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ABSTRACT

We investigate, within the semiclassical approach,
the high temperature behavicr of the decay raté of the metastable
vacuum in.Field Theorv. We have shown that, contrarily to what
has been proposed in the literature, the pre-exponential factor
exhibits a nontrivial dependence on the temperature. Further-
more, this dependence is such that at very high temperatures it
is as important as the exponential factor and consequently it
spoils many conclusions drawn up to now on Cosmoleogical Phase

Transitions.
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I. INTRCDUCTION

It is well knoﬁn.that'sﬁoﬁtéhgduslf broken symretties
can be restored at high temperatures(1).

In the very. early universe-theltemperétﬁrés-weré_so
high that broken symmetries could bg restored.. . We éxpect
that phase transitions betwaen the symmetric and broken-symretry
phases took place as the universe'cqbléd.offmﬁuringaité'exﬁmmﬂxh

Those phase transitions.dxmldfmnm'way rich physical
conseguences. For instance, if'thé phaSejtransitioﬁ-occu¥red-
guickly, with only a negligible amount of:superCOOling, too
many magnetic monopoles would be produced and this fact contradicts

observational data(Z).

Recently A. Guth(3,

proposed an alternative scenario
(the inflationary universe} f£o6r the Big Bang and how to solve
the flatness and horizon problems if the phése transition is
such that it allows the existence ;f supercooling.

An important element of the phase transition is the
decay rate of the false vacuum_I‘ (i.e., tunnelling probability
per unity time}. Having in hand this guantity we can calculate,
for instance, the fraction of the universe in the new phase,
the density of primordial magnetic monopoles, or the time when
the phase transition is over.

‘The study of the decay of ‘the false vacuum at zero
temperature has been carried off by Colemén(4). He used a
semiclassical approximation and showed that the important
classical solutions are those with symmetry 0(4). The first
gquantum corrections to the classical solution were also
{4)

calculated by Callan and Coleman

One can extend their result te finite temperatures
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by using a semiclassical approximation(S). The result that one

obtains for a single scalar field theory is:

z L S
I‘SEN?C) 2 det' [-[Tg + v" (4] %

= =2 T Im v
. L 2T det[-[], + v" (¢.VAC)]

exp{— SE(¢C)}

(1.1}

<l

whére 2 is the number of zero eigenvalues .of E[:]Ed-v"(¢ci},

¢C is a solution to the classical equations of motion, and the
b
Lagrangian density is Ly = % ¥ (8i¢)2 ¥ Vid) .
. izl
T

We intend to study the dependence with T of v in
the limit of high temperatures. Contrary to the belief of many
authors(1q-13), we are going to show that in this limit, the

determinant ratic appearing in (1.1} contains the main dependence

withﬂtémperature of %.
The outline of this paper is as follows. In Section

II ﬁe review briefly the semiclassical expression for % .

Section III contains the derivation’ of a formal expression for

% in the high temperature limit and its consequences. In the

following section we analyze some simple examples in - 1+1

dimensions and show that the preexponential term is indeed very

important at high temperatures. A 3+1 dimensional example

is given in Section V. Firally Section VI-summarizes the

‘results and gives our: conclusions:

II. SEMICLASSICAL APPROXIMATION FOR %

We are going to review briefly the functional

integration formalism applied to QFT: at finite temperature -

4.

deacribed by a single scalar field.
All the informaticn about our system in eguilibrium

(6} o=t

at a temperature is contained in the partition function

which is given by:

%7 <= tr e FH . (2.1

where H is the Hamiltonian of the system.

The Helmoltz free energy can be easily obtained

from Z:
A = -8z R (2.2)
We can write a path integral représéntatim1for Z(ﬂ:
. =S t9)
z = {D¢] e " (2.3)
o [ 2 2
where Sule) = | dpx {151 (3 917 + v(¢)} (2.4)

and the integration is cafried over pericdic field configurations
in the euclidean time with period B ({i.e., d)(b,;) =¢(B,§)) .
Now we are going to perform the semiclassical
approximation in order to obtain the expression (1.1) for %.
In the . semiclassical limit , the leading contributions
to 2, given by (2.3),come from the field confiqurations which
minimize the classical Euclidean action and therefore obey the
Euler-Lagrange equation:

32¢c
2 = VI(¢C) {2.3)

D
1
i=1 o9xi
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whexre

¢C satisfies the boundary condition

0o (0,%) = 0, (B, F) | (2.6)

It is easy to see that for high temperatures the
relevant figld configurations are those independent of the
Buclidean. time. ‘ |

Now we make a functional Taylor_expansién of S

E
around- ¢, and we keep only the guadratic terms in 0= ¢=¢. :
o 4 ct .

‘ B 2 1 .lr .
4, n) +ynV €¢C)n:|}

: =5, () | D
gV _ T BC J@]W~{Jdg§[% 3
i=m .

: {2.7)

The gaussian integral in (2.7) is easy to perform(d)
and we get, formally

a _ SeBd Y

Z = e da 2

B ‘
- 121 ai + Vv (¢c):| oo(2.8)
The leading contribution to Z . is given by

constant ¢C associated to the vacuum of the theory:

: =85 (¢ ynpt 1 D '
(0) _ E ‘*vac - 2 " :
1 = B det [} i§1 ai + V (¢VAC)- (2.9}
Using the dilute gas approximation(4, we
have:
1 1
z = z°+2" = 3° {1+Z—D\ = g9 EXP[ET)']
z° ) z
defining the transition probability as(s’ ' e =2ImA we

obtain, by treating separately the zerc eigenvalues:

exp - 5.(¢.) (2,10
zm det { - 32+v"(¢VAC) ETC

<=

7 1
2o 2 =z
S.{0.) det'(-93" + V" (9.}
= 2T Im[E C} c

where the prime indicates that the Zero eigenvalues .of
—32-+V"(¢C) must be omitted f£rom the determinant and. Z is
the number of these eigenvalues.

After a little'algebra-(see.appendix A} we can

write % as:
241 (S_ (6.0 52
T 2T [ E *c ] ox { |:5 [ v w . C
= = pi=S_{d.) + [5 [T ) - " A%
v sin(%?} 21 E''C 2 j 1 3 3
Y . -82% S
+ I:Z £n [1-e J] -3 £&n ;[1-—e ]]:l} o o {2.11)
3 i : '
" where
Yo 2 on _f v]z _
sz_ 3"+ v (¢VAc)]nj =123 3 (z.12)
) ‘
2 " _,c
spgtial %+ v (¢>C):|n.j = [;\3] _ 7.1_3' o (2.13)

the negative eigenvalue {(which we assume to be unique} in

(2.13) is written as
2
[’\C] s - w? ' (2.14)

,and the double prime indicates that the negative and zero

eigenvalues must be omitted from the summation.
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III. FORMAL HIGH-TEMPERATURE EXPANSION OF

We shall develcp a formal expansion for the ratio of
determinants (R) which appears in (2.10) that will be useful in order to
extract the dependence on T at high temperatures. R can be written as
R = exp - % {tr £n [‘E]E‘+V"(¢C)J ~ tr £n E-EJE + V"(@VAC)]}

: £3.1)
Then, from (3.1}, it is easy to see that R can be

written under the form

Rzexp-—lz{tr'tn[]-r !

(V" (b)) - v'-(¢VAC))]}
-Lg+v (‘I_’VAC) I

where 1 = GS is just the free propagator at

SO+ v (b0l

finite temperature, with mass JV“(¢VAC) .

If we expand the £n above in powers of
1
-Ug+ v Gyac

Ef"{qbc) - V"(d:vac)] . we get formally
}

1 .
tr £n {1 + rr—— E?"(fb o= VA )]} =
. C vaC
_ “Op+ V" lgae)
Ok Ot b
_ . .
.

where the dashed lines correspond to the "background field"

(v* (4.} - V' {9ynel) + and the internal lines denote propagators

GB'

It is shown 1n appendix B that the first term of

this series gives the leading contribution for B going to zero

.8.

when the space-time dimension is four. Then, we have:

1 1
R = exp - & tr E“W ) =" (¢ J (3.3}
? =L+ v tegae) © ae :

for B8+0 (T+0).

We need to be careful when using (3.3). The formal
manipulations that we made in order to get (3.3) work just for
the eigenvalues belonging to the continuum. Then, negative and
zerc eigenvalues can be treated as we did in appendix A and

the result for ImR is:

Z .
- T ' i n "
Im R = 55 CXp - 2 tr {GBET [qbc) -V (¢VAC):|} (3.4}

sin <=
2

We expect this expression to hold for high tawperatures
— that is, in the limit B8+ 0. Lets find out the dependence on
T o©f the exponent in (3.4) for the usual three dimensional

space in this limit. We denote this exponent by o - that is,

= l n IV
¢ F -5 tr {GB [& (¢C) - V'(¢VAC{}} {3.5)
Thg reason why o0 does not control the high temperature behavior of the

preexponential factor for 1 and two spatial dimensions is given in appendix B.

IfI-A. (3+1) dimensional space

For (3+1)7dimensional space we have, from (3.5):

o ] o— 11 . )
2 nk [Znn]z > 5 BT [ dxg |V o) -V wmc)] (3.6
B ] +kT+m

2
wh = L
ere m v (¢VAC)'
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Performing the n summation and remembering that
for high temperatures the relevant classical solution is

independent of the euclidean time, we can further simplify (3.6):

c = _12 [a:ifon (¢c(x)) _m2] J d-3k3 8 + B
. LA PV /k2+m2 [eﬂ 'kz-'t-mz_ 1]

(3.7)

The first integral in - d°k is infinity and must be
renormalized. For a renormaiizable theory, like those we will
study in the subsequent sections, the way to geﬁ rid of these
divergenceé is very simple. We just add to the Lagrangian the

‘4). These

usual counterterms defined in perturbation theory
comnterterms., for'fenormalizable theories, cancels the divenjxmes
which appear in the formal expansions and in particular,
cancelis the divergept piece in (3.7).

Therefore, in the high temperature limit, the main

contribution to o is given by:

o =-1 Jdg'xl:v"(fbc) -mz:l J d31;3 B — —  (3.8)
(2% — .
Jk2am? [eB kTam - 1] :

Then in the-high-temperature'limit, g behaves as:
o = axT - (3.9)

% 1

2’ xeko1)

where A == % ' d3§ (v" (¢C) -mz) J
: i

(3.10)

Therefore

.10,
ZHL S (. 0%
ro_ 21T~ [E_zg_] cxp {_ B, AT} (3.11)
sin fo
2
B
where T = SE(¢C).
Expression (3.11) is an achievement of this

paper. It follows from our formal éxpansion developed in this
section. In this expansion one gasiiy realizes that, at the |
cne loop level, the relevant contribution at high temperatures
comes from the tadpoie graph. The zero temperature part is a
divergent one and such divergences are eliminated by adding to
the l.agrangian the usual counterterms.

From expression (3.11) one can see that, as advanced
earlier, at high temperatures guantum effects lezd to contributions
to the decay rate which are more important or comparable to the

classical contributions (the exponential term).

IVv. ONE DIMENSIONAL EXAMPLES

Now we are going to analyze some specific 'exémples
in order to get the asymptotic behaviour of the decay rate at

high temperatures.

IV—A{ an "Inverted“'x¢4 potential

The Lagrangian density for this first example is

given by:

Ll 2.1 2
by =35 (3.8 +3 (3,0)°+V($) (4.1)
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where
1 22 a0
v{$} = Fm [ i (4.2)

with m2 and: X positive.
' 'Cle__'ar'iy',-'the ‘state ¢=0 is metastable.  Lets
calculaﬁe-.'i_ts' decay: j:alte_.pe.j:'uuﬁi‘.t_' volime at _hi:(lj_h. temp‘efatur'es.

First of all we have t6 obtain’a static solution to

3 m_.24> +-'11>.3 =0 L (4.3)_

A solution to (4.3). 5-__57(_6) :

[

$e = /% m osechlmx) (4.4)
The _euc,lidean__a_c_:j:‘._‘_i.qn of _i;his _so_l_utj_io_n__is given by:

3.
= &1
Sgléegd = 3y 7 - (4-3)

Now we need to find: the eigenvalues of the operator
- “ . .
E]E + V (¢C) '

I:— DE +_v..-“c):[-ﬁ = [—- O 3.}{;{_. + m2 ~ Em? sech—-z (mx):],] = en (4.8)

Then we. Have

where n is an integer.

e " [‘2‘?} *10 _ e

12

Imposing periodic boundary conditions we get that:
k'L + 8§{(k') = 2wn'

where n' 1is an integer and 6(k') is the phase-shift for k':

2 3km
6 (k) = = —arctan | ———= (4.8)
m Lmz _ k2:l

In order to calculate ImF given by (A.6), we

assume that_ ¢VAC= 0. Then we have:

MR = — 2™ exp {% |:Z Jk2+m2 - ¥ n/k'2+m'2:| +
¥3 Em x k’
2

sin[

{4.9)

[}E m [1._8—3 W] -8 k' 24m? H}

*kz' £n[l -e

The above expressien contains a divergent part

given by
k' "+m (4.10)

For large L this expression becomes (8’ :

4
gy = 3 m? | dk_ as(k) AZ..Z
Zr (Zr) " ak m {4.11)
El can be made finite by adding the counterterm
o + .
1
or = & des2 I dk L (4.12)
2 C X (2‘"’) i 2
L ¥ k" 4m

-
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. We are going to write:

InF = —————— exp{BEl + BCT + Ez} : C(4.13)

For 1. going to infinity we have:

{4.14)

Defining a new wvariable w=pgk we can write:

M2+Bm

. Ao
| du ‘/u2+32m2][ 4 2 ] (4.15)

E2 = fm ——“Zn[l -e - +
[ = 1-12+ 4821.“2 2 2

The behaviour of E2 in the high temperaturé limit

(16) and is given by:

can be found in. the literature

E2 = constant x § x £n(fm) ' (4.16)

Thus, for A-+0 we:have

1
2 3472 r. .
T 2T [32;"”] exp I:B {constant + constant' £n R m]]
Lo (/3 . '

sSin 5T J

(4.17)

In.this case we see explicitly that in the high
temperature limit the contribution from the determipant ratio

is larger than the exponential factor.

.14,

IV-B. Spontaneously broken A¢4 with a source term

Now we are going to éonsider V{¢) ; which appears

in (4.1), of the form:
V{¢)=-%m¢ + 224y (4.18)

2 s s
where m” , A, and e are positive.

We will consider the case ¢ <<l - that is, we will

perform a thin wall approximation.

The relative minima ¢_ (= JEHPJ%) is metastable

A om

and it decays to ¢y (= = f&-ki%) with a decay rate per unit
A I _ .
length % .  We will obtain %'to the leading order in e .

For high temperatures the static classical solution

must satisfy:

=& = - wPeg + 20 ‘e | (4.19)
We can expand b in powers of ¢ as follows

= I & @ S . {4.20)

1)

Plugging (4.20) into (4.19) and solving the resulting

equation for $g Wwe get:

4g 2 tanh [m—;f’i] o (47.21)

/X

Next we need to solve the following eigenvalue
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problem: The two first factors appearing in the above
_ _ exponential are divergent. In order to render these contributions
2 wie 1|, = ' -
[‘_“ 3¢+ v WC)]'ﬁj' = “j “j (4.22) finite we nmust renc_:rmalize them by adding the counterterm:
Agai e: expand :on. 'an:i.. @,  in powers of e: + oo
_ gain w panc nj and.- gy P 1 5 n ak 1
CT_E dx ¢C—-T x 3A PR — (4.27)
L j_w ¥ k2+2m2
e o= ¥ & “gn i C © {4.23)
J n=0 i In the limit of L going to infinity we have:
E‘ n . R (4 -2'4) o
- = . . B - - .
%37 atg T T3 ' IMR = ——— exp {% %[dk s & /xsan® 4 gcr
L . sm[EZXJ /-
We can calculate e_}ip_liqiﬁl'y- the eigenvalues to zero N ,
' A : L ) - 2 2 —B )/.‘ET .
order in e and the zesult is: - J E L nfr-e T 32 gfiee 2T 29
- .
-0
el = [an} + 4 352 S (4.25) In the high temperature limit we have
0 i B . ) .
' IL.kz + m? (for the continucus spectrum) *m .
' ' T ak 1 1 -8 ¥ k4om?
ImR = +| = an + il -e
. e - (ey) m R
We are going to assume the existence of just cone sin/5- e
negative eigenvalue and that it is at least of order e(uneg= - 72). —
. N . i . : . --B A
Having the elgenyalges_, we can calculate the pre-exponential _ - fn [1 -e v 2 J _ % mZB . SC.T.} (4.29)

factor,-giveh-_b_y {A.6), to thHe lowest order in ¢:

The integral appearing in (4.29) behaves like

_ { ) ' . In(fm} for B+0. In this example we also see that the most
ImR= L — @XD- {%% i dk: k2+2m2 - I k'2+2m2 - % m2]- . ) T
in (1} 2w K important contribution to -~ for B+0 comes again from the
= |25 ; |
: : pre—exponential facts mainly from the zero mode and the bound
T | -8/ x%4m ] -8 k"% iom® 8 %mz : ' |
- EFJ dk .&n[l _ ! z .?,n{l ] - Kn[l -ea E} state. 1In this example we have shown that an extra power of
k' : .
(4.26) : T appears when one evaluates explicitly the pre—-exponential

r.
factor and 3 is much greater then what is expected if one uses the results
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claimed in the literature(11).

Our next example is & non renormalizable theory,
However, this example will illustrate that the most important
. contribution to % in the higﬁ temperature limit continues to

come from the pre-exponentidl factor.

(14},

IV-C. The Birula Mycielski model

Now we are g01ng to ' repeat the calculation of IV-A-B

for the Lagranglan density:

I RUTPRS S R .
tg =5 GBge)” + 3 (3,43 -+ V{$) (4.30)
where
Ligqey =M Tyl ¢
V) = T {1 £n E?}-' o (4.31)
Foxr high*femperaﬁures '(T P } the relevant
. Sz .
static classical solution i's-given by:
: L2.2 _ ' :
0o, = CVe exp [—ﬂf?§—} ' {4.32)

Thé'euciiaeah1action'aﬁsdqiated to this field

configuration . is:
_;sE(¢cyf-=_:7rfi-c m _ : _ (4.33)

.In order to caleulate’ the determinant -of the fiuctuations

we need to know the eigenvalues of —SZ:FV"(¢C)-

.18.

[:— 22 + v (¢C):!n = en = (=3, + 2 +m'x" - m)n (4.34) -

It is. easy to check that € p is given by:

e . = [312}2 + 2m? (£-1) (4.35)
n,ﬁ B ! L -

where n=.0,+1, 2, 3, ...

£=0,1,2,...

We axe going to assume again that ¢yac = ¢ and that

V" lbyac

is given by:

} = mé. So the pre-exponential factor for this system

ImR:——Ti-— x.exp{ I:Z/ Z ¥ 2m’ (£1):}

-8 / 2m? (£-1)

I]} 4.38

The flrst term between brackets in the exponential

+ [jE-Ln{l -e B k2+m%} - 7 Zn[l - e

corresponds to -the zero-polnt energy and due to that it will

he neglected, Then

. ﬁp{%ké?@—A—waaF‘ { &h-es' (bhn

=2

sin[ L
-—C0
- W2

In the high témperature limit, we have:

¥t

400 _ o
28_1 [ du £n[1-e—u]

Y Iy
[dk ﬂn[l -~ " BYk +m0J
) ]

- 0
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and
w /2 -2 " _
.En{l _ e"‘B 2m (ﬂ-l)}; 8_2 J dy u f_n[l—e 'l-l]
£=2 m
0
Finally we cbtain:
i
72 2
L= e oo 2z exp {— IEA. L
L 4T T [ m T
" sinL
2T
T2 ®, . -s.l . . R .-u. .
+ =5 dy u !.n[l—e ] + 2T; du £n[l—e ] (4.37)
m i
0

As can be seen frqm (4.37) the pre-exponential term
exhibits terms which afe comparable;. in the high temperature

limit to the so called exponential term.

V. {1+3) DIMENSIONAL EXAMPLE

The (1+3) dimenéiénal.systém; that we are going to

consider is déscribe&:ﬁy’tﬁé:Eﬁéiidéanﬁtaqféngian'densityé
1 2 m? 2 ae?
tp=% I 07 + e~ F 4T+ {5.1)

when ¢ ,m2 , and X are positive and € is much less than 1.

We will proceed like we did in another example -

that is, we are going to calculate %- to the lowest order in e.

Expanding in pqwers.of ‘e like in {(4.20} and

L ‘
substituting into the classical eguations of motion we obtain:

] (5.2}

tq describes a domain wall (Bloch wall) in three spatial

dimensions(15).

Although ¢, given by {5.2} depends on just one
spatial variable, one can show that it describes some important
features of. the bounce solution(17).

The eigenvalues of -32-+V“(¢C) to the lowest

order in & are given by

¢
o, = ([2m)Z L0002 4?4 22
k'?+ 2m®

It is possible to prove the existence(4) of a
negative eigenvalue which we will dencte by -m2 and assume
that it 1is unigue. l

After using {A.6} and rencrmalizing the result we

obtain in the high temperature limit(15):

exp {- +
sin ;6_29] 3AT 272

(5.4)

3
r_ 2‘1"4 @m3 72
v . 273A7T

23 8 TAm}

2
v 3

where A = , and V 1is the volume of the space.

This example orly shows that our formal expression

{3.11) works, as it should, in four dimensional problems.
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VI. CONCLUSIONS

As peinted out in the introduction, it has been
proposed that some aspects on the evolution of the early universe
should be strongly dependent on the decay rate of the false
vacuum. Pheéencmenological implications such as monopole density
in the early universe and the Great Supercooling that ghe
universe underwent are among the cénsequences of the vacuum
decay proceés(B).

Some conclusions were drawn based on a fairly

simple pérametrization for the decay rate{lo*ll'l3), namely
L R i ” 6.1
7 e 27T (6.1)

Other parametrizations. for the decay rate are
presented in ref. {12). .

The behaviocur proposed by expression (6.1) dmﬁousiy
do not take iﬁto account, within the semiclassical approximation,
in a proper way the centribution. coming froﬁ the determinant
ratios in {(1.11).

We have devised.é method which allows us to infer
the high”tgmﬁeratu:e behaviour of tlie determinant ratios in
(1.1} without solving thé ccmplete.eigawahxzpniﬂan“S). The
method'feliésfon a simple graphicél expansion which allows
us to éet the proper asymptotic behavior éé well as to perform
the renormalization of the determinant in a straightforward
way.

As can be inferred from (3.:11) and in contradiction
to Ref. (11) our result changes ‘drastically the expression for the

decay rate at high temperatures. The correcticn we found coming

22,

from the determinant ratio is more important, at high enough
temperature than the classical one ; the s0 called exponential
term,

Obviously our results change the standard pictu;e
of the evolution of the early universe. The.question isiiﬁ
which direction and by how much.. We will_he concerﬁed with

this problem in a fauture publication.
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APPENDIX A

Here we are going to obtain an expression for the
1mag1nary part of the determinant ratio that appears in (l.1).
We assume: that —A+ V" {$a ) has only one negatwe (—m )} eigenvalue

2
and that there'are z zero-elgenvalues [(—AAJF%¢CMB = kjnj]

.
. ) 5
! (m‘2 + ;\S ¥
n,j - J :
R = - - 5 (a.1)
' Lo, 2 V
w o (al + ]
n.J o :]
b e" 2 7 f2wn)&
w e’; mn_ B"
It is easy.to see that
v siph gAY/ 2.
e AT
I3 a2 L
R. = S & e S T (AL2)
s sinh A5/ 2- :
Tt AL T ___S_J_.._...._
i3 F o gatse2
3
where we have used_theiidentityé~
n%:ufz/n)f_TI:'___:I L WAJ)

Now we have to:. notice. that the negatlve elgenvalue

makes: R pu:a 1mag1nary,f3 Analyzlng (A 2) w1th care we. get
hats . . ) . .
z : TrSlnh(BJ\ /2) .
_ 12y s .
ImR = O (A.4)
L " Bu

sin &2 1 sinh( sxg/z)
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where the double prime indicates that the negative and zero
eigenvalue are excluded from the product.
Wé can further transform (A.4) using that
Bz

fn sinh(sz/2) = £2 + tn(1-e “BZy L fn2 (A.5)

in order to get

7 _ : .
ImR=—-—T-—--—-exp{%I:Z J\"T-Z" hs.’:l-l-
m[w] S
> :
V' S
“BA, —BAL
+ [ﬁ £n{1-—e : j] -3 ﬂn[l-e 3]]} (A.6)
3 ' o3 : _ -

' APPENDIX B

In this appendix we will analyze the temperature
dependence of each term appearing in (3.2). First of all, we .

would like to point out that each graphic appearing in (3.2}

have zero external momentum(18) - that is,'for high temperatures:

(1) 4 | j1 o | dDTE | 1
{3.2) = E —1d xE[“(ﬁﬁ—V“hﬂmCﬂ 7 2. — . 5 -
: 313
:I =1 . N == (2“} {__2_7_[51_ V"(¢ )'+k.
X [ VAC
o {B.1)
whére D is the number of spatial dimensions.
" Lets obtain the dependence with 8 of.
D+
1 k 1
. = =1 - . (B.2}
3 B J (2m® [[Znn]z 2 2]3 .)
. 5 + k7 +m .
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wheré m” =V {¢VAC)-' when B->0.
Performing the scaling t= Bf we can write
. {1)
A . [ Dr '
Ij _ B2]"(D+1) g ! .d tD : 1 . (B.3)
n Jotam) |:(21Tn) 2 + t2 + mzﬁz:l
Now it is easy to see that:
(2)
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e gﬁ} gt (B.4)
(j-1)! dx — 3)
{4)
where
£x) = th3 L . . (B.5)
n (2m .. |:(2'1Tn) 2, t-2 + XZJ
For D23 we have that (5)
£im f£(mB) = constant . (6)
B+0
_ (7}
Then, for D23 , the term'.j=1 is the most
importqnt term of (B.1) in_the-limit} B*-Q.
If we have D< 3,;_f(x) diverges as X goes to
zero due to the:infrared.of the'theoiﬁ, For example for D=1 (8)
_ c (9)
Zim f£{mp) = — .
8+0 - mB (10}

Using (B.4) we get that is proportional ta 8§ .
Since all terms in the series (B.1) have the same temperature
dependence with temperature, we have to sum the whole series
then our formal expansion {3.2) (B.1) does not lead to a simple resuli
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