible to estimate.: From their product of

the 1/%(R) and ¥(R') in the trivially equivalent local potential they obtain
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> . . .
f_ig'x whére ¥ = B-RF is. the: non-locality coordinate and k is the scattering

wave- mumber. This-pleoe=ﬁavefis:app:oxiﬁeted'by-its spherical part: jo{kx).

Since neither ﬁ nor ¥ should in general be small this’ approximation is without
foundarion. LIS also make . a 51m113r approximatlon for elq r
Fourier traosform used ro evaluate the potential. -Love'.Teraséwa,’and-Satohler

were. able ‘to” compensate ror the plane.wave aspect of thelr derlvation by an

ad hoc-use of the . localf(r—dependeur) momeutum_insteaﬁgof the asymptotic

momentum in:the de:iveﬂ formula. Thus the

coupled channels: of the LTS potentxa ; ortuitous and: the: LTS potential finds-

its- only real Justification in the unluersal comparlsoanotween its: result and:

that of the more-exact;poteot;el.o£~thegBaltZ;etea}; [4]’WhiCHFWEtwilliﬂiscuBS
below.
The’ g-dependent BKGP potential [4] was derived by using Coulomb wave

functions. for both: the Greeu functions an& the elasti:_wave function. The

non~local gotential equivalent of the effect of channel coupling on the. elastic

chauuel may- then be given
U (r;x') ==
[ T h

U (3:2)

outgeing-wave: fuuctiou can: . be: exp:essed i terms of the Lrtegular and regular

wave funct1ons-' ; ) e o L L I
1..=GL-+1F-, N e B € 3)

and an: on, energv shell approxlmation 1s made by setting Hﬂ equal to Fyoo To

lowest. order thls As A good: approxlmatlon 1n the semiclassical 11m1 “since: one:
is only 1Unorlng the effect of: 1ntegrals over Gyr 3F£ which oscillate

rapidly. -

which arises in the
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It is interesting to observelat this peint that in the case of giant
reoonanoe polarization effects on elastic scattering, the situation is
complotoly.réversed_from the one above, as the principal part of the
intermediate channel Green function gives the dominant contribution. For
details: see Section 3.6.

Ueing Couleomb wave functions alse to localize the nonlocality to

lowest order one obtains

U @) = i“ 3% z e?B(E2)4
(3.4)

: F o
Yoy 2 "2 (r) 1
X == 020|g'0>% LLEL 1 grr 'Y S F (p
3 3 < Olz > Fﬁ(r) é r 1,(r ) rr3 E(r 3}

In the 1imit of no energy loss there are closed ferms for the Coulomb wave

funetionfintegrels which are taken in their semtclassical form with i=p+1/2

e i 142 1
fArtE (e =P (x') = > (3.5)
.'ﬁfo, . xtz ’ rf3 2 6 22+n2
R . N 2 a
- Jdrlf‘ (rl)___l__F (") =l_]'£_2_r1 —-.T_arctan%] (3'6)
] 3 C2 s 2

oo

‘Likewise use is made of the semiclassical form for the Clebsch—Gordan
_coefficients and from Coulomb wave function recursion relations the ratios of

-yave_ﬁonotions may be eliminated

et2 . Fp=2 : 5 52
Fh.+—.Fi = =2 + 2_2[H+E—] (3.7)
The i—dependent BKGP potential is .then obtained
5, (r) 1 BT 2.2,
R 0 .
(3.8)

e f HEEELQ@Etﬂi ngarctan A\ LI, Ankﬁz L 2 1
~2 a2 2.2 ‘3 3 ~2 2.2 4 A2 2.2 5
(24n) @7y (2" M)
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One can come back to the comparison with the LTS potential by noting that the

plane wave limit is reached in the BKGP potential by setting n to zero leaving.

only the r™% term and no g dependence, It is thus identieal to the LTS

pot’entia_,l‘in this linit except that the LTS is 4/3 largetr. Since th'e._'onI);'I

approximation made by BKGP and not by LTS is the on-energy-shell psr_e.'scrigi.tioi: e

for the Green function and that approximation is valid in the semiciéssichls
limit to first order, we must conclude that’ the LTS pntential is wrong by a.
factor of 4/3 in this limit.

A mo;e universal.conp%riéou between thé-LTS and. BKGP-poteﬁtial ﬁas
made using an-énalytical JNKB'&valuation.of scattering ampljitudes along.a
Coulomb trajectory. _Thé sdb—Coulomb ratio to Rutherford cross section is them
given by _ . |

g?‘(“%-';%exac—xf(e)) o S SN

for the BEGP potential where

4
_ 16m K B(E2)x S L
K'= 558 —5 5 . o i : -(3,10)
n Ze i -

is a function of the constants of the ré_action_ and £(g) is a u_n'ive_rsal.fﬁnction

of angle,
£(8) =-% [(cos —-e)4 ci p* + igg Py + (sine) {“ p? +.__ (64-15x)0%)
+ (G + (ran 3 0))(atn § )° ~ (Ctan 3 0)° ] (r-022) (02 * 2%
(3.11)

with

D= (1% esetoy?

-3 -

‘The. exponential’ form is just an S-matrix form for ‘the f£lux lost to the

2% cross section. Thus to lowest order

gD (a)

p .(a). = 1 - KE{@?).

-é3;12)f“:

and one would expect Rf(a) to correspond to-the semiclassical excitation )
_ probability for Coulom‘b excitation of .the 2"' state. Curiously enough w'h::.le this

correspondence is true at lBD" the particular approximations used in evaluating

£(a) lead to smallxdeviati-ons in the angular function f(8) from the standard
semiclassfcal result g(8) at other .angles. And there is no manifest similarity
in form between £(0) and the semiclassical analogue
Lot - can Loy 03

g(e) = 3’ { 'i (siu 7 e) + (tan = (3.13) .

even though 'tbgir maXximm deviation at any _angle is 2Z.
one may also detivé a JWEB representatiom of the LTS potential in .
which one obtains & function £(8) instead of £(8) ‘to be used in the exponential
83-5/2
—5—H

csc 5 8-1

F0) = D' 4+ 62 (1 + (3:14)

The universal ratio of these functions for the LTS potential and the BGKP
potentizal is plotted in Fipgure 3.3. As we have observéd, the LTS potential
gives .33Z ' -tz;o mich flux loss in the forward direction corresponding to the
plane wave {or large- zp) limit. At intermediate angles of about- 40° to 1l0°
the ratio deviates ]_ittle from unity, which explains the snccess of the LTS5
potential in l:h:ls angulaxr region. ..Thus the univet:sal comparisan ‘with the BRGP
potential, w].ﬂ.ch, potential has been shown to be cc_)’rri?ct An :_~i,ts;.pr~oper_. limits, .

provides the bnly solid justtfic'ati'on'._for- use of_ the .'LTS-lp:;t_eu'tiél, and then. .

only in the prescribed angular range. - -
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In the following, we. discuss. the extension. of the work originated by
BKGP to the more general case of multiple qulomb~pplarization effeotg'wherg
reorfientation: of the 2% as well: as. coupling to higher excited.states—(&.f 3

etc.j.come_into;pl5y. n

3.2'.Qnantal iheory’of:ﬁnltipole:Conionh'folarization Potentiaie

Whenever the coupl1ng strength is laxge, multistep. contributions to:

the elastic scattering’ become: i "Therefore in cases. involving strougly

deformed nuelei the: two—step Coulomb polarization potential of BKGP ‘or LIS is
inadequate, and. one«has-to»coustruct=correctionS—that carry withqthem.the

multistep nature.of the elastic 2.5 inelastic feedhack coupling.

Attempts have. been made previously ‘to use the. semiclassical theory of
multiple Coulomb excitation of Alder and Hinther [12]) as a etarting point for ar
inversion procedure aime& at constructing the wave function equivalent
polarizetion potential, using,Eq: (2.2#) ano:(g.ZS).

These equations have been used in Ref. [6] to obtain,Ugffor
sub-barrier mltiple Coulomh-ahsorption using the gudden-limit closed
expressions for O]U(z,t*,£,)|0> obtained by Alder and Winther. In the wesk
coupling case, which correéponﬁnfto'the:ihclusion:og'only tﬁc:Z*-chennel,.it wa:
found'thnt'the-senicleseicallY'&eri#edfug1coiucides-ernetly"ﬁith'the quantum .
mechenical Expressionfobtaine&'uEingrtﬁe;first'term:on:the BHS'of Eq. (2:.10),

" namely the: BEGP potentialﬁEﬁt=(é;ﬂiﬁf‘Thh—trajectpfy'uneyﬁmetrized inversion’
formila of Eq.' (2,25) (without the éa'cf.a'rv112--midéth'er?’secnndﬁitem); was uséd- by
Broglia and: Winther {13] to derive the: polarization potential which is

—independent.

For large valueé-of'thc-coupling stresgth, however, the semiclagsical

' L
theory supplies basically a mumerical algorithm for the obtaining of Up once
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the amplitudes <0|U!,0$”are given. This, in a way, is analogous to the
numerical obtaining of U%erom the exact elastic wave function (see Eq.
(2:12)).

"Afnajor disadvantage of the semlclassical method is the necessity_for
dealing.with complex ‘classicalf'trejectories when . volume absorption becomes
.effective at above—barrier—energies (of course complex trajectories are required
even 1u the absence of absorption, when considering contributions from
classically forbidden regions). This, though in prineiple tractable, makes the
semiclassical method less convenient. Anotner, quantal, inversion caleulation
was performed By Frobrich et al. [14],

A more convenient starting point for the derivatinns of the Coulomb
polarization potential is the set of coupled radial equations for mltipole
Coulomb excitation. These equationa were employed by Hussein [5)'to derive. the
polarization potential for the process oty 2t 0t wich reorientation of the 2%+
exactly. The procedure suggested in [5] was further extended by Carlson,

Hussei end Baltz {7] to the calculation of the potential for the process

0*§2f+4+ Z++0+ with reorientation in the 2* considered exactly. The essential

; diate channel Green's function by its on-energy shell (delta function)

part. . The potential for higher order processes can be straightforwardly derived

following the lines of [5] and [71.

7 In the following subsections, we present in some detail the-method of
Ref. [5] and [7] We also develop a procedure that would enable ome to take
into account the effects arising from the previously neglected principal part of

the intermediate channel Green function,




5.3 The Quanfunmi: Mechanical Coupledrcﬁénnel Equations fqr Multiple Coulomb

Excitation .

Wé 1nvestigate the collision of a spherical nucleus 1 (con51dered as a
point charge, Z ;&) oun-a deformed target nucleus 2, at sub—barrler energles, Ve
study the Coulomb excitation of low-lying states IM_of spin I and magnétic
quantum numher M with excitation energy- EI" For tﬁe'totél wéve_fﬁﬁcflén in

the center:of: mass system we. use ‘the expansion [12]

o /F(22°+1) 10+1 (nI B : S B
|¢>= R s et o <) 0 TM [
. £°g . Ib' R st )
LN )
(3.15)
2T, - ,
¥ona fr)l-"f—‘”?’?_
where the channel wave funetfons. are given_hf--
GDI® =5 G m|m> B (3.16)
b am : o _

~-Here J is. the total conserved chanﬁel angular momentum and N its prbjecﬁioﬁ on
the z-axis. - The relative position of the centers of mass of 1 and 2 1is denoted
by T ﬁhile the superindices 205y indicéte the intrial projectile orbital
angular momentum and.éarget sﬁin:respeciivély. Inserting the wave function
(3.15) into the time—independent:Schrndinéer equation

(B-E){#> = 0. : : (3.17)
We obtain a system of couﬁled equations for the radial wave functions For each

channel angular momentgm 3

Z.Z e2

2 ’ B 4 2 I
d 2. op(edl) 2y T172 o o B | o o
[ 5+ ki - Bl Tl PRGN ¢ BT N 4 () v {r)
drz I ﬁz Zurz hz_ Tt (LI)J iy 2E, 21" (RTINS

(3.18)
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The coupling potential Vil.z'f‘ is given by.

l1/2.

W () = TR LD (_-1).1+'1'+x”
[ A -
£1,8'F ‘52 Y (2;+1) , S
ST ' 43.19)
x <UIEDID (5 SH; % 2 ¥ e )- SATET Ees

wherte (I']M(EX)il>'ié-éhereddced matrix element of the electric A-pole moment

of the target. We-shéll; in the fbllowing, consider the éﬁ?éific case of a
guadrﬁpole—defdrmed even—even target nuclews 2.

For a.simple Totor

<onM(e2y12> |2 = B(E2)4 7 S anye

and all othér raduced matrix elements in the ground state (E=0) band can be

related to the matrix element between the ground state and first excited state
N . 112'
<IHM(E2)|I J(ZI+1)(2I +1) f ]

x (OlM(EZ)IZ) .

Likewise, a sjmmetrized-dimensionless‘qdadrupole:strength parameter ‘may also be

defined to include dynamic effacts

I+1'42 1+1'+2 - -
B = oDy /—/ “1“1' <0m(22)52> _'(3 29y
.10 = (11) 2 1520 S a &l Ze- * "

T - 2

ay is half the distance of clcsest approach for a head on collision in’ channel '

ZyZp® S i o
e = feld ter i
I, ap = Z(E—E ) » and nI th kIaI 15 the Sommer eld parameter in

o . T . _ . . . B
channel I. 'Gﬂée'thg:w(hl)lﬂr) are obtained from Eq. (3.18) the corresponding .

T-matrices Tiz . I aré_ettrgcﬁed.f;omltheir:asyﬁptotlcifbymsP i.e.,

ey

[



(r) & (3.23)

(zI)J

pl,e T
0.0

qhgrg.¢ (r) =k 5 = g zn(Zk r) - m-y o cqg > 9, being the Coulomb phase
shift. With. ther TJI;EBIB_one—can then calculate.the'amplitudes

fIDH°+IH(9i¢) fq;,Coqldmbiexcitatiqnaftomgthe.g:ound'state [IoMo) to

the final state tIM}

i _ o :
I M +IH(3 é) = 7~E;E;—-i£ 5 v (Zlofl)(roﬂ.lbﬂleH°>

i(o’z(nl)ﬁl (g N

1 l
i T gg e © © (3.24}

- pm IMIJM > {5

T, 1 b Y, (68
2L, I 2w’ _

The differential cross sections are.then calculated as usual,

3.4 The On—Energy-Shell Approximation and the Equivalent Incal Coulomb

Polarization Potential

In order to calculate the cross section for inelastic Coulomb
scaitering one has to solve Eq. (3.18) with the approﬁriate-boundary'coudition
of an’ incoming wave present ohly in the elastic channel [12}._ It is important
to recognize:that.With-an_ingreasing number of co;pled channels the solution to
Eg. (3.18) becémeé more and.more complicated. However, much progress has. been
made receﬁily in solving these equations, even fully quantum wmechanically,
rapidly on a computér [15,16,17]. TFor the case of low lying rotatiomal states

we adopt the on-energy-shell approximation for the chanmel Coulomb Green's

function [4,7]
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i v
GE+I) (r,r') = = 2 F (k:r)) TR 1= F, (k) F o Gyr )'f (3.25)

kISLI,( ) > kI

We shall assess the accuracy of tliis appreximation later. In the above,
F &kf) (H(+1(k-r)) is the reguiar (outgoing) Coulomb function . and r<(r>) £.

corresponds to the smaller (larger) of r.and r'.

The solution of Eg. (3 18) may be written as an integral equation

w(ﬂ)l ) =F, (k°r) 8 suo * 121- I le(r’r'_) f91e'T T3 o3 ';'(F'I')R. (r' )z
| (3.26)
We now Qse the approximation (3.26) fn (3.27) and obtain.
Vg, () = Ty (07 sHO 5 e fEIl) ACCIN J;‘“ dr’
1 r
L1t T3 Mt (") (3.27)

T
x Fg(klr ) a

Note the separable form of the integral equation. Matrix techniques may now be

used to obtain the solution (details are in refefenée [71). The result is

a1y, ) Ezo(kQFj S0 8ygy (D) By ligm) [L 4 6173 90 (3.28)
where we have intrdducedgphg coupling mat?iﬁlg_whose matrixz elements are given
o . .

1:

. 1 )
=_=. Wk . = F (k7). (3.29)

Cpv1n, g1 Ko ayuygmgy | 8 Fpulkya,r) 3 £y Germ) :

Equation (3.28) can be used to caleculate the trivially equivalent local Coulomb

polarization potential in the elastic channel as was dome in Refs. [&} and [5].

_Inseéting the second. term of Eq. (3.28) in the r.h.s. of Eq. (3.18) for

-_w(goo)lo(r) we immediately obtain- for the sum

k)
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St ' 80 e N .
e Tegoerar®) ¥Grrny (L o (3.30)
022 3 (1) F (epr)iL + 10(1)122 Cy(2)
Z 2u .
= 2 vopt(r) \!’(z 0)2 ([’) 2 Opt(r) an (k[]r)
or 2; Tope (1) = = 4Gy 11+ i c<y)122 20(1) | = (3.31)

where F(i;r) is a 3-component vector givec by

Frgrzp™ T F Gn) (3.32)
(Fla30))gy =| ° 3 %.0,4042,2 3 %.0,0,2 E
S 0 IR P St A S SRS P
Tl ik g 2
an—z(er)

ST a .
‘F (k r)r3 200-20‘23?

Equation (3 31) descrlbes the effect of the coupling of the elastic channel to
211 other inelastic channels. It iz a simple reéalization of the Feshbach thecry
1for the optical botentiai [l]. Denoting the projection operator that projects
out the elastic channel of the full wave function.by P and the complementary
operator 0 = 1-P which projects out all inelastic chanmels, we can write Eq.
(3.31) as

1l (3.33)

= Vpoll +1 ¢ op

Yopt £aq
Therefore, the matrix [l +1 EDQ}“I is effectively the O-space propagator.

In our particular case of multiple Coulomb excitation through the
quadrupole coupling, Vgp is just Vsgp as only the 2t channel ie coupled
directly to the elastic, 0+, channel. Within the Q-space the 2+ chanpel couples

directly only to the 4F. The 4% then couples to the 6T state and so on. This

suggests that the structure of the matrix i + iCQq]'l is
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1te, 171

L+1g a4 C4p!

—QQ]22 = [1+1 C [l +1 C

Eys, (3.3%)

=0-2:Q-2
wheére the symbol Q-2 reféers to. the subspace spanned by states in the O-space
except the 2¥. Egq. (3.:34) can easily be derived by expanding the matrix. . .
propagator in C’'and inserting Q whemever calculating products.of C's [7]. It
should be emphesiéed that -once the matrix propagator is:decomposediinto
propagation in smaller subspaces as given in (3.34) the calculation of Vopt
becomes quite simple.’ Realizing that Cij is an (i + 1) = 3+ 1 matrix'(in
magnetic quantum numbexr space) such a caiculation canthen ‘be’ easily made by
inverting the matrix propagator. . . .

In the following we. assume Zero energy'loss?ie#the:diiferehth-*"':
excitation processes (k1 =kp). We can cpfzeef-fcr.chie,abPrdkimation by :
inserting.uhe éemiclaseical.eﬁe;gj}lossﬂfactothi¥xxft1;1v);fof‘EaCEg-."'
coupling., We alse utilize the ‘simple relafioes;'valid for large g,'emoﬁé:;7
¥y (kr), ?i+2(kr)'and Fj—é(kr)'obfained in ﬁef. [4] and given.iu-Eq.

(3.7}, Finally, we shall use the large g ‘valués of the 3-j and 6~j symbols -
needed in the: calculation and: given in Appendix B. With the above .
approximations and assumptions the expressions for Vopt(z)(r) given in

(3. 31) reduces to thé- BKGP potential considered Section 3,1 4if all coupling
except Ly is set to’ zero. _ . _ :

It is easily‘seen that the simple rwdependence of the potential giveu
in the BKGP potential also holds for the more exact poteutial of Eq. (3 31) if

the same assumptions and approximatious are made [5], i.e.,

.
iV (r) = i&i-i- A :: .- . (3.35)
cept™ . 37 4 = )
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This is clear since the r-depeadence of Vopt(r) is contained only: in the
Hnegin;‘ff;}I)IﬁfTﬁé'nfonagato: 1+ Qﬁz)]-l,.which is the quantity used to get
approximate forms for Vopt(r);.does.not depend :on t. In Eq. (35351 the

complex coefficients, az-,,b2 and ¢y depend on the,orbital—angular'3

momentum, 1, the Summetfeld parameter, S the center of Bass:, energy- E and the

quadrupole coupling-sttength qpje. Ime Ref. [6] the.potentlal t(r) was
derived u51ng -the semic13551cal theory of Coulomb: excitation developed by Alder
and Hinther [12). . The g— and r—dependence of VBPt(r) of Eq 3. 35) and that

of Frobrich et al. [14} are. quite differenr. . One advantage of Vopt(r) of: Eq..
(3.35) is its 31mple r—dependence as: well as the explicit g—dependence which can
be obtalned by inverting the matrix (1 + i C(z)) in Eq. (3 31)._ Wenshall giye
below: the result for: the case-of the coupling of I:heO+ channel to. the 2+
channel including . the reorientaticn.ofwthe-2+ to-all-orders. We shall also
present the: tesult when: including the: coupling to sthe: 4 channel. 3In1nnge§ to

perform-these .caleulations:we ‘first rewrite. Eq.. .(;3_,_—14_)-. 3 in:':.i;he -equivalent,but

fore- transparent: £ormy. o

[L+1 C(a))pp = [1# £ G () + G DT 11T 0517

{3.36)
in the,above each coupling matrix _i]#i(z) contalns an appropriate energy Toss
factor JEI;TE;ET'whereas the reorientatlon matrices ;11(2) do not.

Therefore, the Coulomb polarization potential for the two. channel case witb
teorientation is glven by g . ‘

(2)Reor. A P I I _
vopt () = -T—l_r?_u_}. ity L4 B0 Gy (33D
Explicitly: inverting the matrix [7] we obtain expressions for the: real and

(Z)Reor
imaginary part of vopt
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(2)}Reor. __ 4 (E, 2 . ay3
Re Vooeo o) = — 35 {0} ag,; 95,5 (317 8gp(Eg, )
< L +gg qi p (o (1= FEHE 43—
I 2 (12 7)

[Fl—arciin E/l) 4+ p {l-arctan ) ¢ 2 -1

P 1_-'2 '(_.2 + 1?2
gt g {iaretan ”‘” & | (3.38)
Soaaten? o @ten?
-2, ¢ -
_ 4 2 (l-arctan 3/%) 65}21
(EZ + 1)2 T
2)R -1 ¢
: ].:."?-V«Epl): eor( Y= +g5al, (~4 (1-arctan /1) *%ﬁ)—” : VEZ)(”)

] ) (3.39)
uhere Vh(2)(r) is the BKGP potential Eq.. (3 8). Eq. (3.39) is the potential
obteined by Hussein [5]. It is Interesting to notice that Re Vopt(z)REOI(r)
becomes identically zero whem qg,7 = 0, 1.e., no reorientation effect. As a
matter of fact this reswlt is more gemeral, Re Vope(r) = O when all
reorientation couplings vanish, g4y = 0, es can be seen from Eq. {3.36) and
(3.31). The above observation sheds some 1light on the results of Ref. {6] where
Vopt(r) wasg caiculated assuming a harponic vibrational spectrunm for the target
nucleus (all 941 = 0) and it was found that Vopt(r) is purely imaginary.

Including the coupling to the &% state to all orders results in a

poten;ialzvl(4?(r) which has the form. [7]
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vV, {r) = - 1 F(r,p) - Conle)
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where £(r) is given by
£(r) = .._?.__2_ 2’ @+t @A | (3.41)
. i z =t '
o= (1 s oE)VEiE s pEggG+ED)

and y = B/6. Egq. (3.40) reduces to (3.38) and (3.39) in the limit gp,4 = 0.
It is clear that ome could calculate explicitly éopt(r) to whatever order
desired. However, such expressions.becﬁme mo?e and wore complicated as already
indicated in Eﬁ. (3;kb). Instead one could simply invert the matrix propagator
numerically in conjunctior with optical wodel calculations. Tm Fig. 3.4 we show
the coefficients ag, by an& cp as function of ¢ for the different cases
studied above as well as'fér that including the excitation of up to the I = 16+
state. It is clear from Fig. 3.4 that-the imaginary part of prt(r),
deférmined'b&IRE'az,.Re by and Re oy, behavés basically.like 3 for small

-5

values of ‘7 whereas. for' large values of 3 it goes as T . This fﬁét seems to -

hold irrespective of the value of -the quadrupole coupllng streugh q.. The above
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result continues to hold when the energy loss is properly included by use of the

semiclassical energy loss factors as discussed before, The real part of

Vopt(r) shows a similar behavior to .Im Vopt(r) namely it goes as r~3 for

small ¢ and -as ;“Srfor large %. For intermediate values of £ both the real and
the imaginary parts of Vopt(r) show the gengral r-dependence of Eq. (3.35).

The q-dependence of ¥y, is shown in Fig. 3.5 The coefficient qp, by and

cp have a rafher smooth. dependence .on q. Notice that for g = 0 the
coefficients by-p and °L=0 are identically zerc for all q. This

corroborates the discussion abofe about the r—dependence of-Vopt(r).

3.5 Considerations of Off-Shell Effects

The optical potential formalism discussed ﬁp to now is basically an
on-energy-shell approach. In this section, we will investigate the effects of
off-shell contributions to pola:izﬁtion pqtentialq

In order.to begin the study of off-shell gffgéts, let u§ temp9§ér;}y.
abandon the seﬁfch for an optical potential. Insteadzﬂ;et us direc;ly:sum the:
Born series for the T-matrix., We loock at the case of elastic scattering ﬁith.
coupling to ; 7t gtate but with no reorientation. In the on—energy-shell
approxinétion, the éeries may be summed to yigl@ the fo%lowing express;on for
the elastic T-matrix.

aT 0+libozo '{ (Dozon— R e (3.42)"
n=0 L
The factor :135929’ 1s’ of . the_;fis'éﬁ

020 _ ).,

020 €T j ¥, (r) _ Fg;.[_(';.):-.ari]'?_.." S c =)

xz’




.In scattering through intermediate states in the series there will be off-shell
terms as well. The lowest. order of these are contributions to the term which
led to the (51020)2 term in the on-shell series. The off-shell parts of

“this term contain two integrands of the form Fy () /23 Gln(t) or one

integrand of.the from Gy (T} llrs_Glr(r). As the form are oscillatory, we
assume their cont:ibutioﬁ ﬁegligibie and" approximate the lowest order off-shell
contributrion as

020 2
o, .- 1 ¢ ..j?(r)—rs'(r)dr
‘Gl grpn RE n, r
r' 1
. j G ‘(r )— G (r ) dr' [ R (z™) —= F (") &
B ] I
0 o T .
. { [X] 1 . 111 LK
" i 'Fl“'(r::' : ’ r!’l|3' Fl'(r )dr ' (3.44)

If we ignore the. contribution at the turning point and inside (which’
~——ix_relatively small because.of. the limits of the integrals), then we may

approximate in the semfclassical limit

| o6, L e drr w | F, ey Ao
;T ® IR A i 2 o3

We thus may consider.térms:of the form .

020 .
M, gy =- ¥ Cpgr u"f E (£): —3,, Filr)dr.

2t T
.“ L} 1 V t T 'r' - 1 . L “ -
- I 1?1:,__(:- e r'—3 Fl(r ) dr ! Fg_(t )--—-—- ._Fi,,.(;_-.”)_. dr -

r 0. S e?

. [ F ..(r"') 1 . F (r,n-__:.)_. d‘l:-"'-' . . - . .(3_45)
o 2 r!rr3' 2 L o . .

Now, we. write

B (c') dr' . ' (3.45)
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1 0
2 = ™ b
f F o) =5 F () dr =0, {au . (3.47)
0 T 0
so0 that
i u(2)
020,2 - 28! (1) u (2) [ X AN &)
- - 1] i) 4
(Dﬁ. )Gi ), - E!.'CEP." I dUE?—' J d 1. I d [ 32 i !."9.] (3.48)
L 0 U 0
.U.'
When the orbital angular momentum is zero {corresponding
semi—classically to 8 = 180°), we have
. : . ?
uz u uf
020,2 _ _ 02 (1) oz' (2) 02 (3) ™
®, gy =~ Cop Ggp [ T Wgy" ] T d¥g ] Uoa" [Upy |
. 0 v
02
. 4
(U,
__ o2 02° _ _ 1 ,.020.,2
= COZ'____I'I =-3 (1:!0 ) (3..59)

As there are two terms of the type (DOUZU)GIZ, we find that for g =
_0. the lowest order off-shell contribution is - 2/3 of the corresponding
on-sheil._te_rm.. If we look now at higher order terms in the Coulomb Borm series,
we see that the term .whose on-shell contribution is (Dm‘uu)"*"'1 contains 2n
term_s. with one integrand of the form Gy (r} 1/r3 Ggr(r). Each of these terms
com_:_r'ibl_lt.es - 1/3 (DOGZO)n+1_ Summing over all terms, we find for thé

T-matrix element

020 ¥ (02051 2 020 l (DOZO)]

nTeng = 1 [n B o~ £
00’ Ly Po 3 % L
020 , ol
=i g3 - 5070.2 J- (3.50)
1 -0y (- g")

Following the method of Ref. [4], the back angle ratio to Rutherford

cross section is then.
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7 o903
o(180°) (a - =K ) (3.51)
og (1807 (1 +11-K)“
where
7+ g
="(1)“8°’) .16 2 (3:52)
o (180°) 45 0.2 A

is the first order cross section for excitation of ‘the 2% state (see Eq. 3.10).

We can compare this cross section with the on-energy-shell result. of Ref. [4]

102
ssoey _ -7 B (353
580 T T2 53,

Through first order in X, the two results are identical. ﬂumenicel'cenparisonS'
show the cross section including off—shellfcontributions;egreeingfﬁettet with
coupled channel calculation. : .

It is possible to extend the approach we have used here to include«'
higher order off—shell effects by including contributions to the Born series'
containing two or more integ%ands of the form. Gg(r) /03 Ggl(r). To do this
systematically?-one first rearranges the Born ‘summation to write it in terms of
the disnorted—wave'K—netrix. _The-fernSiin_nhe'Eeries Eﬁpeneidn.ef:tne latter
contain only the off-shell part ef_the'infernediate prepagators. The first term
in the series iIs the DWBA matrix element. . Truncating the series .at this point'
yields the on—energy-shell expreseions.. A1l even order terms in the series
vanish with the potential and approximations considered: here. Thef contain two
integrands of the form Fl(r) 1/r3 Gzn(r). The third order term contains a
contribution with one integrand of the form Gk(r) 1/:3 Gz(r). It 1s this

term that was incorporated into the T-matrix in the preceding calculation. The
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advantagE'of'the'niStdftedéwave R-matrix is that each off-shell term appears
only once In its expansion. In the Born summation, each off-shell term:
contributes to all higher order Bcrn:terns.

Calculating the higher order terms in the expansion of the
distorted—wave K—matrix is a stralghtforward but tedious means of including the
of f-shell contributions.-_én alternatiye apptoachris to derive a set of coupled
equations for therprincipal—partiweve.functiﬂu (relative to-the distorted wanes)
analogous. to - the inwardwoutward equations for‘the full wave—function. Applying
the. approximations use& here to this set of equations and solving them yields a
distorred—wave eretrix containing the desired off-shell contribntions to all
orders. Conparison of its expansion with the term by term calculation bears out
this statement.

The coupled equations for the priucipal—part wave-function are

-howeve:, equivalent to a large number of such sets of coupled equations.

Applying our: appreximaticns ‘o any of - these ‘zéts of equatious yields the’ ‘Same.
results; As the inward-outward equations [18] are no doubt the most familiar’ of
these, we will use- them to’ show how all off*shell contributions: can be included
in the scattering quantities.

In the {nward-outward approach, we take as an ansatz for the

“wave—function for a given value of the total angular moment,. fg,

2 R W PRI § 16
Panen T, e e A(zn(: iy

o () (3.54%)

+ 1 g
By Ger®) g L BGnyerin)

In labelling the states by spin and orbital amgular momentum alone, we assume

that we continue to treat the problem of Coulomb excitation of the rotational




i,

band. In-the gemeral case, additiomal internal gquantum numbers .could be
necessary in: labelling the states.

We rewrite the wave function using matyix notation as

L0+
q,ll

.
(x) g = ¥ JL o10 ¥ atoyy (3.55):

- B L et glugyy
The regulaf'and outgoing Couiomb wave~functions, Fg(klri and Hi*(krr)-.
the Coulomb phase shifts, opy, and the asymptotic wave munbers, ky, form
diagonal matrices F20(r), BR0(r), ol0 and k respectively. For the mﬁment,
we ate Interested in a complete set of solutiens to the problem. Thus, we take
the wave-functiom, Y*#{r) and the coefficients, A%0(r) and BEO(r) to be .
matrices rather than vectors. .

To satisfy the incoming-wave boundary condition, we must. have

a0y = 1 (3.56)

To ensure regularity of the wave-fumctiom at the origin, we must have
29 . ‘ N
B 0) =0 . (3.57)

Substituting the ansatz for the wave-function and-the. Coulomb Green's

function
¢, = - P LG et - )
oh M ORE D NI

inte the appropriate Lippmann—Schwinger_equaciou; we cap: extract the inward-

outward equations for the coefficients Azﬂ(r) and BEO{L).

(3.58)
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ko . Lo
L (1 8N = - v P g ARG

_i %0
- A B Vo wm - e 167520y (3.59)
and _ ) N :
PRI £ PP Y T2 %0 2 1, i0%0 4
E;:(Cf" B () = 7 F (x) v™{(z) F V(1) i {e AMY(r))
‘ | _ o
- 7= BN v BN o (71T B0 (3.60)

For ths long range potential we are considering here, the terms
FrovRegRo, cloviorfo and mA0FVE0R%0F oscillate rapidly outside
the turning point. . We thus expect them to contribute little there. Inside the
furning puint, we expect the contribution to the scattering of all terms to be
small relative.to the total contributlons from outside the furning point. It
seems reasonable them to neglect the oscillatory terms. Rewrlting the equations

as integral equations and solving bj back substitution, we find che neglect of

these terms to be identical to the approximations we made previeasly; Instead

of solviug by this means, we make the approximationms in the differential

equations, Teducing them to

_q,t0 R
G RGO IR I CON Gl IO (3.61)
and
—io® g 2y
ACEE S OVIEE I O N Gl e SoY
' 3
-1 %I.: CR'u(I') (Eio DAIO(T)) (3.62)
where
‘ ro : o .
ey = [ ar’ 7;2— ) vy FROGen) 7‘%—. (3.63)
0 ,
We note that
cfoqe) = g0 (3.64)




is just the DWBA T-matrix for Coulomb excitation,
To write the solution to the equations in a meaniﬁgful closed fﬁfm;

the ordering effects im r must be negligible. We must have

d_ d_ . e
L e®m], » Fem =0 v, (3.65)

"Earii&r,—in-galculating the lowest order off-shell contribution, we avoided this
assumption by restricting our attemtion to 20 = 0. The matriz then degenérated
to a néﬁber.ahd.wé had no prob;em with ordering, TIf we were to include
reorientation or states beyond the 2V excited state, this would not be the case
even for &g = 0., Howevér, when the Sommerfeld parameter, n, is large and the
adiabaticity parameters, ETLT¢ = 1/2 n{Exs - Ep}/E are.small, the elements
of the commutator remain closg.to zero and the drdering.effects are sméll. We
will assﬁme-tﬁét't£EY'can be neglected. Néglecting.ordefing effects is
equivalent té.ﬁsing the sudden and'gemi—claésicél éppfoximations.

" The solutiogs to the_édqations_whi;h satisfy the boundarj'conditions

are then

. e o
atory = o0 TCT(R) LICT Lo (3.66)
and
L PN IO
B 0(r) = 19 sincto(ry 70T LiO (3.67)
We thus have
3 ok s
£ . 0 ~24Cc*0 0
AT < BM(e) = L 10T (1 - o 7HET LU0 (3.68)
so that
2y L fo
s w o100 21670 iq (3.69)
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Using the semi—classical Coulomh correspondence between angle and
total angulér.momentum,-ye find this result to be equivalenF to that pf Aldgr'
and Winther in the sﬁd&én.limit. 'ip particular,.fo% the case discusged_gaflief;
we obtain here a form.which-iéoks.siﬁilar.£6.£hesﬂdler~ﬁintﬁ;r £éé§.angié.¥éti;
to Rutherford cross section. We obtain . -

—Tg‘ifgf,’) = (cos/P)2 . K =% '4(2»2 ' N & T 110

Compari;g this. result with the -earlier expréséibﬁs fbr'the.béég.auglé
cross section, we find that it agrees with the on-shell cross section through
.first order in K while it agrees through seéond order iﬁ K with the cross
section containing the lowest order off-zhell terms. In general; the cross
séction obtalned including off—shell terms'throu;h order n agrees with the
expression here through order o + i. The app?oximate solution to the
inward-outward equations contains the desired off-shell terms to all orders.

A caraful analysis shows that our approximate solution cam be-extended
to include the effects of a short ranée'optical potentigl as well. For this,
one replaces the Coulomb distorted waves by the distorted waves of thé optical +
Coulomb potentizl. As the optical potentfal is short ranged, it is dnimportant
over most of the range where Coulomb excitatiom occurs. One then replaces the.
distorted ingoing/outgeing waves by their Coulomb .counterpartss. The -effects of

the optical potential thus enter only through the S-matrix for the .optical +

Coulomb potential, elo® 32 elo®0, The rotal S-matrix which result

is

[ fo _ —icto 2o
510 =:eia e-ic Sgﬂ e ic eiu . (3.71)

The form of this result allows a simple interpretation paralleling the

approximatfions used to obtdin it. On the approach to the scattering center,
~-iChg

Coulomb scattering and excitations occur, leading to a factor of e
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iUEU in the S-matrix. This 1is followed by the scattering due to the
optical potential which contributes a factor §%n. Finally, on the outgoing
phase, Coulomb excitation and scattering again occur, contributing a factor of
of elafd o-1Cfo Equation (3.71) has been used to calculate the
sub~barrier fusiom cross section of deformed nucledf

Beside yielding asymptotic quantitiesrsuch as the S-matrix, the
approximate solution to :he“inwafd-ou;wa;d equations gives the coefficlents
Af0 and BR¢ as functions of r. With these, we can construct the'abproximate
wave funption. Ve can'then_proceed to construct an optical potential just as we
did in the on-shell approximation. ~Assuming the. case. of a rotational band built
on a ot ground state, we can defing-th@_gontribu?ipqzaf Céulomb excitation to
the ground state optical potential by

2n o = T yRo ot -
5 Voo ¥05 030,00 * by Y0 Dt @D 0

-y v% Lot -
L Y 2a0(2¥ G2y (2 - G.71)
so that -
v = 5> Lot
Yope () 2 3 ,{ 0062 Y0 10 NG00 G713

The wave functions we will use here are those obtained from the
solution to the inward-outward equatiodns. The only difference between this
potential and the on-shell one. is this different approximation to the wave
function.

If.we-substitute'our expressions for Alg(r) and BRo(r) into the
angatz. for the wave function and write the result in terms of the Céulomb

incoming/outgoing waves, Hfo(r), we £ind
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' £n _icto )
90+ 1 _ i, #p— 1 1c™0(r) -iC io
v (r) Je = F fH*C {r) e e e

—icko —icto 3% '
- gt 7%_ o717V () HACTY 1670 (3.75)

We can make this more transparent by defining

R, 2y i B
C_#d"t-(‘) = B g e M) O e : (3.75)
and writing
0*r) 7&— LMo ﬂlc_ - ff R0t ) 7 sEO] (3.76)

The effect§ of a short range_optical potential can be inporporated simply in the
latter expressions. One needs only to substitute the distorted waves of the
optical + Coulomb potential for the Coulomb waves and to use the S-—matrix
contéining the effects of the optical potential,

We note that this wave.func;ion is regular at the origin and satisfies
the incoming wave boundary condition, as desired. Because of the r dependence
introduced through the matrix €%4{r), the component of the wive function In a
channel zI'variés as a function of r. Although.a réaé&uable result,:it greatly
complicétes the evaluation of the opﬁical potential. In general, only with
additional app;oximatious is it pqssiblg-to'proeeed beyond the formal expression
for the'poteptial. A problem we have-exémined i% that of the ground state .
optical pétential due to CoQ1omb_excit§tion of a rotational band built on a OF
ground.étate. Using additional approximations, one of which is the yqgg(8) or
x(8) épptoximation of Alder and Winther, the'poten;ial in that case.can hé put.

in a f&irly simple closed form.




Here let us consider only the slmplest case of Coulomb excitation of a

2¥ state. For this case, we can wrlte the optical potential for the oF ground

state as
J50 o Vﬁo . o . (3.77)
opt(r) opt ,0.85. (r) u (r) ’ ’

where vopt,o.s.ze(r) is the on-shell potential obtained previously

=2

Lo =32 E 2 cay3 p 38741
vopt,o;s,(:) i 5 mn g(8) q [r) [EZ(EZ + 1)2
U T Y R
_ tan + ) s 2+ — 3 [—-} } (3.78)
id S S8 b GRS L) :

and oy, (r) is an off-shell corréction-fac:ot

_l_; sln(Ze ) cos(Ze fz () o .(3‘79)
®t 1+ cos(Ze p) os(Ze o (0 -

aﬁofr) =

The constantfélﬁ—is given by

_q!(E ( —t—
“to 3 s 1) 7

with & = £9/n. Finally, the function.fgn(t} is defined by

cfom) =g, (0 _ NER Y

an approximation used in the derdvatiomn.
. We note that in this case the x{&) or xeff(ﬁ).approximation is.not needed.
In this simple case, we obtain a potential which factorizes into the
on-shell potential obtained for this case and an off—shell correction ‘factor.
For extremely weak coupling, this reverts to the omr-shell potential since.

(r) ~=> 1 . _ {3.82)
q+0

n eV g arfg.
i_ﬁ_ {1- _E__‘;T__E )? }}1/2 o (3.0)
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For 204 in the range 0 < €20 < nf4, the correction factor increases the
strength of the potential at small radii and decreases it at large -radii, “For
> w/4, the off—shell correction factor 1ntroduces oscillations as a

funntion of 1 into. the potential. For #/2 > elﬂ > n/é, these yield the

‘unphysical réénit;nf'au 6n:ita1'potential'nhféh3ié creative tather than
_~ébsorpfive'at'large'radii. We thus'expectiéib.é n/4 to mark the limit of

vnlidity'of this poténtial. Mumerical comparisons have yet to be made.

3.6 _The adiabatic Polarization Poreatial

So far in this chapter we have conceatrated ocur attention on the
calculation of the Coulo-b polarizatiou potential that arises from the coupling

of the elastic’ channels to low-Iying inelastic channels. In cases involving

strongly deformed nuclei the use of the sudden approximation which amounts to

ignoring the energy losses, is found to be a very reasonable starting point in
the derivationi ~The resulting sudden potentidl for e.g. the process 0%

t 4 0F 18 found to be predoninantly absorptive. The Gh—energy shell
approximation for the iutermediate 2+ ‘Green function is quite a&equate.: Besides
the low lying collective states, -there are: also giant multipole resonances that
should, in principle, be taken into accouut. Such adiabatic polarization .
potentizls can be calenlared perturbativelyfas'nas'done 30 yenrs ago by.Aianr at
al, [91 and the resulﬁ is given in.Eﬁi.(3.1)} We supply below another .
derivation, which has the advanfage_nf beiné'fuilﬁ_quan;nm mechnnicai.
Furthermore, the same procedure that was used in deriving the sudden
polarization potemntial, namely'thef?eshbach reduction: method, will be adopted
for the present purpeze. -

The general form for thn nonlocal potential enactly representing the.

effect of Coulomb excitation on the elastic chanpel (ignoring reorientation) may.

be written, as in Eq. (3.2), for a given initial orbital angular momentum
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Ul(rar')”=f.2“2 ——EE—“——E_eZ B(EA)4 }. <20A0{2'0>
LA (2 + )T 2!
xob Sl E ) H Gk el (3.83)
rl+1 r‘K.i,l N 2’_' 1' < g'.' 1’ > - -

This expression may be written equivalently [12] in terms of regular Coulomb
wave functions, Fy(k,T)

% el ? B ] @O02'0>
1

U (r,e') = - =%
£ A% (2 + 1) %
= 1]
1 P T F fire) .00
RS U kf I

Now if the potenmtial is weak in strength its lowest order effect in Born
approximation is a source p(r}

p(r) = [ drt U, (r,x') Fy(kg,r') o - {3.85)
!
~~——. where ky is the ground state momentum. The integral over r' is then the usiual

Coulomb- wave function integral

0 = | art F,(k,x7) —T%iquz(kB,r') (3.86)
o x

and we note that I(k} is small if k = ky and it makes its main contribution
when kr=1kn. Thus we ignore the grincipal part of the integral over k, factor

out the denomipator by setting k = k;, and obtain

U, (r,r") = - 2 2T ¥ <a0x0]210>
(2 + D* P 2!
1 1 1 *
¥ I E - E foodk By (or) By Gert) o0 (3.87)
x r A 0 o . .
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Asymptotically, Fy becomes a sine functien and so the integral over k is equal

to {x/2)8(r - T') [19] and we can perform the sum over ' to yield

: 2
& 2 B(E 1
UE,r') = ——= 7% E: Eré)f A2
(2 + 1) X 0. x

&(r - r') (3.88)

which is equivalent to the local poteﬁtial {Eq. {3.1)).

Tt is important to contrast the above real adiabatic potential, which
is clearly energy—~ and angular momentun—independent, with its sudden counterpart
e.g. Fq. (3.8), which is predominan;ly absorptive and has pronounced E- and
g—-dependence. We can say loosely that, whereas the sudden Coulomb polarization
éotential_is generated primarily from the on-energy-shell part of the
intermediate channel Coulomb Green function (- i08(E - Hy)), the adiabatic
potential arises basically from the principal (off-shéll) part of G which is

real,

We can evaluate the strength of V A (r) by the use of the energy-

ad.pol.
weipghted sum rule. This is accomplished by writing

¥ B(EA; O+ m) _ B(Ex; O » n)(E, ~ E )

n#i EO -'En n£0 (EO - En)z
1 .
R —— )_ B(E)x; 0 + n)(E_ ~ E_)
(AE )2 . n 1]
A
z - 3B (3.89)
(AEX)

where we have introduced the familiar notation for the energy weighted sum rule

{201

S(Ex) = ] B(EX; O + n)(E, - Ey) {3.90)
. u
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and denoteéd the excitation energy of the A-pole giant resonance by AEy .
Bohr and Mottelson [20] derived a classical model-independent

expression for S{Ex), which we write below

S(E1) = 14.8 %EF[ezfmzﬁev]
S(EA) = _95&3%;1-l1 iy i (R)2* 2.2, 2"Mev], A2 (3.91)

where N {5 the neutrbn.number, m 1s the mass df'ihe<nuciébn’ande:£$:thé*tadius

of the nucleus..

After allowing for the”mutﬁal.exci;ation:of}ﬁdﬁh.targef (1) and
projectile (p), our adiabatic poiéiization-potentiél} Eq.. (3.88) may now he

written as,

275, (E 2 S (E
BsE zis )

) (x) = — : ﬁﬁgz I
Yad.pol. @+ 1P aE ) GE, )
. r_thz'[MeV}'- _ (3.92)
Clearly the above expression for’ V(l) (r) should be used in'the discussion

ad.pol,

of heavy—ion elastic scattering at sub-barrier energies. At center—of-mass
energies above the barrier the above form should be considered valid for

T > B, where R, is the radius of the charge distribution. To get a feeling
about the magnitude of the effect, we give below gengral expressions for the
isovector giant dipole (X = 1), T = 1) resonance component and the isoscalar

giant quadrupcle resomance (4 = 2), T = 0} component of Vad,pol, (r) [21,22]

. N N,
(1 o -3 P e 2.2, 4
ad pol. (T) = 6.7 x 10 rz—-;m + 2—1751 Z7Z. /T [HeV]
PO TAT
(2)T=0 _ 1/3 1/3 2,3, 6 .
Vad.po]_.(t) = - 0.0208 (A AT ) ZPZT/r [MeV] .. (3.93)

The ‘above expressions were obtained by imserting the expressions‘fbf.S(EA),'Ed.
(3.91), fnto Bq. (3.92) and using for the radius parameter (R = r; Al/3 fm),
the value ¥y = 1.2 fm. For the excitation energies’ AE; -1 and AE; -3, we have
used the empirical values 80.0a71/3 MeV and' 60,0471/3 mev, respectively.
For nucleil with masses A < 40, the expression of AEy =] given above ‘is mot
vaiid and one should initead use the following

8E, _ E§7§§ 7.4 pev) C o “: '_“. 33;941
which follows reasonabiy well the systematics of tﬁe glant dipole resonance
energles of light nucleft (A < 40).

Finéiiy, one may easily adﬁ the;contribufioﬁ'pf:tﬁé_isdQecgg; éiaﬁt

(2)
ad.pol.

of the (A =2, T = 1) resonance is almost twice that of the isoscalar resonance

quadrupole resonance to V¥ (r) by recognizing that the excitation energy
and thus one obtains

(Z)T 0

v(2~)T=1
& ad pol.

ad.pol. (ry =+g

() . , (3.9

Therefore the added contributions of the A'= 2; T =:0 and ) =-2; T =1

resonances become

(2) 1/3 2, o
vad po1. () = -._p(o 0208)(A ) 22z 6 [Mev] . | (3.96)

There has been soiie' recent experimental discussion concerning the
isoscalar gién: octupole resonance [23]. The excitation energy seems to be

roughly 150 &~1/3 MgV, For the purpose of completeness, we give below the
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polarization pétential.arising from the coupling te the gian;_3‘ resenance. It as well as other effects such as relativistic correction, atomlc screening and
‘s . . . . vacuum polarization. 'We will not discuss atomlc screeming or vacuum
Vii)pol {r) = = 3.56.x 00 3(KT-t.A#)'Z§Z%[r8 Mev] . (3.97) polarizat%on further here, but we will discuss the relativistic correctiom to

: Rutherford scattering since it takes the form of a smooth polarization

Potentials of higher: multipelarities,. may also. be easily evaluated from our
C : ) potential.

general expression Eq. (3.92). .However, these are of a lesser importance, as .

the.strepgthlofvthé:conplingigogs_down with: X,
’ 3.7 Relativistic Potential

The. giant multipole polarization. potentials for A-= 1, 2 and 3 have .

T ' . We consider Coulomb elastic scattering of a spin zero projectile on a
been calculated: for the. systems 150.+~2°82b and 208py 4+ 208py 5t Egy = 78 MeV -
. . spin zero target, A classical Hamliltonlan may be written down .which contains
and 567 MeV, corresponding-approximately to their respective Coulomb barrier
- relativistic effects to first order im 1/MC2. The Darwin Hamiltonian [26] takes
heights. The: results are shown, iz Figure 3.6. For comparison, we also show in ] o ’
. . ) the fellowing form in the center of mass system
Figure 3.6 the. fon-foninuclear interaction: constructed from the Christensen~ ) .

’ 2 2
Winther [24] empitfcal formula, H = piim, +m) + 2200 _ pt f Loyl
’ . . 2m m, O R T
R, Ry r -k -R, : : ' 1"z
= - i A - —_ " 1 .

: vn(?>,; _§0 R_1+”R2_e§p {- — s _ ) . =
: . Bl T2 B . 2 2 2 : :
N . . 7 : leze R - : ) _

with Ry = 1.233% Ail/3: - 0978 A1‘1/3 [fm) and ag =.0.63 fm. + " cz = Y. o . C I (3,98)

12

. . : D)
It s cleat~from-theﬁ£;gure that'V  {r) becomes more important than . :
. The first two terms on the right hand side are the usual nonrelativistic forms.
Vo{r) at distances r > 17 fm in.these cases. This leads to the conclusion : - -
The third term arises from the momentum correction of speclal relativity. The
) ; :

£hat any urambiguous: “observation” of the physical effects generated by V- (r) fourth term comes from the magnetic interaction arising from the motien of a

in the el : - : o
n the e aSt;c'sc?t?e?i?g'?f'haévy ions is. pogsible omly with energies that finlte mass target.

cerrespond ;0=§i§:ancés-of closes§ approach larger than 17 fm in these case. ’ To evaluate the effect of these last two terms we begin:bé rewriting
This 1 shed: - :
. s ac;oy?%#sh?d.;@_;up,her;i&: e“??gi¢s= as was recently done by Lynch the radial momentum py.

et al. [25); who héye_ﬁreseuted[aJélear-evidgnce-of the rather émall deviations ] ) 2 :
. s : o pZ - p2 _”Ef . (3.99)

where L is the orbital angular momentum of the scattering system. Furthermore,

only in these correction terms we make use of the zeroth order expression for pa




. p2 . Zmlmz - Z:%.e
(m; +m,)

where E is the asymptotic center of mass kinetic energy.

If - one makes these substitufions and collects terms t;he VHam'iltonian

becomes
2 22
e T U T T 2)
2
Tymy 2(m + m, dm,m C2
. 12
2 2 2
. leze / (ml + mz + mlmz)E
1+
r (m, +m,) c?
) B 2
2 2 2\2
_ (m1 + m, + 3m1m2) leze o 31
i o 3.101
. 2(m1 +-m2)m1m2c2 r . )
2
_zlzze_r.__z
- 2 3 * -
B ZmImZC r¥,

The pclarization potential from relativity.is“tnus the last two tetns
(in 1/r2 andIszt3). We will ignore the relativistic effects in the slight
change of constants in the other terms which give a. slight angle—independent
change in the overall cross section equivalent to a slight change in the beam

energy.

'amplitude

.-where s£§~e IS “Ie
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[ Calculation of the Cross-—Section

4,1 The Cross-Section Pormula

Within the spirit of the preceeding sections, namely the obtaining of

closed exnressions for the polarization potentials, it seems natural to seek

also closed expressions for the differential cross section that contain the-
'effect of the polarization potential " To lay the grounds for such'derivation,
'we tiote first that e are. discussing low—energy heavy ion scattering. Therefore
- the elastic scatteting diffetential cross sectiom is- Coulomb dominated, and the

__polarization potentials enter ‘as small deviations from the’ Rntherford CTOSS

section;..

) Let us'start wlth the” partial viave expansion of the scattering

._f(a) S 1 (zuz)(s“zi“l “1y ¥, (cos&), S D

Ziszn is;the nuclearypartial wave'séfnnction-and

. oy the Rutherford spase shift.

We now use the asymptotic form of the Legendte polyncaial and”ccnsider

only the near-side part which behaves'asre'ile. Because of the dominance of

" the Coulomb repulsion, it ie- expected that the far-side component, el?8 would

contribute very little to f(ﬁ).

Consequently, after replacing the partial sum 'by an iutegral we have

£0) = ok ”‘“’; 243 anp(2 (s HAROEIT o] @
Znsine o _

where AEieE 1f2 :

Owing to the small value of 6"(1) (which ‘represents the phase shift arising

. ,from_the}polarization potentials), we evaluate Eq. (4.2) uwsing a single

'statioaarjhpnase pbint; Xgs to obtain
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e | 1/2 - '
27 < ll . n
f{8) = ————= [2i(& O )+ N -ix,8]1 15 0Gy)
) /si6 2nk |da ® 207HG)) g8l [5G0
s 3.
Ap

In the:ahovg-e(ho) represents: the classical deflgction function,
atig) = 2 $("+m)]
] ETY k xﬂ
With the above form for £(8), the cross section comes out to he
A
k.sing:

3y
A Ap

{f(a)|2 = ls“.(xo.}l_z_

Eq. (4.5) is just_tﬁe_classical-expreﬁsipn for the cross section multiplied by a

damping factor ‘Sn(xo)}zj which arises from absorption.
Since the deflection functicm alxg) deviates slightly from the

Rutherford one, we;c;n‘write“Eq;'CA.S) as

do, )
ds _ Ruth 1 310 cotd - " 2,
B = a1+ e tany + a8 cor - owe] [Sag(e) |2,

where A¢ is the deviation.in 8, AB = & - Bryth»

=) Ruth = 2 tan~l %5-, and
R

dopstn a2,
dn a8
4 sin 5

(4.3)

{4.4)

(4.5)

(4.6)

(&oT)
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n is tne usual Sommerfeld parameter and half the distance of closest. approach.
The angular deviation, A%, can be easily related to the underlying real

component of the polarization potential, through

d
48.= 2&'{"‘]
_ J—;uf (x)/2) 2l (4.8)
w/_p_ (2v () Fatar)
ue2
Owing to the existence of the classical trajectory relation
11 cosfy
=3 > {cosg ~ cos@p), (4.9
sin 8

we can re-write Eq. (4.8) as (see Ref, [30]

d0 |
26 = - %-%5[.% [ sv(r)as) (4.10)

where ¢ = tan bfa, and b is the impact parameter {see Figure 4.1)

To firs; order in the potential, the damping factor IS“(AO)IZ is given by

—2# W(r) dr

At (2+1).
cz)/——(ﬁ ~V_(x) — el (24),

It

|_s“(;{,),2 exp -z f

1

_‘1
¥

'9 .
[“’ tan 8/2 22 yiry gy (4.12)

$gl8)
z; 2 w(r) dg (&.11)

0
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Another form can .be derived for A6 and ‘Sn(go)’z namely by

28 = ‘ZEI [§ f vizenae] (4.13)
.fs."(io)lﬁ =exp[—’h§w? Wrr(ﬁ)]dt.l' . .' U (4_'1'4) :

As we shall see’ later, the - forms (4 11) and (4. 12) are convenient “for cases
involving long: range polarizatlon potentials whereas (4.13) and (4. 14) are-more

adequate for short rangé potentials-(e.g. due to particle trahsfet);

g2 Applications

a) The Coulomb polarlzation potentlal ("sudden potentials ).

Ag was already discusseq, the_Cuulomb polarization potentiél
associated with coupling to low-lying colléétive étates is predoﬁinantly
absorptiva, Thereféfé'the cross section becomes, after ignoring the small real
component of the po1arizatiqn potential, in Eq, (4.6}

w—e

. de o e
do . _Ruth - ““———-tana/zjr W(r)d,b] T (4.15)

dn - " dp °XP A2

The potential H(r) is given by Eq;-(3}35),hamely3

&, R
W, (r) ﬂ‘ - L th16)

Carrying out the ¢ integrétion,_one"thénwdbtainé— ,
i SWOLIOR *"ba (L (® *gﬂ (s)Is“’)]] 4D

where the ﬁngle funetions I3(8), are given by

o757 -
:I o " 2 . . , ,
3(8) = tau [1"( )tan (4.18)
. 2ga3
o CEg(8) = (cotzg -+ 3)( )tan - 3] a9
516) "
Lo : Ea
Is'te:)" = 2tan®. [—cot ] 5+ 5 - (3 cotz% + 5)(1-;-‘1)tan%12L (4220
_ 5 F420;

';and.tﬁe;a%gle—déggﬁ&éﬁt'cdeffiéients aio(a)i'bxd(e) and cib(a)'aré given

e.g. in Egs. (3.35) and (3.38):

© . Such hrformula for—gezlaR was used in Refs .[4] qq& {7}7to~calpu1ate

-CQulcﬁb damping:id the elastic channel, TIn“Ref. -[4] the orbit integrals were

evaluated Iu a slightly different way frqﬁ'(ﬁfié)'tQ (4.2D) above, but a
continuation. was made to abovegthezbgrfief. Hchevéf; below the barrier the
results agree aimoét:identiCallyﬁﬁitﬁ.thére?pteSSipﬂﬁhgrg with-the ag;y by
and cp chasen to include only ok Zfchﬁﬁling;:u.

Application Q20)-éan-be-seen usihg-imaginary potential .

(3. 39) (coupling only;to the 2+ state But including recrientation): which . yields

'f;-‘%gq20+2g02(502)r1+ 2+2f(a)} Teo] 7 (4.21)

" where

CEy(e) = (1 - (li)'tauiyztan‘*ﬂ + %siﬁ‘*i}- - (4:22)
and f(e) is the universal function of angle{A} (3. 11) or more properly (3 14).
Further discnssion of cross section applications is given in Ref {71. We
should only note here the connection between quh'applications involving the
imaginary polarization potentials and thé formulation for directly calculating
such elastic scattering cross sections semiclassically by Alder and’

Winther[12]. For example the expression Eq. (3.14) is just the semiclassical ~




angular distribution for excitation of the 2 state and the use of it in e.g.
Eq. (4.21) just expresses the removal of that 2% flux from the elastic chamnel.
These cross section calculations are ﬁot a replacement for the semiclassical
theory buf rather to ciarify the nature of the absorptive potential.

Finally,_ we give below the'-.elas'tic scattering cross section ev;luated‘ at
9 = ¢ from potential. _E,q._; (3.40) (include?d in this __g:alculatiqn. are the c.oup]:ings_
to the 2% and. 4% states as well as the reorientatiqq _of .t_he_ bag state)

e Bgg{md . E
3;(5" - e’“’L 45 0+230+2 0+2)

L+ 0‘-065-‘12;452,\4.(52»,4) (6,23

“09036-'1%4*7 1+ 0.06597 485, 4 (85, )]
While- this: expression- gives one' a:reascnable gualitative account of a sub .
barrier imaginary polarization potential and: the mechanism of several couplings,
it is in the pext section that we will see the more quantitatively useful cross

section expressions derived from real polarization potentials.

b) The adiabatic Coulomb polarj.zation _and relativistic potentials.
Here w; have a.n attr#é.i:i!ve 1;e.al. potential, s.o .we will assume
!Sﬂka(a)}12 of Eq. (4.6) is unity and work out ap for each Vo /T2 real
potential, The AS results: for ll_r_l':,l _l/_re,- and- 1/1:-5 potentials (corresponding to
virtual dipole, quadrupole, and octupole excitation,. .Section 3.6) are given in
Appendix C. _If we write . o B

Ly,

k) = s (4.28)
r .

and . then make use. of the Appendix C resylts in Eq. (4.6) we obtain the closed

forms . . .

and

(1) 4o, vgll) cos3¢0
d:ﬂ = :‘;zth [1- m = [%{1 + 16 cosz¢0
2Ea  sin ¢g
4 1 2
+ 8 cos $g0) - 3(29 + 46 cos ¢o)cos¢osin¢n]}
(2) 4@ vil2) cos 5
40 Ruth ( 0 cos 99 [ 3 g
Ry X -— - 5 tandp - 527%40).
d d gEa® sinl'¢p 2 p)
* (-315¢0 + 420{>osin290 - 12040s1n"#g
~ 315cos$osindg ~ 210cos¢osin3¢.
+ 8cos¢usins¢u) +—;—(840¢osin¢ucos¢o
3 2
— 480%0sin " Pocos $o - 840sin“dg
+ 960sin $o — 48s1n°00)]}
{(3) dF vol3) 8
dd Ruth 2 cos ¥o 5 .
11l d‘fll {1 - [- Ftandg - ;—3l0t¢0]

SOEa8 sin”%

* (-1501560 + 27720%0sin’90 ~ 1512040s1in ég

+ 2240¢osinso + 1501 5cosbgsindg ~ 17710cos¢05in3¢o

+ 4648cos ¢esin5¢o — BOcos ¢osin7¢o)
+ %(55&40‘#0(:05 Posingg = 60&80¢ocos,¢osin3¢o

+ 13440%0cos ¢05in $g - 55440s1n° ¢U

+ 78960sin*$0 ~ 26208sin ¢o + 640sin ¢u)]}

(4.25)

(4.26)

(4.27)
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Ve writé‘the;percéntagé deviation

'AQ"Q) : [.du(}‘) _ dc‘Ru.t.!-l'UdU.Ruth
; - YR dgn dn

in the following form

s v A1y e
(n _ _ Yoo ..g.(l.)(a)_ _

Ao’
2Ea®*
v (2)
agt2) o Yot 2o
: 8Ea® )

3 . :

@ _ N o .

actPe 2207 gy C (4.28)
_ - 8OEa® - '

- {13 (2) &)

The three wniversal functions g(8), g{6) and g(8) are shown in Fig. (4.2). 4s

one clearly sees, all universal functions attain their maximum value at § =

180°. Furthier they have zero contribution at 8=0. This implies that

measurement of these effeets should be made in the backward hemisphere. We

should mention that Eq. (4.25) for A=l, has beemn previously obtained by Baur et

al, [31}

4 simple measure of pg(A) may be obtained by setting g=180°

sotD(amy) = _3:66E2 ~ o (1)
(22,623

5 :

56(2)(8=ﬂ) ) S ¢ )

(Zy2,62)%
7
5.0987_ _ (3)

36" (g=m) = :
(2)2,e?)®

(%.29)

- $1 —

Note. that VG(A) ﬂjl1ntrinsica11y'negativé.
Since the numerical factors appearing in the expressions above
vary very slowly with A, one may, to get an order-of magnitude estimate of
Ac(l), write a genefal'expression valid for any
_EZ +1 Ay

()3... . S
Aor T (8=T) ® e Vo
(lezez)z +2

(4.30)

" The célcﬁlation'of the deviation ao{R) due to relativistic
effects is straightforward_an&_foilqws the same lines as the “ones used to
evaluate Ao(A) above. ‘As we have seen in Section 3.7 there are Lwo

“polarization™ terms arising from special‘félativity (Eq. (3.101)], namely

V2.

2 2 232°
Mip" + M + M M2 [ Z1Z2e e
w® - 2T il ) (4.31)"
2(Mp2 )M M2C .
2z .
C(ry = - Z1E2eT (2 : ,
@ =-_""°7_ L R C 1% 1

2M1H202 r3
The corresponding changes in the classical deflection function, Eﬁs;:(ﬁ.g);

(4.10) may be easily evaluated

- 2 2 V ‘2.2
. : Mi1® + M2 + 3MM2 (Z1Z2e
_ MSR)_ o 122 {Z1 22 ) o_t2¢°
CO2(M1+ M2IMIMaG - Ea"
- 40 + sin#uéoé#o] Ce e . o i(q;3j)

T 2 . . g
S (my - -EZ1Z2e 7 2MIM2 - R RS I : S
aef®) - = ot Z40[ b0 + sindocosto] RIE!
M MG (M14M2)a - ’ " A
Summing.ﬁqé.,(4.33) and (4.34); we:obtain;the.total-change:inﬂ;helgeglectipn :

function ‘due to relativistic effects
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AB(R) - 2E_ cot2¢0[—¢0 %—sin2¢u] (4.35)
ucz . o .
m
wheré'u‘#'mljz . is the reduced mass.
1792

The effect om the Rutherford cross section then obtains from Eq. €4.6)

(R)  dog . S
e R
dan dg ) 2
ne _
1 _ 28
+[ocote(eing + 8 ~ w) - cos 51} (4.36)
(R)
The corresponding universal angle-function g(8) defined through
2™ = - B R, S (437
. e .

is shown in Fig. 4.3

Note that in Egq. (4.36) there is no dependence on 2424 in the

relativistic correctionm term; a 1/a® has cancelled the numerator of the

potentizl. At 180" the angle dependent coeffiéient of-ZEcm/u'céris 22/3, and
it remains negative going to -1/2 'at: 90° and to -xG/B at small angles. For an
infipite mass target yp-is equal to the projectile mass,:and 2 Ecmlu_cz is
equal to-vi/cz. ‘As we stated in Sectiom: 3.7, for a-finite mass target
relativistic magnetic effects -enter in; Theirzl;west order effect in
combination with the lowest order relativiétic secalar potential term is to cause
the mass, p, in Eq. (4.36) to be equalrto the reduced mass.of ihe system. For
the case of'spin /2 electron-scatteringia similéi‘féiatiﬁistic correction haé
been derived to lowest. order in Ziziezlhc-(whi;h is ipapprépriate'here);.but it
only ircludes the cos?8/? term in the square brackets:  {32]. -

We present in Table 4,1 the results qb:ained from Eq, (4.29) for
several heavﬁ-ion systems with E taken to be equal to the height of the Coulomb
barrier at 1.44 (Apll3 + AT1/3) fm. The-strengthS’Vb(l) are .

calculated from Eqs. (3.93) - (3.97). The effect on the -cross section is as
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largeas 2% for the summed effect of dipole, quédrupole and octeopole excitations
with two heavy nuelel and about 0.6% for 189 on a heavy nucleus. Though the
octepole excitation is quite small, the quadrupole one is not negligible, a
lictle less than half that of the dipole. The relativistic effect is largest
for uranium on vranium (.8%) but not much less for any of the other cases.

Since the experiments of Lynch et al. [25] were done at very low
ene?gies, the dipole effect (which goes ad E?) is relatively more important than
the quadropoie effeet (which goes as E%) when compared to our calculation of 78
MaV 180 on 208py.  The highest energy measured was 55.7 MaV which corresponds tol
ardistance_of closest approach, 2.0(Ap1/3+AT1/3)fm. At this energy we
calculate a quadrupole contribution of Au(z) = —.03% at 150°, to be added to
the dipole contribution of —.2% obtalned by these authors with a'VO(I) =
—2.24x10% (MeV fm), slightly larger in magnitude thgn our VU(I) value. Our
formula for Ag(R} agrees with the angular curve for 50 MeV i%0 + 208p
calculated numerically by Lynchret al [25] and we also agree with théir energy
dependent caleulation of the relativistic effect.

Before ending this sectiom, we giQe below the contribution to the
sub—barrier cross-section arising from the short ranmge nuclear optical
potential, Clearly, the kind of analysis done by Lynch et alﬁ, involving
sphericgl,nuclei, one has to comsider, aside from the giant rescnance
polarizafion, relativistic correction, vactum ﬁolarizationretc.,_the small

contribution of the nuclear potential. From our Eq. 4,12 for A8{2), we have
_. 2 15 ’ .
A8 (2) = 2 m {—Xg VN(r(t)] dt] (4.38)

where r{t) describes the Coulomb trajectory. Using an exponential form for

VN, which is the real part of the ion~fon optical potential

~(r-R
V(e) = - Ype o, (4.39)

ar z
are have, after expanding r{t) to second order in t, ¥ft)= ‘I"(l?)'f';:rﬂ’)t »




ﬁ f —fr(G)-R]/a. 3 J

AQ: (z) = ““'—e — L (4.40
/rm Ew e e eE 0

Straightforward calculatlon, given for the cross- section ratxo to Rutherford

{Eq. & 6)

|y ORIy 1437

I

o
—(8) = {1 - =
Ruth : 'K : ‘_“’r _ (1+n )12

u- —(I(D) e Rv)/av ‘2

-2 S @b
R &
' 2tp
exp - —p—— Woexp[~(T(0) - R \/a ], _ © (h.41)

where rfl(a),”cbfresﬁond to thé:élassiéal;.éngie dependent colliéidn time
t, (8) = *(JT‘E"’ iE1+"2) 1/"+(1+ Moy
i

and ¢z T/n
(4.41), has been uséd preQioﬁsly by Landfoné and Wolter [331, and it was
found to reproduce very well the mofé.exact optical model caiculation. One sees
clearly.from Eq; (4;41) that thé érbss section is more sensitivé to éhe
ipaginary part Fhan the realspa;g of the interactiom, for large.values of ka..
‘It is ;mportant to mention that our formula, Eq. (4.41), 1s alse
applicable to any short—raqged nuclear polarization potentials; e.g. transfer,
of the type discussed in Sectidﬁ 6. E
Finally, we stress, that when. applied to a particular situation,
one has toiaﬁd'up a;i the AB‘S'arisiﬁg from the different real (refractive)
polarizatibnnpdteutials, and_uég_the resulting total angular deviation to
construct ﬁhe.cross-section, aqcording to Eq. (4.6}. Of course the absorptive
components of the polarization bbtentials enter additivelyliu the exponent of

[sB(20)|2 (Eq. (4.10) and (4.6)).

—EF -

4.3  Comparison with €Coupled Channels and Trivially Egquivalent local

Poteptials
"A number of comparisons have been made between calculations using

polarization potentials and the exaé; coupled charninels caleulations which they

burport=to.repré§ent. Figure 4.4 shows the results of the sub—Coulomb 70 MeV

20y scattering on Sn.isotopes [27] along with calculatioms using the BKGP
potential in tﬁe closed fbrmula Eq. (3.9) (dashed line} and coupled channels
calculétions”fsoli&.liﬁe). Terms for both Sm and 20Ne were included. While the
qualitative-agtEQment is good, at backward angles-discrepancies occur especially
for lhasmﬂand ISQSm; These discrepancies may be at least partially attributed.
to the lafgei energy loss factors E, which are only described approximately by
the angle indepgndeﬁt factor go(E). At angles farther forward and especially
for cases with'é.very low-lying 2t state (small £) w@ expect the potential énd
thus the c:ogéi;ection formsla to have greater validity;

Iﬁvestigatian has also been made of the validity of the multiple:
Coulomb polatitétion potential of Section 3.4 by comparison with. coupled .
channels performed by the code CHORK [28]. .Table 1 shows 180° calculation
results for 48 MeV 160 on 152gm performed'with an artificially large value for
the couplings 'qy.1+ te probe the limits of potential validity.

The quatitative .effect both of.including reorientation of the 2t state
and of inéluding'coupliqg to the 4+ .state is seen .to be a reduction in the total
ahsorption. Tﬁis-comés about beéause the lowest order imaginary contribution
to the poténtlél.isrf?dm four step processes from both the reorientation and the
&t coupling. éipce_each step contributes a phase factor -1, there is an overall
change in Sign.frdm thé-;wo_stép (negative-imaginary potential) to ithe four step
(positivé iﬁaginarﬁ_poteﬁtial)lprocesses. The most obvious discrépaucy between

the optical model calculations and the coupled channels caleulations is in the
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basic G+2t coupling to which the higher orders are added. The optical model
ratic to Rutherford cross section is 0.421 at back angles compared to 0.373 for
the coupled channels.

Table 4.3 investigates the breakdown of the optical potential
represeatation in a series of calculations in which the coupling strength is
increased for the 48 Mev 169 4 152g, two channel case. In addition to the
coupled: chamnels. and optical model calculations, we also - present cross. sections
calculated with' the wanweoa}detion‘of“the-optical ﬁodel‘cross section, Eq.
(3.9), the oﬁ~sHeIl:summatied fbrﬁgla for-fﬁe.cross section, Eq. (3.53), and:the
summation formuiaiincludiegfldweet orderﬁoffeéhell“effects, Eq. (3.51). It is
clear- that ‘as the coupfing‘érrengtﬁ"is”irereaeed, the optical potential
representation of the’ coupling effécts Ioses irs'validity. At K =.2.24 the
———optical aodel cross sectiou-is'en order of magnitude- larger than the coupled
channels crass secrfou. However, our’ IDWESt order off—shell summation formula
is remarkably’accurate when compared to- the coupled ¢hiannels cross- sections
throughout: the range of:: coupling constants’ taken. The:suecess”of'the JWEB
formulaiis llmited to- belng a good evaluation of the optical potential Cross
sectiong: .

Since. the. poiarization,potentials have shown—seme success in.
representing coupled channels, it: would e interestlng to see: how a trivially
equlvalent local:potential? would,co-pare to the analytical form. Figure 4,5
shows:: calculations of *Franey-and: E11is" {29} for’ the 72 MeV 18G4 18ig, pure’

- Coulomb: caseﬂwithont reorientatiou.” The:dotted'Iiue is'the“BKGP:potential. At

lower: partial waves: the geueral trend agrees, although there is some oscillation

corresponding o maxima and ‘minfma in the scattering wave, functious.' At higher
partial waves: the' correspondence -between the trivially equivalent local

potential generated from coupled channels and the BKGP potentia1 is impressive.

_¢7-

The-adiabatic case has also been considered. Figure 4.6 shows the
ratio to Ruthecford cross section for 78 MeV 150 on 208py, calculated only
considering the isoscaler guadrupole giant resonance in 298ph, The coupled
channels calculation, the optical model calculation with 1/r5 potential and the
classical formula Eq. (4.28) all agree to within about a percent of the
deviation from Rutherford scattering at all angles. This not only assures us
that the classiecal scattering theory provides a very accurate cross section for
the_l/rs peteﬁtial, but that the adiabatic éolarization potential truly and
accurately represents the effects of channel coupling when used to provide a
cross seetien.calculation.

Figure 4.7 shows the trivially equivalent local potential calculated
for three initial orbital angular momenta in our test case compared with the
analytical I/r6 potential. In the crucial turnimg point region the
eorresgoﬂ&enee is good with oscillations or “have" such as seen in the sudden

case [4, 29) appearing at larger radii.




5. . ‘. . The Vblmme Heary Ion Ootical Potential
It is. appropriate to discéuss the volume heavy ion optical potential before
discussing the nuclear polarization potentlal becaiise: the volume- votentlal is an
ingredient i the construction of "the: nuclear polarization potential We follow
a s1mplified proximity potential approach [34] because it emphasizes the-
geonetrical aspects of “the volume heavy ion potential and olarifles the
telationshlp between. the folding model [35 36] and the proximity [37 33] or
global [24] type potentials.
If one considers a simple two' channel problem with nuclear quadrupole
coupling. then the: coupled . equations. may. be written
(Ep - T'_'+_Ug(t))m(r) 2o T (s
fE; =T + U (r))xZ(r).— u (r)xg(r) O Guwy
with reorientatlon ignored for simplicity. Uo(r) and Uz(r) are the L-O and
2 angular momentum projections. of z deformed volume optical potential V(r,8)
Uﬂ'('r) = 4 j dﬁV(r.e) T - (5.2)
Uscf) = j de (p)V(r e) . {5:3)
If we write equetion (2.18B) in an integtal;equation form'we”heve |
2(0) = [ Grr 2yt (5.4)
which in the usval way may be subétitotedaintorEq.,(5alai_tojyie1d
(Bg ~ T+ Ug(r)-)x(,(_-r_}_ =:-_[:--dlz::-_':V.(r’,r‘."_)'xO‘(r'j’ - (5.5)
with -
V(r,r') = Uz(r)Gz(r £ (). (5.6)
The non-local polarization patentlal V{r,r') from which we will construct a
hmlmﬂmhm,dﬁﬂyﬁmﬁsﬁmuhommethwmwﬁof&eme

potential and.indirectly on-the L=( component through the distorted Green

function G,(r,r'}.
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ihe preceeding example is but an illustration of how the volume potential
is boend up in any consideration of a polarization potential above the Coulomb
barrier. The usual practice in fitting data is to paramaterize this potential
with a complex Woods—Saxon form. This proceedure is often adequate in practice
because the quasi—eiastic scattering is only sensitive to the tail of the
potential with'strong absorption damoing out contributions from the radius at
which the two nuclei touch and smaller,

Actempts at calculating the volume real potential have concentrated on two
approaches, the folding model and the proximity potential. As we will show
below, the proximity potential can be geometrically related to the folding model
in that a proximity formulatiom can be shown to be an eecurate approximation to
the folding model for all heavy ion reactions.

A couprehensive review.of thefiolding model for heavy-ion scattering has
been given by Satchlet_andﬂLove_[36}, They consider in detail the double—folded

potential of the form (Fig. 5.1)
CnR) = [ at f atup, (Bep Ve = R+ E -E D D
where V is the nucleon—nncleon effectlve interaction with its various ceatral

spin—orbit, and tensor terms. Love ‘and Satchler utilized a G-matrixz constructed

- from the Reid'potential and were able.to produce a real folded potential which

fit a number of heavy ion séattering cases with an average normalization
increase in the potentiel of 11Z,

' Another way to write the folded potential is
t®) = [ afy R,y (5.8)
where
E E P T S
Ub(ﬁ—r) = f drppp(rp)v(lﬁ rl-rp') | (5.9

If U, is simply taken as a phenomenclogical nucleon-nucleMS§ potential instead
of this integral of a two body necleoni—nucleon Interaction over the nucleus
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density, then we have the single folding model in Eq. (5.8). Although the
poteutiai of Eq. (5.9) gives a moderately successful representation of
nucleon-nucleus scatte:ing,' the single folding nucleus-nucleusipdtential Ug.
invariably overestimates the strenmgth of the real potential requiteé'by heaxyy-
ion scattering datra by a factor of about twoe. The séeming:disctepan;y'implieﬂ
can be'res#lved'by censideration of the effect of'the'dedSithdependenee-ffom
both nuclei in the double folded model and the details of‘the;su;ch§1éhapequ
the potential U, {36}.

For an analysis of global systematics of nucleus—nugleus;s;attering_the
proximity ﬁotential‘is thé natural approach, .Since ﬁe-afg'interested ih a
volume potential to be used in a Schroedinger equation for one. or at .most
seve;al low lying states, then the proximity form of the folding model is
appropriate rather than the proximity form of an_interaétlonipoﬁential in which
the two nuclei dynamically readjust iﬁtofhigH1Y'ekcitedfstafés; Such a
situation might be better described by the Thomas—Fermi approach for example as
developed by Brink and Stancu:[38]. A pertinent disadvantage of the
Thomas—Fermi approach is that it b:gaks dp?n_in_the low density regime, which is
just theregime of_interest for cénst:ucting polariza#ion pntgntials.which

represent the effects of surface interactions.
V(T =V a(E") : , (5.10)
The folded potential then becomes
UL(R) = By [ dfpp(R-E)0 (FD) 0 (5.11)
Of course this integral may be -evaluated exactly on a computer. To obtain its
proximity form we follow the approach of Brink and Stancu and make use of the

spherical symmetry to rewrite Fg. (5.11) as z two dimensional integral over rr

and Tp (Fig. 5.2).

- Pl

U(R) = ngu f Tp drTrpdrpp(rp - Rp)u(rT - RT) {(5.12)

ﬁith the limits of integration

T o]

R -T
T + rp > > er

From this form Brink and Stancu obtain a two term proximity potential

o B
U (R} = Ir leg(8) + g =148}] (5.13)
p2 (RT+RP+S) ZRTRP

where eg énd g] are one dimension functions of the distance 'S between the

muclear surfaces along the line between the centers:

e (s) = ] tlelr)ae "(5.14)
S

and, in our particular folding-potential case
= N
e(t) = Yy o (u)pp{tu)du (5-15)
o

This two-term proximity potential contains the next correction-for.fiﬁité
curvature, in comparisom to the more approximate one—term proximity potential of
Blocki et al. [37],

0@ = 2 e () L (5.16)
p1 'RT+Rp o R &
This one term korm becomes the same as the global potentia; of_QhFigggﬁsen_and

Winther [24] when one takes an empirical form for
0 s, ' -
co(5) = 32 exp(—g3) . saDn
To make 2 more detailed geometrical analysis of 50(5) wa assume. that both

the projectile and target demsities have the same Fermi function form (with‘the

sazme diffuseness)
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' og -
"°p(rp) T TH exp{(rT—RT)/a] (5.18a)
o7
pplry) = 1 + exp{{r -R_)/a] (5.18b)
PP
Then the integral in Eq. (5.15) is equal to
e(t) = o’p] L ' (5.19)
p'T exp(tja) - 1 .

Fl .
‘ H . - .
Brink [34] suggested this form for the one-term proximity version of the folding

potential Eq., {5.16), which becomes

R =
. . 0.0 FRp tdt _
'Uﬁl(R) 2"'W"pp"T Ry + R, £_RT_Rp explt(a) - 1] (5.20)

Baltz and Bayman [34] have adapted Eq. (5.19) élso-fot-the two-term proximity

potential, Eq. (3i13), and obtain

R = “
i [ TRp 2 . tde
Tpr (RY = 20¥gp0q ~g= | é_-glkp expltia) ~1]

RT#‘?- i L traE. . .
By ker,x, wlEGa) - OT | “(s.21)

Figure 5.3 ghows a global comparison of the ome— and two—term proximity'
potentials geueratéd'hy Egqs. (5.20) and (5.21).with exact results obtained by
numerical folding on a computer. Five representative cases were taken, spanning

the region.of heavy-ion reactions: 16g 4 160, 16g 4 58Ni, 169 4 ZBBPb, Ssﬁi +

-zost, and 208ppy 4+ 208y, The plotted results have a clear interpretation: The

proximitf pofentiéi in its two-term form is in excellent agreement with bhé
folding modei_forrali Sggf;ioh reactions, not only in shape, but in absolute
maguituﬂg;' Furthermﬁte; witﬁ.a slightiy incieased normalization, the one-term
proximity potemtial is_al;o‘esgentially geometrically identical to the folding -

model.
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6. The Ruclear Polarization Potential

One of the first treatments of the effect of inelastic scattering on the
elastic channel in terms of an optical potential component was made by
Glendenning, Hendrie, and Jarvis [40], who coﬁsidered the case of 350 MeV
e-scattering on Samarium isotopes.  While Coulomb excitation is non-negligible
in this case, the domimant coupling is auclear with the L = 2 component of the

deformed optical potential of 15hgn providing a strong coupling between the

.ground state and first excited 2t state. Thus the optical-potential parémeters

required to:fiy the elastic scattering were somewhat different dependiag om
wheghet a full coupled chamnels or simple.opticai éodel was utilized.

For the 5pheriéal.LkBSm, on- the other haad, the back coupling effect on the
elastie channel from coupled chahnéis calculations was small enough that the
elastic cross section was inSignlficéntly different from a simple optical-model
calculation. Furthermore the optical parameters used for the coupled channels

€]

calculations were (apart from the A — dependence) identical ia the deforaed
and spherical Sm isotopes. Glendenning, Bendrie, and Jarvis identified the
difference between the coupled channels optical potential -and - the simple one .
cﬁannel optical potential: for \S4gp G5 the polafization potential component of
the Feshbach formela Eq. (2.1). Of course this potential difference is
empirical, with no g2-dependence as the computed polarization potential would in
general have.

Further investigation of this optical potential was subsequently made by
Baltz, Glendenndng, Kauffﬁann, and Pruess [4]. - These authors calculated the
local equivalent of the L-dependent non-local optical: potential representation -
of the coupling to:the first ?F state in 15%gn, Reorientation-and the coupling
to higher states was fgnored, with the non-local potential explicitly:

constructed as in Eq. (2.6). The local equivalent was then constructed by

jteration, i.e,,
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The real part of the calculated'optical_poteptial is. exhibited in Fig. 6.1
as a function of orbital amgular moﬁentnm 2. Clga;iy it 1s highly g—dependent,
repulsive in the low partial waves, incfeasing in magaitude to the surface,
changing sign and becoming attractive, and then decreasing in magnitude for high
partial waves. The empirical optical model cdmponent from the original analysis
is also shown in the figure to be g-independent and:répulsive. The data is
clearly sensitive to exclusion of flux from the interior in low partial waves;
at high partial waves.the'angular momentum barrier decreases the sensitivity.to
such a potential,

The imaginary part of the optical potential component for this case. is
shown in Fig. 6.2, It is p—dependent, but,absorptivg'for all partial waves.

The empirical imaginary potentfal component is of small magnitude,. but
relatively diffuse in its small absorption outside the surface,

A heavy:.ion case was-also Investigated by these: authors,. 60 .MeV 16g.

scattering on QOC; with excitation of the 37 state in the target was treated
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with no reorientation in the coupled channels, thus waking the optical model
formulation exactly equivalent to the coupled channels. In Figs. 6.3 and 6.4
are shown the real and imagieary parts of the g-dependent local equivalent
potential component which exactly represents the coupling of the 37 state uéon
the elastic scattering. The general paitern is similar to the g—5m case: “The
real potential component is repulsive for low Partial waves and the imaginary
potential component is dominantly absorptive with an jrdependence of strength
peaking In the surface partial waves, The interpret%tiou of the real potential
1s Jess clear. It has been suggested that the complex potential as a whole be
considered as approx-imal:ed by ﬁne radial function times a pole in ‘.[433

Similar calculations of a polarization potential component were later
performed by Franey and Ellis [29]. The case considered, 63 MeV¥ L3¢ snéttering
on ¥UCs with excitation of the 3~ target state is similar to the cése just
discussed, and it is not surpéising that.the resu1;s for the computed potential
components are similar as is seen in Fig.'6.5. It is interesting from a
technical standpoint that Franey an&\Ellis'qseﬂ the:gene:al procedure described
in Equation (2.12) to obtain the potential.réther‘than éxplici; construction of
the non loﬁal potential such as was followed in the 6o case.

We have discussed what a polarization potential component would look iike.
for one strongly coupled inelastic chamnel. Of course in thé general heavy ion
scattering case there are many channels both ineléstic and partiéle transfer
contributing to the elastic optical potentiél. Frahn and Hussein [42] have
worked out generai expressions for such direect reaction polarization potential
contributions in terms of the clesed S-matrix formalism. The result is a
complex, g-—dependent, potentiél suﬁ of components arising from various dynamical
origins. .

Breglia, Pollarolo, and Winther [4l] have considered thé.saﬁe problem in a

semiclassical context with the assumption that the important contributions.
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should be only absorptive. The basic idea used in constructing th31r absorptive-

potential is. that its integral over the semiclassical path should be
proportional to the- flux’ lost into the coupled channéls considered. Since such
a précédurgldoes not give a potential as a function of radius, but only a
constraint on. its integrated.vaiue over'a pafh there is the ambiguity of a
large class of phase ‘shift equivalent potentlals. Broglia-et al. attempt to
remove this ambiguity by . requiring the absorptive poiarization potential to be
angular momentun independent. The resulting potential due to the nuclear
interaction then hzs a long range component due to single-particle transfer and
a short range part due to inelastic scattering, While thié apﬁroach has some
intuitive atﬁraction, it misses one of the aspects seen abuve.in our exsmples,
namely the real repulsive potemtial in the low partial waves, .It would be

‘Interesting to investigate just how universal this potential type is, and

whether such a potential arises from transfer also, but one needs a more quantum

mechanical formulation such as that of Frahn and Hussein if one is mot to
exclude the real polarization potential a priori.

Polarization Potentials and the DWBA

Our emphasis in this report is the representation of the effect of channel
coupling as a potential in the elastic channel. A further 1nteresting
application is their use in constru#ting scattering solutlons for the distorted

waves of the various chamnels in DWBA calculatlons. For example Yet us consider

the ampl1tude for inelastlc scattering te the 3~ state in *PCa induced by the 60

MeV 180 beam considered above. If all excited states are coupled only to the
elastiec.state, then the wave function for aﬁy of them can be written in the form
CIRRSI € 5 T
T Ty
from coupled equations of the form Eq. (5.4). Taking a paftial wave we find the

" asymptotic form
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(a0 = B3 ~(rae) ye, Z 3o Wi 0 dax (e

Since the coefficiént of the outgoing wave functién is the gcattering amplitude
we have the coupled-channels equivaleﬁt f;: the ineiastic scatteriﬁg transition
amplitude in ;ﬁe form of DWBA. A1l oh=3~ conp;ing effects through the groﬁﬁd
state wave fuﬂction xg+(t'), and the excited state wave function £4.(r') is just
an optical model wave function withoﬁt the effect of the stroné coﬁpling to the
0* ground state. - )

As Ascuitto et al. [43] have pointed out fcr.éhe iEO'%;#ﬂCé c#sé,.it i#
most crucial in fitting the angular distribution of. the 3~ and 5 cross section;
with a DWBA type cross sectiom that the effects of the speciflc 3~ coupling fiot
be fncluded in,the final channel wave functions. {This is clear in our eq.
{6.2).) In this particular case the stroeg g—dependence of=the*calcu1ate&

pntentialé 1s of less importance im obtaining a DWBA type cross section similar

to that generate& by couvpled channels calculations.

Since the DWBA can be thought. of as an approximation to cbuéled chanrels,
it is uot-véry helpful to say that it may be used im coujunctioh with a bare
final state optical potential determined only by a coupled chznnels fit to the
fnitfal channel, Fubo and Hodgson [44} attempted to. remedy this difficulty by
calculating the nuclegt polarization potential in the Love, Terasawa, and
Satchler_approﬁimation and.then suhtracting it from the optical model fitted
potential to obtain-the bare potential.' . .

- Tanimura et al. [45] pointed out thar in the more genefal-case where

excited channels are coupled not only to the elastic channel but to each other

‘there will be a channel dependent polarization potentlal to be used in. the

non—elastic channels as well. These potentlals as well as the coupllng
interactions for first and second—order DWBA formulatlons of the exact coupled

channels problem are determined by the truncation of the channel space.




7. Conclusious:__

In this :epo:t‘we.have reviewedra number of aspects of the
pularieetion sotential reptesentation ef heavy ion elastic scattering. What
shoulerhave.tecaeenevldent,;espeeially in the treatment of the Coulomb.
polatization potential is the coastant interplay between classical and quantum
mechan1c31 aspects of heavy ion potentials. The adiahatic real potentlal was
originally der1ved semi—classically, but we presented the derivation in quantum
mechanlcal framework The BKGP imaginary potential was. origiually derived in a
quantum mechanical framework, but those who cate after and extended the idea
often worked 391ng the concepts of the semiclassical scattering theory.

. Treatment of the potentials in closed form scattering theories
followed a metha& which may. be called semi-classical for the imaginary potential
and classical for the real potentlal In general both these methods are
accurate evaluatlous of the cross: sections due ro. 1ong range imaginary or real
polarization potentials.

The accuraey of the potentials themselves as: a,representation of
eoupled channels is in general greatest when the effect of the coupling is
perturhative.' Thus the adiabatie polarization potential is an excellent and
accurate.representatiou of the virtual Coulomb exeitation of glant dipole,

quadtupole and octupole excitatious; And since we know that the classical

scattering theory is a good evaluation of the long range real potentials we have

aécurate closed forms. for the effect of the glant multipoles as well as an
acturate esaluetlon-af the elassics relativistic Rutherford cross section for
spin ;ete petticles.

for.the-case_cf the Coulomb polarization sotential arising from
multlple Coulomh excitation the accuracy is llmlted by off-shell effects and the

nonperturbative nature of the reaction. These effects are interrelated. When

the ceupling is weak enough that only the effect of the first 2% state enters

in, then the off-shell effects of high couplings vanish. Energy loss can also

provide a limitation of this potential. The whole treatment. is intimately
related to the semiclassical theory of Coulomb and does not Intend to replace
it. HNevertheless, looking at multiple Coulomb excitation in a potential

represetation has. allowed us to see how multi-step contributions come to the

Feshbach potential Eq. (2.1) in a specific case.
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Appendix- A The Total Resctien Cross Sectian

In this appendix, we supply a derivation of Eq. (2.5) for the total
reaction cross section., Consider the optical modgl'Scﬁtbdinger equ&tion

=2 .
..%E—vzu,(*)' + v - 1P g, (a.1)

Where we take W > 0 to deseribeyabsorptidn; From (A.1l) one can imﬁediatéiy

derive the .equation for flux conservationm,

+ o ;
A T 8= 2 ot |w|¢(” > - (h.2)
3. .
where J in. the probability current

>

Koo _ .
J = Tt [d*op. — (wp*Ip] (A.3)
Applying Gauss' theorem to the-LHS of (A.2), we have then
> > +

- [ Jiak =% <¢;(+)]w|¢( %, (4.4)
where the integral is over any surface surrounding the interaction, in a region
where. the potehrial hag vanished. Eq. (4.4) simply says that the net radial
flux is not zero because of absorption. The total reaction cross section. is

defined as the net inward radial flux given by the LHS of (A.4) devided by the

incident flux 'w(+)lzv,_where v is the asymptotic relative wvelocity.

f3.an 2 <¢(+)|W|w(+)>

6. = =< (A.5)
R + ¥
$P T (T
If we choose the normalization of ¢(+) to be ‘$(+)I2 = 1 we obtaim our
expression for gp Egq. (2.5}
op =z P[> - £ P> (4.6)

We leave it to the reader to convince himself that Eq. (A.4) can be written in

the more familiar optical theorem form,

_.’i_

L ) ,._' ] 2. _ 2 ()i (+)
E- I E0) - [ |£(e)]%ap % G thu, » o@D
where the first term is the total cross section.and the second the total elastic

cross section. Clearly (A.6) is'consistént with (A.7).
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Appendix B Large g 3-j and 6—§ Coefficients )
=2

In this appendix are givén the approximate, large 3 limit, values of the
3-j and 6~} symbols needed in the calculation. Throughout we shall use the
definitions and convention of Edmonds. [30]

a} 3-4 symbols

£og2\_ (—)“’1{ [ 16523 11/2
coo (2543) (22+1)(22-1)

_RF]
) et (8.1)

/BE
L g2 2 (-4 (2+2)(g+1) /2
a 0 o 2 (2045)(2243)(2¢+1)

. (yE 3
= {=) 160 (B.2)

b) 6—§ symbols

In the following 2 >> I, £ >> m.

g o I

2 1-2 pem-2

' = A {mH=3) (@tI-2) (mtI-1) (m+]) 2 B-3
* B T DO DD R (B-3)

£ fim I
2 I-2 gim

3 (ot I-D (=t} T-m~1) (I-m) ]1;‘2 . @.a)_

1 (2T-3(2I-2) (2T-1) (2T+1) (2T}

{ N
(i

- [1- (I-p-3) (I-m-2){I-m-1){I-m)
2g (21—3)(21—2)(2]:—1)(2_1) 2I+1)-

.1“111 I -
E 2,‘51!14‘2
2 .(m+I—1)(m+I)(I—m+l)(I—m+2) 172

2 QT-1) 21721+ 13( IT+2C 21+3).

M2 . _ (B.5)

rﬁ,x

(B.6)
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f4m 1
I gim

(3m2 - I(I+1)

 RT(21-1)(21+1)( 2142) (21433 117 2

(B.7)




Appendix € Angular Deviation for Virtual bipole,. Quadrupole, and Qctupole
E_xr:i.'ta:ionr

We give im l:hls appendix the expressions for AB(I) 28(2) ang 56(3)

calculated u51ng Equatlons (4. 10) and ‘(4.24)

oy ¢ D : s
N cos* 4g :
48 = e [~ 1584 + in?
; ZE_& S 6y [~1 _¢_g_. 'I-zéq_fln;q)o
“+'15 gin¢oén3¢u —'2¢6§¢05in3¢0]‘ .Téé;ij-
s (zy . AU SR
(2 _ ‘o8 Vhy - ot 2 s
A8 = SEa 104) I 7- 3158, +.420.¢0§1n, &y
— .IZQBD-sin _¢0, '4_-"'315(:_'(;5%-5111,50
~ 210 cos&a.sin'aﬁio + _cos¢osiz§5¢0}' ' - . B '_(C.Z)'
3 Va7’ cos T L. .
000 = 0 T2 90 o i5oisgg + 2772088107

80Ea® sini%p.

]

.ISlZO%siri“._lj;ﬂ + .22ni0¢usi-_n6¢u".-
-+‘1501551n¢0c05¢d?—;L?710c55¢asiﬁ3¢0
* 4648cos¢os1n ¢0 = 80cos¢usin ¢0] o l: (C 3)
As show‘n in fJ.gure (C.1)- the - three. angular .deviations havf.e 51m11ar beha\uor, a11
peaking at an 1n§ermedlate aqgle.; F_urther they attall’_l zero ‘vilue at 4y =0 and.

n/2 which correspond: Eo'-6=0:and Ty
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Figura Captions ;
Cross sections. caléulated with the LTS and BKGP z—depen&ect'potcﬂtials.
compared with a calculation witho&t-iqng range absorctidc, Wﬁod54Sax§a
optical model parameters are ffom.ref.[B].‘ o - .
Illustrative calculations of the cfféctsfdf EZ Cccloﬁﬁjékcitaticaian fhé
elastic cross sections for- very heavy systems u51ng the. LTS potential
Dashed curves. are for nuclear optical potentlals alone [3]
(a) Universal function of angle~fGB). (b) Ratio of f(&) for the LTS
potential to f(e) for BKGP Potentlal (c) Elastic scattering cross section
for 60 + lszby aﬁ QsMeV calculated from Eq. (3.9 incorporating £(8) and
£(3). Data are from Lee and ‘Saladin [47].
The-coefficiepts #g, by and c, plotted as functioms of £[~(1+E]2)/ﬁ}.
for several. values of the quadrupolc coupliné parameter q; A factor n/E

was taken out of the coefficients in order to present the results in as

-89 -

The universal function g(R)(B) associated with the relativistic effects,
Eq. (4,36}, plotteéd versus the center of mass angle,
Angular distributions Erom elastiec scattering of 29%e on samarium nuclet.

Dashed corves show. calcilations using Eq. (3;9) with:a term for the 2°Ne 2t

excitation added in. Solid curves show coupled channel calculatioﬁs:viﬁh

both 2+-states ané reorienta;ion-included. The lower solid curve fcthSZSm
shows the calculaticn éitﬁout reorientation—a significant effect for this
isotope. ‘ _
1maginary trivially equivalent local cotential for 72 Heﬁ 165 4 iSZSm,takea )
45 a pure Couloﬁb case (without'recrientation). 'The-arfows mark values;bff
r where Iai(r), has maxima. .
Crose sectiomns as ratio to Rutherford for TB HeV {cm) 150 +208 Pb with .

excitation of the giant isoscaler quadrupole resonance in ZGBPB Optical-

mnodel and coupled chapnels'calculations were performed with the code CHORK-
general a form as p0551b1e. . o : [28].

The coefficients, ag, by and ¢y plotted as functions of the ' ' 4,7 Comparisonrof thc crivially equivalcnc-potencialncémputed aith the .code
quadrupole coupling pérameter q for several values of f[= (m+1/ 2)/nl. CHORK (28] for orbital 'angular momenta. 0, 40', 80 with the analytical form.

The glant multlpole polarization poteutlals for A =1, 2 and 3 for the Paraweters are the same as for Figure 3.6,

systems (a) 180 + 208ph apd (b) 208ph + 208Pb at Ecm = 78.0 MeV and 5.1 Coordinates and volume element for the folding potential,

567.0 MeV respectively. Also shown is the Christensen-Winther [24] - . 5.2 Coordinates for a two-dimensiomal integral in the folding model.
potential. . . ) o ) - o 5.3 Comparison of proximity and folding model calculations-of the ion—ion
Variables for a classical Coulomb scatferiﬁg}trajéctoéj. . . _' ) potential. Both Vo'and Pg are anrmalizcd'to unitya.

The universal functions g(i)(a), 5(2)(9)-and7g(3)(3), Eq.'(4.25$, . }’;- 6.1 ﬁeal potencial comﬁbnent for 50 MeV g + !5%gn scattering.

plotted versus the center of mass angle.: ”. . 1 : g 6.2 ImaginaTY thEPiial“componeut for SO-Heé'a + 545y scattering,

6.3 Real poféntial'Céﬁponent'for 60 MeV 18g 4 40Ca’scatteriug.

6.4 -Ihaginary*pétchtial componént-fcrzﬁo MoV 180 4+ %0¢3 scattering.
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Table 4.2 Elastic éatio to Rutherford cross sections © . Table 4,3 Elastic ratio to Rutherford cross sections calculated at 180°
calculated at 180° for 48 MeV %0 on 252%n with qpp2 =

1.572 and. rotational values.for 9202 and 'q,4. for_ﬁB MeV 280 on 1SZSmwith.onIy 0+2 coupling and various value3~fqr
) — ‘ 7 _ the strength. . .
Coupled channels Optical model
95,5 only o ©0.373 ] “orezn
90,20 95, ©0ly _ 0396, I O.sas ' ot fy/eR - foiss 1_;_-75 2 3.52
L WOTIL PPSSE. PO 0.8 _ 0.7 | _ Couple'@' channels 0.3726 | 0.0747 1 w0121 - 0.0662
—— e : : Optical model’ . | o.6218 |- 0.1776' 0:1108 |, o.0317
TUKE ~ poeer | oarae | ouoss | 0.0296
Onshell series | 0.4087 | 0.1518 . | . 0.0797 0.0041
On-shell plus ' 03552 | 0.0703 |- 0.0122 |- o.oszr

lowest:Gff-s5hell |
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