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ABSTRACT

We argue that the straightforward introduction of pion-nucleon

form-factors into the s-wave component of the two~plon exchange

three-body force derived by means of chiral synmetry leads

incosistencies. These can he avoided by means of a redefinition

of the potential which considers its physical content.

PACS numbers: 21.30 + y : 21.40 + 4

to

I- Iﬂtrodubtion

Accurate calculations of properties of three-nucleon systens

have shown that they cannot he ascribed entirely to the

" nucleon-nucleon interaction. Indeed, various calculational"

techniques with realistic two—bbdy forces yield resultswhich
consitently disagree with experiment. The presentfheoretical
understanding of the problem suggests that at least part of
this discrepancy may be explained by means of three-nucleon
forces (1'2). .

The longest range three-nucleon potential is that
due the exchange o; two pions. It is denoted by TTE-3NP and
corresponds to the process represented in fig.l. Since the
pioneering work of Fujita and Miyazawa(3} it has been
realized that this force contains terms originating frombhoth
s and p waves in the intermediate 7N amplitude. The strength
of the s wave component of the three-nucleon force (Wﬁ) was
originally assumed to be proportional to the isospin even N
scattering length, which is rather small.This way of treating
the problem inaugurated a tradition whereby the terms of the
force due to p waves were considered to be largely dominant;
This tradition lasted until the recent derivations of

potentials based on chiral symmetry{4'5)

. where the
contributions of intermediate s and p waves were shown tobe
comparable. The use of chiral symmetry is important because
it ensures that the pions are correctly deséribed in all the
relevant kinematic regions.

L (8

In fhe Tucson-Melbourne (TM) potentia chiral symmetry



has béen'implemeﬁted by ﬁeans of currenﬁ-aiﬁehfa in a mbdel
independent way, as pointed out in ref. (2). Unfortunately,
this advantage is assoclated with an intrinsic lack of
clarity reéar&ing the dynamical implications of the goft pion
limit‘s); The ﬁltefnative approach to the implementation of
chiral symmetry is based upon effective lagrangians and hag
recently been used by ourselves in a paralel derivation of
-the three-body potentialcsl These chiral lagrangians are not
supposed to describe the fundamental hadrenic interactions.
Instead, they are just quick and efficient tools for
producing results equivalent to those of current algebra. The
agvantage of the use of lagrangians is that is makes possible
a clear understanding of the dynamical origins of the various
contributions to ﬁhe potential and hence is well suited for
guiding ones intuition.

The most controversial aspect of the lagrangian.
approach concerns the description of the pion~nucleon o-term.
In the case of current algebra this contribution comes f£rom
the equal-time commutator of an axial current and its
‘divergence. In the effective Langrangian approach this
contribution cannot be ascribed to the exchange of realistic
particles or resonances, since no serious candidate for the
sigma field seems to exist. Therefore the usual procedure
consists in considering this contribution by means of a
parametrized form(7)-

The o-term contributes only to the function A+ of
the relativistic amplitude for the process

73 (k) N(p) =72 (k") N(P'} , denoted by T:b

N and whose general

form is

ab - + + Xk WAL
T =8B A sab 4 T B 7y o w(B).

(1)
In our derivation. of the wwE-3NP‘5) we have used the
following fcrmrfor the u—contribu;ion.

B = o+ 8 k.k' (2
where o and Bcr are constants extracted from experiment.This
form has been taken from of ref. (7) and it is adequate for
describing the scattering of free pions. When the pions are
not free one has to ;nclude off-shell effects and the above
form has to be modified, as it has been correctly pointed out
in ref. (2). The parametrization adopted in the TM potential
does not suffer from these difficulties and is consistent
with the theoretical single and double soft pion limts of the
intermediate ¥N amplitude. Tt is equivalent to the following

form for AZ

z 2
at - 2 [(1-31 (% -1) +8 (5 - 1)}
£ 0l u
-< [1-23 k—'ﬁzl+ l;(kz- u?) +%(k"-u2)1, REEY
£ TR u B .

where ¢ is the pion-nuclecon o-term, that can be extracted
from experiment.
When we make the identifications aa=(0/f;) and

B, = -(ZB/UZ)(O/f;) it is possible to see that egs. (2) and



(3} differ only by terms proportional to (k*-u?) and (k'?- y2), ‘general form is given by eq. (l). Thus the formal expression for
describing off shell effects. In the derivation of the three~ the relativistic amplitude '1‘3N. describing the contribution of the
nuclecn force these terms cancel pion propagators. Thus eqs. (2) ' T"TE to the three-nucleon interaction, is

and (3) yield pbtentials in coordinate space that differ only by

+

terms proportional to §-functions. In the absence of form factors Ty~ [E(E'z ))éys rau(ﬁzl] ;3&1} {E('ﬁ'l} H at+ g-'z*-ﬂ*(ﬁ+} $.b
~u

the short range repulsion between nucleons allows us to expect
that these contact interactions would have very little influence

- X'-i-x - + } 2m + -+
+ | a7+ B |ie _ 1 | uipy) 3{— ulp! YK y 1 ulp,)
on the numerical results of the calculations. However, actual [ 2 bac’c P kF—u2 3 ST (4

calculations do require the use of form factors, because theshort

distance behaviour of the 3KP is not determined by the use of

chiral symmetry. As discussed in refs. (5,8}, the singular where g denotes the ™W compling constant and ¥ and m are,
=z

behaviour of the s and p components of the potential without form respectively, the pion and nucleon masses.

b
N

nucleon propagating forward in time, which must not be includedin

factors is responsible for unphysical nodes in the trinucleon

Among the various contributions to T: is that of a

wave~-function.
The discussion of the problems associated with the the TTE-3NP, since it correspondes to an iteration of the two-body

inclusion of form factors in the s-wave component of the 3NP  is potential. The subtraction of this contribution is denoted by the

found in sect. II and constitutes the main subject of this paper. symbol (~) on top of the appropriate quantities. The potential is

Our conclusions are presented in sect. III. a meaningfull concépt for non-relativistic nucleons. In the

evaluation of t3N' the non-relativistic limit of the amplitute
given by eg. (4), the nucleon three-momenta are assumed to be

II -'E‘he influence of form factors on W typically of the order u. We have

The wrE-3NP deriveq in refs. (4) and (5) is based on the EBN - _i??.;? ;ﬂgﬂjz(g(z).i) (g(a).ﬁ,) Ta(ia).l:gs)
contribution of the exchange of two pions to the elastic
scattering of three unbound nucleons. This process corresponds to x { [2mE* AFTASE Lk xr) 5Y) Gab+ [2me™ +13“)_(ﬁrx}'§)g']j,gbac'r:)} v
permutations of the indices of the diagram of Fig.l, where the (5)
definitions of the kimematical ve_lriables can he found. In this where > (1) and :l:(i)-indicate' expectation values,

figure T,y is the amplitude for the process "N — =N, whose
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and a* and b* are the non relativistic reductions of the sub
amplitudes A* ang B, .
The potential in momentum space is defined as the

following function of t3N

BiBiBi w2 5,88y = - (201 %2 (ﬁf-ﬁiya—l-!- tay (7
m

The final form for the three-body poféhtial in ccordinate space is
obtained by Fourier transforming eq. (7), as found in refs. (4) and
(5). The mathematical structure of the potential in coordinate
spaée is such that each of its terms can he‘seen as the product of
a strength parameter (with dimension of energy), an isospin
operator and a spin operator coupled to derivatives that act on
Yukawa functions. The expression for “s' for instance, isgiven in
eq. (ll) below. The Yukawa functions are proportional to the Fourier
transform of the pion propagator and they become infinite when the
internucleon distances tend to zero. Therefore they have to be
regulﬁrized by ﬁeans'of fofm factors before being réalistically
applied. From a formal point of view, this can be.dong by allowing
the ;oupliﬁé.constant to become momentum dependent: g +g(k?} =4Glk?),
where the function @ is such that §{u?)=l. It is worth pointing
out—that‘th;s way'of'intro&ucing form factors is not prescribed by
'chiral symmetry; Rather, it cerresponds to an ad hoc
phenomenologicai correction to the results obtaine& through the

use of this symmetry.

The introduction of form factors must be done in such
as to influence only the ‘short distance behaviour of the
potential and, in no way whatscever, its long distance proper
A striking fact about Ws is that it fails to bear out this

important expectation.

The derivations of the #nE-3NP produced in refs. (4)
and (5) have shown that the only s-wave contribution from
the intermediate wN amplitude that survive in Ws is that due
to the ¢ term. The s-wave contribution to the ¢ term is
obtained from eq. (3) by setting 8 egual to zero.

The details of the calculation of W, can be found
in refs. (4) and (5) and will not be reproduced here. Wejust
quote the result in momentum space for the diagram

corresponding to fig.l.

" *2 2
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e

5 . (9)
k24u? k* 4u?

We should notice that the above equation differs from the
corresponding one in ref. (5) since a different expression
for Ag (see eq. (3)). has been considered, as the results of
the discussion contained in the introdugtion 6f this work.

This ﬁotential can also he rewritten as



A it EANLAE AR WAL STARR IR
dm® £

x[_a___g_ﬂ__l_(g__s___ﬁ._a__g)} (10)

iz+uz ﬁ.z;uz u? ﬁ'2+u2 ;z+uz

Introducing form factors and performing the Fourier

transform we have

q2 2 - +
W;3=Eiij [ii —%—(?(2).T(3))(3(2).312)(0(3)-631) x
2m 4 fTr

{U(rlz)U(rSIJ-[éfrlz)U(ra1)+U(r'2)G(r5,)]}

(11}

where rij represents the distance between nucleons i and j,

and the functions U(r) and G(r) are given by

S -i K.P
vr= G| ST 5 (12)
L e S LR
4| at 1k.¥
Gi{r)= — . a 'ré(kz) (13}
’J {2m)

The expression for U(r) represents a Yukawa function
regularized at the origin whereas G(r) is related to the
distribution of hadronic matter within the nucleon. In the
remainder of this work we will be mostly concerned with the
role of G(r) in the study of trinucleon systems. For the

purpose of this discussion we consider the feollowing dipole

form for G(k?)

G(kz):'(M)Z (14}
#-k?

The motivation for this choice is that this form has been used

(4,5,9.10)_ The discussion presented

in a large number of works
below is, however, general enough to be easily extended to other
parametrizations of G(k2).

In order to illuystrate the importance of G(r) for the
trinucleon system, we display in fig. 2 the eguipotential plots
for the expectation value of W, between totally antisymmetric

spin and isospin states, that is given by(S)

2 2
gu 1 [ I -
Hg> == ZHJ ‘;m] u? £2 (F12-T4,)

x{l 3W(r,,) ; a0(x,)) [1 3G(r,,) ; (r,,) +_1_3U(r,2‘l3G(r31):|}
U aryp, M AWay ¥ Ty, H ar 3, ¥ooar,, ¥ oarg,

+ cyclic permutations (15)

Following the work of Brandenburg and Glﬁckle(IO), we

construct these diagrams by fixing the positions of two nucleons

and using the third one as a probe. The fixed internucleon

distance is taken to be x=0.88 fm, corresponding to the minimum

of the Reid two-body potential(ll). In order to be able to

follow the dependence of eg. (15) ou A we vary this parameter in
1

six steps between infinity and the realistic value of 4fm .

The first value corresponds to the elimination of the form factor
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Introducing form factors and performing the Fourier

transform we have

12 2 + - *>
w;*=[9— H e AL AL SR ALLIR RN ALLIE AR
m| e g2 1

{U(r,2 )U(r“)-[G(rlz)U(r3l)+U(r,2)G(r-”)}}

(11}
where rij represents the distance between nucleons i and j,
and the functions U(r) and G(r) are given by
[ g i K.E
Ufr)= in dk 2_'._—-—— Glk?y (12)
u | (2“)3 k2+ uz
{ &+ &
Giry= 2| dk -1 keTax?) {13}
3j {Zw)a

The expression for U(r) represents a Yukawa function
regularized at the origin whereas G(r} is related to the
distribution of hadronic matter within the nucleon. In the
remainder of this work we will be mostly concerned with the
role of G(r) in the study of trinucleon systems. For the

purpose of this discussion we consider the fellowing dipole

g
form for G(k2)
2y _ [ =-p*y? (14)
G(k )—(Az_,k-z)

The motivation for this choice is that this form has been uéed

in a large number of works(4'5'9'lo)

- The discussion presented
below is, however, general encugh to be easily extended to other
parametrizations of G(k%).

In order to illustrate the importance of G{r} for the
trinucleon system, we display in fig. 2 the eguipotential plots
for the expectation value of Ws between totally antisymmetric

spin and isospin states, that is given by(s)

2 2
1 g = -
<WS> = - —gr—":l] [Eﬁ] p? ;; {£,,.%,,)
™

x{l BU(r,,) ; 3z, [1 /r,,) ) AWlry,) 4 30G,) a6y
H 3y, M 9y, ¥ r,, ¥ 33, Uooar,, ¥ ary,
+ cyclic permutations {15)
(10}
Following the work of Brandenburg and Gldckle . we

construct these diagrams by fixing the positions of two nucleons
and using the third one as a probe. The fixed internucleon
distance is taken to be x=0.88 fm, corresponding to the minimum
of the Reid two-body potential(ll). In order to be able to
follow the dependence of eq. {15) cu A we vary this parameter in
six steps between infinity and the realistic value of 4fm .

The first value corresponds to the elimination of the form factor
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and vyields

Glx)= "—jaa(?-) (16

L

In this case the- terms proportional te G(r) in eq. (14)

represent interactions of two nucleons at the same point in

space.
The first and last plots of fig. 2 are strikingly

different. This fact is unexpected, since the diagrams for
realistic value of A should he just modified versions of the one
without form factors, the modifications being confined to
small internucleon distances. In the present case, the form
factors that should just correct the potential, as a matter of
fact, determine its most important features. These results are
even more disturbing when we remind ourselves that form factors
correspond to relativistic effects. For instance, in the
parametrization of G(k?)} used in this work we have, for realistie
values of A:k*/M =u?/m? = 1/50. On the other hand, the form of
w;a given by eq. {10) has been derived under the assumption
that the nucleons are non-relativistic. Thus the effects
introduced by form factors are, in principle, of the same order
of magnitude as other neglected throughout the calculation of
Ws. That relativistic corrections dominate WS is a clear
indication of an inconsistency with the non-relativistic
hypothesis that led to the final form of the potential.

The origin of this Lnconsistent behaviour can be traced
back to the terms proportional to the function G{r) in eq. {10},

thch are within sguare brackets. When no form factor is present

1l

these terms are proportional to &-functions and hence their
spacial influence is a very restricted one. However, when we
adopt realistic values for 4 this influence extends to a very
large region and in fact dominates the contribution from the
other term. This excessive influenéé of G{xr) on W. can be
determined directly from eq. (10), since its contribution
relative to that of U(r) can be studied by means of the function
R{r)= In[(jaG/ax|/( [2U/3r|)] . The plot of this function for
A= Sfﬁlis shown in fig. 3, where we note that the influence of
the form factor is not confined to small internucleon distances.

The physical meaning of the terms proportional to G(r)
in eg. (10) is given b; the dynamical content of the =N form
factor. When no form factors are present, G{r) is given by eq.
(16) and the terms of W, proportional to this function describe
contact interactions between two nucleons, corresponding to
permutations of Fhe configuration space diagram of fig. 4a., In
this figure the ¢ has been represented as a prooagating particle
for the sake of clarity but, in fact, it corresponds to a
contact interaction, that can be formally obtained by ascribing
a very large mass to the 0. The broken lines represent the pion
propagation between two different points in space and are
assoclated to the Yukawa functions.

When we consider form factors, the function &(k2) is
not equal to one, the nucleons are no longer point-like, and we
have "contact" interactions between extended objects. In order
te make this statement more precise, we consider the dynamical
content of the rN form factor. Within the context of the chiral

$U(2) x50(2) group, it corresponds to diagrams such as those of
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fig. 4b. Seo, by "contact" interactions between extended objects
we mean the processes represented in fig. 4dc.

The inclusion of the function G{r) into the potential
rMeans that we are considering forces whosé dynamical content
remains hidden behind a parametrization. This makes it difficult
to understand which are the Feynman diagrams one is including in
the potential. 0f course, the diagrams depicted in
fig. 4c. should be evaluated at some stage of the research
program on three-body forces. However, their inclusion should be
the result of explicit calculations, using an appropriate
dynamics such as chiral symmetry. Moreover, in this research
program, the study of many other processes such as pion-rho,rho-
rho, pion-omega, three-pion exchanges should precede those of
fig. 4c.,since they correspond to forces of longer range.

Thus, we see that the three nucleon potential given by
eqg. (l10) is composed of two types of terms. One of then,
containing the Fourier transform of the form factor, describes a
"contact" Iinteraction between two extended nucleons and is
associated with the exchange of several different paréicles. The
other one contains only functions U(x), that correspond to the
propagation of pions between different points in space. The
considerations produced in this paper show that only the latter
deserves the name of »nE-~3NP since it can be interpreted as
describing the exchange of piohs between different points in
space. The former term, on the other hand, describes a n?E-3NP,
where (?) denotes all the particles included under the cover of
the parameter A.

All the problems mentioned above regarding W, can be

13

to the actual different-point in space propagation of two pions.
This corresponds to the elimination of G(r) from eq. (11) and
we obatain

1
Ll

s 2m

[y 72 2 . + -+ ES
W:za=|2__-]i {_:I _E_(T(z)_T(z))(G(z}.al;)(o(z)'ggl) Uer, ) utc, ) (17

2
f?!

where the symbel (+) indicates the above modification.

This exclusion of G(r) from eg. (10) amounts to saying
that we should regularize the results of chiral symmetry by
eliminating all the possible é-functionsbefore the inclusion of
the form-factors. In dg;ng the opposite we would be using form-
factors to regularize a ¢ —function. The absence of §-functions
in the parts of the potential due to p-waves in the intermediate
T™™ system means that they do not suffer from the same
difficulties as ws.

The modifications induced into ﬁs by the inclusion of
form facters can be followed by inspecting fig. 5, the analog of
fig. 2 for this redefined version of the potential. We note that
now the difference between the various plots is much less pronounce:
and so the influence of the form factor tends to be confined,
as it should, to small internucleon distances.

Inspecting figs.2 and 5 we note that the potential
corresponding to the former favours the triangularconfiguratioh,
whereas the latter has much less structure and is mostly
repulsive. These features have definite consegquences for the

trinucleon binding energy. In table 1 we display the values of
{5}

the contribution of Ws to the binding energy of *H and 3He
(12}

evaluated by means of the hyperspherical harmonic method
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In thils calculation we have considered only the fully symmetric

5 wave ground state, since we are mostly interested in the

qualitative features of the problem.

III- Conclusions

In this waork we have shown that the straightforward
inclusion of realistic dipole form factors into the s-wave

component of the wwE-3NP derived by means of chiral symmetry is

the cause of several undesired featuyres. One of them is that the

form factor does not just regularize the potential close to the
origin. Instead,it determines the its form in a much larger

région. This behaviour is not consistent with the hypothesis of
non—relétivistic nucleons which is basic for the derivation of

the potential.

The origin of this peculiar quality is traced to a term

in the potential that becomes a §-function in the absence of

form factors and hence can be thought as a "contact" interactions

between extended nucleons. Aan interaction of this kind

is prevented by the repulsive core of the

nuclecn~nucleon force. Moreover, it has the same range
as the exchange of various heavier bosons that have not been
included dynamically into the calculation. These problems
suggest that, in a conservative approach to the problem, we
should redefine the nsE~3NP as the potential due to the actual
propagation of pions between different points in space. The

redefined version of the potential does not suffer from the

i5

problems mentioned above. The results presented in this
work show that the redefined s-wave component of the three-
body potential due to the exchange of two pions is mostly

repulsive. -
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TABLE 1

-
~

Influence of Wg on the binding energies of trinucledns.

Nucleus Form of W_ A BE (MeV)
eq. {11) +0.939
*H
eq. (17) -0.203
eq. (11) +0.906
‘He
eq.(17) -0.197

P ; P
2 2
Tk
)
i \\,E/ i
t
M
H N
Py P3

Fig.1l - Basic diagram contributing to the NYE-3NP.
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All energies are given in MeV. The point N indicated the position

of one of the fixed nucleons; the other one is located symmetricaliy

about the origin. The various values of A are shown in the

figures; A = corresponds to the absence of form factors.

The understanding of these figures becomes easier when the

evolution of the lines labelled with A and B is followed.
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b.Some diagrams contributing to the pion-nuclecn form factor.
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figures continuous and thick lines represent nucleons and deltas,

whereas broken,wavy and double lines represent pions, rhos and

sigma.
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of A are shown in the figures; A = 00 corresponds to the

absence of form factors.
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