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Abstract

The total reaction cross section for intermediate energy
nﬁcleon—nucleus scattering systems is calculated within the Dirac-
eikonal formalism. Comparison with daf# indicates that the recently
proposed impulse-approximation Dirac optical potential for nucleon-

nucleus scattering, is not absorptive enough.




I - Introduction

in the last few years the Dirac equation used with a mixture of
phenomenological scalar and vector interaction, has been shown to provide a
greatly improved starting peint for understanding intermediate energy proton-
nucleus scaCtering<l). Calculation based on an impulse-approximation optical
potential gave excellent agreement with data on elastie scattering -
differential cross-section, spin polarization and spin rotation for Systems
such as 500 Mev P”r{- 160 and wc‘d .

Parallel to the above developments several‘attempts to derive the
relativistic nucleoa—nucleus oprical potential have been made. These range
from extending the familiar fmpulse approximation'}ﬁf'“f:ype derivation to

3)

include explicitly scalar and vector components , to more ambitious plans
starting from a relativistic many-body field theory of interacting nucleons
and wmescns. One such theory, which is extensively cited, is that of
Walecka(a). Though erigimally constructed to describe nuclear matter as a
system of interacting nucleons and isoscalar scalar and vector mesons, it is
also adequate foz_the description of spin saturaced;isoscalar {closed-shell)
nuclei such as © and ?2‘“. The inclusion of the isovector Tandfmesuns
in the theory was subsequently performed by Sznt(S). In most of the -
applicarions of the theory, special emphasis Qas placed on deriving the real

part of the nucleon-nucleus optical potemtial (the single particle potential).

(6

In a recent work Horowitz ), calculated the relativistic imaginary
potential te lowest order in nuclear matter for the exchange of g s W and
W -mesons. Of course the relativisdc“ﬁf"potencial refered to earlier does
supply a well-defined imaginary potential, which is directly related to the

scalar and the time compoment of the vector nuclear density. It would be

Lmportant to check these potentials in a divecr way.

An important obgervable quantity that Eldirectly related to the
imaginary part of the optical potential is the total reaction cross sectien
GEJ Though obtainable from an optical model analysis of the elastic
scattering data, it is, nevertheless, of value to calculate (ﬁi directly.
Such a calculation would supply a further test of the adequacy of the

theoretical imaginary potential and help analyzing its reactive content.

The propose of the present paper is to develop a theory afo;iuithin
a Dirac description of the elastic scattering of nucleons of nuclei. We use
the eikonal approximation in our discussion of the nucleon-nucleus elascic
scattering amplitude. Such a Dirac-eikonal approximation has recently been

. 8
put forward by Amado et.al(T) and Friar and Wallace( ).

The paper is organized as follows. In Section II we preseui a
denivation of G;k from the Dirac equation that describes the scattering of
nucleons from nuclei affected by complex scalar and vecter interactions. We
then use the eikonal model in Section II to express o?i in terms of an impact
parameter integral imvolving relativistic nuclear transmission coefficif;ts.
In Section IV we present the results of our calculation of oh for P'f Cll
and B .;— b in the energy range 1@7 (EP <100'0 Mey , and make a
comparison with the data, as well as with the mon-relativistic calculation
(8)

of Digiacome, De Vries and Peng . FTinally, in Section V, we present several

concluding remarks.

IT - The Total Reaction Cross Section Obtained Frow The Dirac Equation

The Dirac equation that describe the elastic scattering of aoucleon,
treated as a Dirac particle, from a spin-saturated nucleus, is usually

written in. the form, using a time-independent description,




{ %P o+ F('\m,—i-\/s) +Ve]¥=EY @

where it is assumed that the average, complex, nucleon-nucleus potential is
a sum of a scalar component, VS , and the fourth (time) compounent of a
vector potential, ¥Yg . The matrices & and F are Dirac's, and is the

four-component vector wave-funcrion,

Let us write VS and vﬂ as

V5= Ug_ A Wg

(2)
V¢ - Uo-.-— J.' wo

Equation (1) can be rewritten as

(B (e-W) -2 %7 —ma V] ¥=0

. , . .o -
obtained from the usumal relations, W¥ = qu o, bfq- ;f;
We now perform the usual manipulations of multiplying Eq.(3) from the left
by LP = l.')+ r"f‘ and constructing its conjugate with the subsequent

multiplication from the left byqj , to obtain finally

FL By (EVo) -2 B F-meVe) ] ¥ =0

(&)

@[(Y&,(E"VJ) “i?‘F"(%*V;)]Wzo (5)

the uysual Wronskian argument now supplies us with the continuity equation

—

»

o)

=~f.;- ('\I%"* w, ¥+ P, we ‘i’) -

with

W

- .
-t . .
P
. ) ey
the hadronic current.
Interating Eq.(6) over-a:large vdi@e ‘and using Gauss's theorem,

[ F4A =2 Ol 9,
g | G 5w

vhere the integral is over a surface suffounding the potential, in a rTegion

where the potential has completely vanished, and describes the net inward

flux due to absorption ( Wo %O } ws‘ # 0) "

Dividing I:-his flux by the incident current v ;)!fz_ EV? {assumiag
- (4-07e)

that wwin normalized to unity), gives the total reaction cross section
od 4 2 sty
- %. - :
o) = 1_:2 5 <1_|,9'3 ‘ Wo tfp‘ls ! ‘PH> )
- P d

i

Or

We vemind the reader again that \P is a scattering vector wave functiom.

Equation (9) can be further reduced to a form more convenient for
. (+
numerical evaluation. We do this by explicirly writing ‘4’ in terms of its

upper (large) and lower {small} components,

4
E+m\/% - .\ u (10)
Yy e ein
1‘,()_ ) 4.6'.? s

A




where

A= E+mm+Ve - VO . at_xd‘u,ssat‘isfies the reduced Dirac equatiom
(0"'. T.i-; 4 0-'P - E _‘W\"'-'VS“V_O)}/LS:O (11)
A

with Eq.(10), OE' » Eq.(9), becomes

'k{:::-;:n \:P;r g-l‘Ws)‘u U -(WS.W) ( T3 PU 5)1- (i Cpu S} | (12)

. v =l -|
Using the facr rhac (Ws-h'o)/]ﬂlz=f(ﬂ"ﬂi ). we can, after performing

one integrazion by parts ad using Gauss' theorem on the secend term on the

RHS of Eq. (}..., " rire Fnrtr rhe folloun'lg surface 1ntegtal
4+3‘ jd,a [_u?' ——-ﬁ O—Pb\s) +
_ e, 3 (13}
+ (O"A'vk 0—?1,;5) 'Vls:]
which reduces, in the a{:bropé:_ié__te .S > 0D limit, ._wher_e A—%E‘fh’\:(l‘ﬂ)m,

to the final expressi.on

S‘AA Re ('u."'d'. n O_ZF‘”-S)

SJ00. .

G-g“-—‘ "M'E'K‘ (18)

Eq.(14) could have been obtained directly from the first parc of Eg.(9),
namely from the Ldentxflcatlond_ Id
Y T-\r

5-“%
serves as a check of the correctness of Eq.{(%). In the next section, we

. Our derivation above

evaluate Eq.(14) in the eikonal {small-angle) limie.

ITI - The Total Reaction Cross Section In The Dirac Eikonal Approximation

)]
The eikonal approximation to 1* or W¢ of Equation (1) Or (11}, has
been recently discussed by Amado et.al . In this section we derive an eikonal

form for d-gl, starting with Eq.{l4). We follow the notation of Ref.(7}.
Within the eikonal approximation to "Rs, we have, as Yoo
~
Fug — w2 Ug (15)
Y- 00 '

Using Eq.{15) in Eq.(l4), we obtain

o
0 = — J dA UL n.z2 Ug (16
S-»00

Since s is any large surface surrounding the interaction potential, we may

take for it two planmes perpendicular to the BE=A¥1§ at + =T *F o0 . we

thus have

0= S\dzL \ U—s'z(‘i’ 27 "09 -\uslz-(ty T +tem)

(17}
Equation (17) exhibirs very nicely the physical meaning of in terms of
Ty 27 . .
the prebability .densitieslusl_ (L,a- -)_-oo) and ’u;‘ (L, 2“'?@.)
Using the usual substitution for the upper component
- . '
) ik¥T ASKH ,

W = e e xS- (18)

k5
-
Where )Cf are Dirac spinors and S(Y') satisfies cthe differential equation

F. 7 57 = - m{Vet) 4 Vs 0 [E ik c1 7 K] f e
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In eq.(19) the central, VC (T) and spin-orbit, vso interaction -are given
by (see Eq. (11))

Vo) =Vslr) + EVG)+ Vi) = VEC)

2w

o A ; - 1}
VSD(T) = S5 —,r—'.g'; (\/o("') VS(*))

-
and k.... —-—(k""'k: ) , the average of the initial and final momenta.

Defining the f-ﬁxtf to be along the direction of k the eikonal

phase S(r) cam be written as

T - - —A"h - .
2 S3(F)= - ‘W\ \( d?l{vt(b,i" )-.-I-Vw(h,%')[a_- bxk-a k%ﬂ} (22)

Using Eq.(22) in Eq.(18), we can write down immediately for (us\ (b,'?.‘) the

Iu-s( (L i x‘r @P{ Z.Im g(L ’b\ ] JCS‘ (23)

We remind the reader that 51 is an operator in spin space.

Let us introduce the quantities

F= E- Vo G:) "5) €26)
N=w-Vs(B,2)

Then Egs.(17), {(20) and (21) give us for
(b)
qi= X[ J o (PP

where

(26)

(21)

?5 (I;) = ?éc (b) - iﬁsa(r) 0_:(’1;»'- fi) 2n

?_l, (L - ) ' (28)

R L[] o
'?gsd'(!o): b J =+ IW{F*N 3‘”(
At ch:.s point it is worth meatiening that the quannnes ¢ (T;) and ?50(;)

are related to the thickness functions, ,‘& (L)and ’{-50 (6) of Amadoe eCt.

al( ), dgflned by -
+o0 -
j. da_ (NZ F +E M) {30}

% (b)= .,Z(ﬁc-)’“k

+00

. 4 A 9 (F+N
£, (b) = _—‘fé‘ .[ dz F+N ¥ -9*( ) Gu
) |

Thus

¢c(‘;)= - R.e'kc(b) | ' .. C @)
b 5) =2 et ® o

Going back to Eq.(26), we note first that we can write it as

X Hﬁ’( qﬁcu, -, (6 o*.bxk)]xs




= X, [fd"b(i e® “’) cosh & 5+ & (bxk)e (b

. . . If the above were true, not too much physics would 'be = extracted
simh @, (0 )] X -

from % . Luckily total reaction cross section data of proton—nucleus

2T x; [S‘b A'b (i“"‘ 6¢C(L) G@S‘a SO(L)) xs‘ systems at intermediate energies exhibit major deviations from the black

e
disk result Eq.(38). Nuclei become quite transpa;En%ﬂnucleons at

= 2T \r b J'L (.‘L" e’¢c CE) Cg:ﬁ_ %5-‘0 (L)) (34) intermediate energies (9), and the gquantity that measuregthis nuclear

transparency in details is given by_r(_b)of Eq.(36). Therefore detailed

. — A ”~ -

The term involving a. b.x K does not contribute to the L -integral due to evaluation and discussion oET(b) and the resulting U-g, is clearly called
symmerry about theZ‘ —axis . Eq.(34) can alsa be written as (Egs.(32) and for. This has been done using the conventional non—relativistic theory by
(33}} . Digiacomo, De Vries and Peng. In the next section we preseat our result for

) ZEe, 'E' ) and discussion °f0-f"l within the Dirac—eikonal treatment pr.es_ented in this
0p= AW g Ll (1-¢ cosk 2Rebsol®) )

_ _;Before ending this section, we warn the reader rhat 'bé(i:) is ill-

Equaticn (35} is the primcipal result of this section. It expresses o;.in the defined for proton scattering because of the presenc.e of the long range
usual form of an impact parameter integral :uwol\rlng 'relativistice® Coulomb potential which is present in \4(\') . This difficuley can be dealt
transmission coefficients g:.ven by E with easily by some appropriate modification of the integral invelved. In

.ZRQ'!:C(L)

Appendix T we present the details. Here we only cite the final Coulomb-

HOEEE 2 ﬁe{‘so (5) o @e

midified, but finite, 0},‘

2Rebe(B) | |
It is clear that the exact form and details of T(b) would be irrelevant if o?bz i \(‘JL L (ﬂ.—e < CeOSﬁ <z R& "bs‘a (b)) 39

the nucleon~nucleus scattering is dominated by a vlack disk-type absorptien.

In such a case l( b)_-'wo_u}.d be representable as

+00
- : v - "‘_""' - ZEZ‘ 216 4
T(h) = & (.b— Ro) | e 'éc(!’)-“ Jl(‘kdzk-o[di N~—F -1-E ~ e i (40)

r(ez)

where @ is the steg functiom, and R,c is a characteristic absorption Finally, a word about the optical theorem and itsgeneralized versiomn
radius. If Eq.{37} is used,_o-;i becomes the simple geometrical limie, for charged particle scattering. For neutral pa_rcicles the usual form of the
optical theorem

q, =1 % | | @ e T F O RE)- S\F(h o) ARy
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should yield the correctk expression for o-;z' « In fact, with the elastic

-
scattering amplitude F(-k’; R', E) derived by Amado et. 31(7).
e = =AY - A
F(r,k ‘E) =F.+0nk )

F = - k falb b J;(‘[b)( e “,)Cafz-,f}o(ﬂ—-i) (43)

o0 G
FR= -k [4166 J;-(qb)e )smi 2, (4) (44)

—t
-~ rd =
q_EIF—h{ » and » and Jj._' are ordinary Bessel functions, Eq.(41) results

in exactly the expression for G;' given in Eq. (35).

For charged particle scattering, Eq. (41) yiélds infinite values for
both terms on the RHS. However a generalized optical theorem can be derived

for the purpose and it does supply 2 means of calculatingo— N

Op =4 1, [ F(,K5E) - R0, ESE)

[ [IR(EHeP-1FE R 4o

(45)

where Fe is the point Coutomb scattering amplitude. In a way, the precedure
we empley in the Appendix amounts to basically calculating the difference

F.. Fc in the form of an impact-paramerer integral, which yields completely

convergent results.

IV - Numerical Results

In this section we present the results of our calculation of OR:

AR08
Eq.~- (39), for Pf- CG. and ]?-f— PL » in the proton energy range

>

12

10 <EF <1000 Mey . We take for the protén—nucleus optical petential,

the impulse—approximation Birac optical interaction for spin-saturated -

(3)

nuclei, has the general form

CB* U] B = - #Tik [ () ps (D +TFy o) fv(ﬂu.s)
= VS(‘-}) + Vo (‘b)

In Eq. (46), 7‘; and F; are the scalar and vector pieces of the Lorentz-
invariant”‘-ﬂ- amplitude, respectively, and fS and fvo are the scalar

and vector form factors of the target nucleus, given by

1 vk

ﬁs(%} = <0£Ze"1'r‘”0> 7

I

fri = <ol Sty e

The above densities can be better wisualized when wrirten in configuratiom

space,

= ol U SEFD o = 2 V) ot

RO R DEPA TGN

where the find ©f -sums are over occupied single particle states. Writing

in terms of its upper and lower cemponents,

+£:£ij; } } kf} (‘h{ 3 L* (51)
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wWe can express f.SO!) and _ﬁ,(r) as

(52)

2 BeC. 7] z,-_-_-
Ssr= :%» /Ze'?”/z“ 2. | %= £ - p.(7)

occ

0w L
pm=2"1 Z&/‘;Z /¥ (f)/é'-f”(r)f-ﬂl-(r) 59
& o

Therefore, the difference JC(") -Ji‘ (?) » measures the strength of the
lower comporent density e?ﬂ({_’), and accordingly, the degree to which the

optical potential is relativistic.

The potential calculated by McNeil er. al., is obtained byvsen:ing
El2)= Fulo) = F (3)= fi(o) in £a. (46). In this linic, which is
quite reasonable in the energy ramge considered, the Fourier tramsform of
Eq.. (46) yields a local potential in configuration space, with its ?-—— .

dependence completely spécified by fsfr) am.’_ur.rfv (IT) . We therefore write
Ve(r= V) futry = (U E) - TE) £6) o

- A O op g A
V, ()= ¥, te) £, 0= (W= HTE) G (1) o

where fs and !V represent the: shape of the densities and they are both
" 3

normalized to unity in the cenrral region. McNeil et. al. presented their

3 ] o, ¢
results for %(E) , A{f (E) f g (E) and Ag {/E‘) at a radius wherefs-and
f./ are buthOJ‘fm“;. These values of the densities, correspond to a
- o
Fermi momentum, kF= !3?]&’” ’ It is found that ){; is negative,implying,
using eour comveation, Eq. (2), that the scalar interaction is regenerative

whereas the vector one is absorptive. Their values come out comparable, with

14

. @ ' o
% (E) a bit larger than}\é . All of these results are is accord with
phenomenological findings. The above results were also confirwed by

6)

Horuwitz( , in hia nuclear matrer calculation of b\/s and h/o .

Armed with the above facts, we evaluated 0}" , Eq. (39), using the
rvesults of McNeil et. al. , as presented in their figure 1 . For the
density shape of &:Ré we have. t;_aéed Saxon-Wood forms with parameters fixed
in accordance with results obtzined from electron scattering, which basically
supplies fv for protons. We have, however set ﬁs(r):'-ﬁ (?) for all

—?f . The radius/ ﬁ/ and diffuseness, a, parameters for 20;/05, are(?'o)

R= €.62%0m a= 0.549m .

. 90& . .
The density shape of is usually parametrized as

froy = (e orife) [t wp (RRL]

with &= —-8a. !d/-?-) R= 3 5(374)14,) = o 5‘3}‘%}4&

The results are presentéd in ®Pigures 1 and 2. It is clear from
the figures that the comparison of our OR in the energy range 100 < E < 1000
MeV, where one expects our theory hased on the impulse and eikonal approxi=-
mation to be quite adequate, with the data shows only qualitative agreement.
There is a clear indication fhat the impulse~approximation Dirac optical
potential is not absorptive enough. The quality of our calculation coincides

with those of Di Giacomo et a1.9).

0f course, at lower energies, nuclear medium effects (Pauli blocking,
multiple scattering contributions, etc.), which were completely left out
here, are certainly important. Thus it is pointless to dwell iatc a

detailed discussion of our result in the energy range 10 < E < 100 MeV.
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V- Coricludizig Remarks

In this paper we have developed a Ehéory for the tétal reaction
cross section of nucleén—nucleus scattering systems at intermediate energies.,
Our theory. is baseéd on the Dirac-equation desecription of nucleon-nucleus
scattering. Oﬁf.eyalﬁatidn of the resulting expression for O

performed using the eikonal approximation to the Dirac scattering amplitude.

s Was.

The comparison of our results, obtained with an impulse-approximation Dirac
optical potenfial, with experimentally deduced 9% for p+*CCa and p+208py
convinced us that the impulse-approximation Dirac optical potential (IDOP)
is not absérptive enough. The missing absorptive component should be such,
as not to affect other observables which are extremely well described by the

IDOP, and spin polarization and rotation.

In a future publication we shall extend our calculations to lower
energies and to other nuclear systems. Further, the connection between our
relativistic transmission coefficient and its non-relativistic counterpart
(also obtained from a "tp"-type ingeraction), was not studied here and will
be dealt with aposteriori. It is hoped that cur study will encourage

experimentalists to pay more attention to Op than it had so far received,

Appendix 1

In this appendix, we discuss the modifications on Eﬂi as well as

= ~p _
the elastic scactering amplitude F(h)k :E) needed to render them
calculable ‘in the presence of the Coulomb interaction.

The idea, is to write the amplitude, {Eq. (42) as

- - =y "‘.TQ‘/-_E-
F"(I?.-h"iﬁ)zFc(g)h"jE)-*]:F(h"h:E) Fc(k) ’ )] (AL.1)

g 4
Let us call the second term on the RHS of Eq. L.}l FN(E)'%) E)- Loosely

16

speaking _FN represents the nuclear part of F‘ « We now write the closed form
expression for the firat term in AT.1 and represent Fi,as an impact-parameter

integral .

Using the eikonal form of ¥ given by Amado et. al.' and expressing
Fi; in a Smelar manner we can wrlte

b X.(5) x(5)
. 2 “"? £ -
Fo=4x fm‘ ¢ (€2 < ) @r.2)

x(b):.. It',_.(b) +1‘;o ¢b) a—_.\( Q* k) : (AT.3)

and

R
¥ mn BE — i i‘? &F A (AL.5)

(;fc) K f y,8) (;f..-ﬁk {g s b7

Clearly, the integral in I.4 is infinite. To get a finite result we iatroduce

a screening radiugs a such that

a :
— 22, e%F fi
X () = (g5 e e’
(Fc)tk 1/32,,_&: _'
"~ 42‘4 & IF_ . o
~ 5% b 22 S s
1501 g b
-azl:‘??ee gza.,;.-ztgi.zeézgn
(he)Zk by (ho*« b
where b is taken to be 1fm, and is introduced only to make the argument of

ez e’l

the 1n's dimensionless. Recognizing that :he factor _# 2 __ . is just

(A‘C)Zk

—

the Sommerfeld parameter, 7? , we have fimally

. 2 =2¢ &.i - AI.
Jrc(b):—-ZL?,&t._g;?’- ‘? b, (AL.6)
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Using Eq._ (}_‘.I.§), Glauberuz) obcained the fo}.lowing_ closed expression for /:E
— =t ?4 2e . o~
L 2nk
BE A E2h ”fﬁ‘?"" Pooszigfrr? FE Re) = (B+ 856 aran

| . - 3 o kb, JW
where o I . | . F; (¢}= E(f),«,;‘kfié 61.]0-(25) e 2 bbﬁ € 494*(0 (AT,14)
¢, = a3 /7(17’-49[”) O (AL.8) e

Writing for ’x(‘), Eq, (AI.3).”

X (h) = X(b)— 2X.(h) + Xpl(h) C ww

it E)
Ela)=-x f s 708) £V € bt e

= ef“fé c{b(ih | w.f»{-?, Re t’-(é/) (AT.16)
(AI.10) where sz) is given by

;Q_(b);—:— Aolb)~ .?fe‘.ﬂ)

= %0 Xl

we express, }-:, as _ (AL.17)
6 (5)
. (% ‘f- xﬂw :
F;, =4 K ‘?7’, & 6- e- ) (AI,11) ==t oﬁ_(A/‘:F e £ m2- 252-232.3) (AI.18)
S S 2(Re)k o o
“'-IZ‘ ?’a‘ 2 d‘eé 5 é 2:& (é} ALl xntegrals appearing in the above formulas are finite.
3 @e /(AI 12} . - |

=k & _ G

We see clearly thae l:he conscant phase [él?& .2‘?] completely

factors and bcth in F,J and - F&F and thereforeé can bé dropped altogether :

This amounts tg taking. &L — &0

The final expression for F and &, can now be written down

straightforwardly
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Figure Caption

Figure L. The total reaction cross section for p + "*0Cay The data

points were collected from Ref. 11. (See Text for details)

Pigure 2. Same as above for p + 208pp
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