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SUMMARY

Nonperturbative guantum mechanical solutions_of the
forced harmeonic oscillator with radiation reaction damping afe
cbtained from previous analysis based on Stochastic Electro-
dynamics. The transition to excited states is shown to be to
cocherent etates which fbllows the classical trajectory. The
guantum Wigner distribution in phase space is.constructed.

Al)l the results are extended to finite temperatures.
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1. INTRODUCTION

In this paper we address ourselves to the quantum

'problem of an harmonlcally hounded charged partlcle in contact

-w1th a heatbath (blackbody radlatlon) Slnce the partlcle is

charged we also.have dlSSlpatlon effects due to radlatlon

reactlon Wthh is always present.. We also 1nc1ude an external

~ electromagnetic fcrce with arbltrary time dependence in order

to eee how the exc1ted~states are_generated by'the extérral

disturbance.

For simpliciéy'wé'féstfiée”Ehé”ahaiysis €5 the
onedimensidnal cdse. The reader AT flnd no dlfflculty in
extendlng the results to the three dlmen51on motlon.'

' ":We-approach-the“above‘problem indirectly. ﬁeifirst'
analyze the ‘same system within the framewdrk of Stochastic -

Eleetrodynamies {SED) where the problem have a singﬂe-sélutﬂxﬂmé)Q

As we will see this analysis will be usefull to solve the

problem within the Quantum Mechanics {QM) context.

' 2../STOCHASTIC - ELECTRODYNAMICS .APPROACH

The classical equation of motion in SED is:

z 2 ’ e aAext
m¥ = - Moy X - My TX +_8Ex(t):‘f5 T (1}
where T = % e?/mc® . fThe term proportional to x is an

(€)

approximation of the radiation reaction force'" ', Ex(tl' is

the random electromagnetic field of SED and AL {t} is the

=t

vector potential of an external deterministic force turned on




. 3.

at t=10. The effects of the magnetic random field and the

(£t} have been neglected
(6}

xt

because the motion is nonrelativistic

space dependence of Ex(t) and A

'The above linear equation has a simple selutiocn

'namely;.
CE(E) = oxlE) e xp(€)C o {2)

where - xc(t) is. the deterministic trajectory (obtained by
putting E_=0 in (1)) and _xf(t}7-is the fluctuating part
generated by the random fields. - '

, F are
 We can consider Xc - as a random walk with.

The-stationary statistical éroperties-of. X
well.known(1’3). : .
£
denoted bj SH is zero but the variance, at temperature T,
(1:3)

infinite steps-and such that the ensemble average of .x
is given by

1
Zmw

<x,2_> =
I

coth rﬁm“]

i ...,—_ 2 22'.
| 2kt <pg>/mu, (3)
where Pg = MX.. B

According to thejcéntrai'limit'theoranthe_pnjx&ﬁlity
distribution QT(x,t) in the configuration spaéé is given by

the following gaussian funcfioﬁ(1'3)' 

g '(x--:':c}_2 .
exp'[" ""2'2}'??‘]

Qplx,t) = S ' (4)
i ¢23<x%>

valid for any temperature..

As was pointed out hefore(1’3}, when Aext= 0,

thap_is X =O-,_QT(x,t1_ coincides with the quantum distribution

of an harmonic oscillator at temperature T . In fact for this.

system QM gives for the probkability distribution the following

expression(1’3’7):

b3l

nZO |t]:n(1-<)|2 exp[u%(%+n):| =

exp { - x?/2<xé>) :
= : 2 Qpix,0) {5)

f2r<x%>

-where 2 1is the partition function and ¢n(x) are eigen-—

functions of the unperturbed harmonic oscillator.

When T=0 but A _, #0 we have

ext .

{x-x )% mw :
o [ 5 ]

Qo (x,t) - = ]¢01x—xc)[2 , (8)

which is valid for any time t>0.
The above expression will guide us to the solution

of the guantum problem at  T=0.

3. QUANTUM MECHANICS APPROACH

In this case the complete (dissipation included)

Schrédinger equation is: -

[

= ]
e

n

1 L8 e a2 : o '

where A(t)

i}

Aoxelt) + 2 q(8) and A __.(t} is the radiation
reaction vector potential (classicaly speaking since we are not

considering quantized electromagnetic fields).



.5. ' _ - e
The previous result (6) of SED sﬁggest us to look : momentum,respecfively-,of_ a paﬁ:ticle following the classical
for a solution of (7} 4n the form. trajectory xc(t) .

~For each:pair of parameters’ "x;: and ‘py  we can- .

'w(x}t) = ¢o(x—xcL exp [% (p L& A) x - = g] (8) construct - functions Y ({x,t) -whichyaré-differeht-exact
. --c_ c h . KesPo )
' solutions ‘of the Schrddinger equation (7). -
where x_ . is the same as before , =mx and (t} is a . . These functions are usually called.cohefentﬁﬁau£(8)~
o b =M, & o - ;
function to be determined by'substituting Pix, ) into (7). of the harmonic oscillator and can be expanded ﬁsing-the basis
After a short calculation we obtain that (8) satisfies (7). ¢, (%) as
~only if -
- ) o : .
: : ¥,t} = a_{ty 33 ' (12
. . Vo, po X0 E) nZO AB) 6 (x) )
o - 2 _ e ext rad . . . ' :
mE, = =Mug X, c ( 3t ot J (9
where
and .- .
. . n . p.X
: g .o }
: : ft (pz(t'} Comwdxten) Ay = nr SXP [; 2t % ( ﬁ!c + hng - g)] ! (12a)
. ‘ p _ o 1 .
g{t) = ﬁ—wgot+J dae’ Il czm - 2c . (10)
0
e
p. + = A_. .
. tanp = S ¢ ext (12b)
Equation (9) is the Abraham-Lorentz equation (1) ‘ ' %o }
in the ébsénce of the random field. Therefore dissipation is
; . : . and
included in our OQM approach. If we approximate the radiation
. BA : . - .
reaction force - = arad by -mwi Tk_ equation {9} has a 1 .2 1 N . - ' L
€ t c : fwpo = FMX, + 5 mwgx] . o o (12c)
- general solution: .
- w8 g ) £ If t=B=0, that is,when the radiation reaction
x_(t) = HRXo + 2Po LB sen(uit) + xo cos(ort) eXP(—Ez’“') +
c L MWy ) force is neglected, one can show that the set of states
t wx b (x,t) is complete(a). The completeness relation in
: { (&) . erve :
e Text 7 g - . ; ; .
* cw, J dg 3¢ sen[@l(t-gi}exp[; 5_(#-E£] this case is written as:
0 (1) ® =
1 *
= d d .t x,t) =
S J Xy J Po wxn'po(y } wxanu( Lt
where £ - mw: T , wl o= wﬁ - B*/4 and X, and p, are free —a =

parameters- representing ‘the initial position and kinetic _ T * _
= ngo o (x) 95ly) = Slx-y) . (13)




7.
When t#0 the set v p (x,t) is complete only
0rko
at t=0. The reason for this is that for +>0 the damping
factors exp (- %;) in {11) provides the evanishment from xc(t)

of the terms which depends on the arbitrary initial conditicns.

The propagator of an arbitrary solution wx p(X,t),
0P

denoted by K(x,t'jt) , and defined as:
oo

v

" 4
X :D o(x (0} P (14}

o(x,t) = J Tdx" Kix,x'|t) ¢x°’p

—co

can be easily obtained since we know the analytical expreésions

of the infinite set of solutions wxu pc(x,t} of Schrddinger
r

equation. We can express K(x,x'|t) in a closed form namely

: 1
) . -7
Kix,x'[t) . __JEE%JULE_ -
2111‘1(37_c -y}

2
. mug Yy :
= exp | B (yl-yiexiexi) SME 0 o Doy )
: (- v Yo
. .
[pote) + 28, (£)

where yc(t} = xc{t) + 1 with analogous

mwp
1§ . .
expression for vy, (x, and \po replaces X, and P respectively

and Aext(o) =0} .

4. PEASE SPACE DISTRIBUTION AT FINITE TEMPERATURES

The wigner'?71%) Qistribution associated with the

coherent state wxo'Pu(x,t) has a simple form:

(xey,t) 4 (xy.8) exp (2 =

XorPa Xy Py

. (p-p,,)*
m - 2 C
exp [‘ TR - W]

= . 5 . (16)

This distribution coincides exactly with the phase

space probability distribution of SED(1’3)

at zero temperature
because in this case the varianées of the flucﬁuating coordinate
Xe ~and fluctuating kinetic momentum Pg 2 mif are <x§> =

= b/2mw, and. épéé = himwy /2 respectively as can.be seen from
(3.

(3)

The continuity equation for Wy(x,p,t) can be

written as

L L(t) Wy = O (17)
: = - 3 . 3
where tﬁe operator Lt} = xc(t) =t pc(t) P can be used

in order to compute the time evolution of the probability
distribution in phase space. This can be done by means of the

qumula
t

Wolx,p,t) = exp [— I dat’' ﬁ(t')] Wofx,p,O) - {(18)

0

This result is general since it follows from the
local conservation of matter.
_ This general law of local conservation of the

probability distribution will help us to extend formula {16)

for nonzero temperatures. -Firstly we recall previcus results
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¢btained by some authors(1'7) for the Wigner distribution of

the free harmenic oscillator at temperature T namely

: 2 2
L% p
ax —-_ -
13 [ 2<xT> 2<pL> J

WT(X;PrQ, = - B - (19}
27 ¢<x;> ;p}>
which is valid. when Aext(t)= 0 (té.O). Secondly we propagata

WT(x,p,O) accerding teo the general law. (18). The result is-

‘ -(x-xc)2 (p—pc)2

: N 5 .
WT'(X"IP'rt) = - £ £ ’ (20)
EE 2m /e

which is; as it should. be, exaétly the phase space distributicn
which is obtained in SED directly from {1), {2}, {3), and the

central limit theoren..

5. ANOTHER EXAMPLE

Before passing to our final commeats let us briefly
discuss another example which is the motion of the charged
particle in a constant magngﬁic field B but also subjected

. _ 5 .

to an external force - - % atQXt ‘with:arbitrary tine dependence,

If B is péral;el to the =z .direcﬁion we-.have free-motion.

along this axis. By studying the random motion of this system

in x,v -plane by meéns of 'SED we conclude that(1'3)

o (=% (£))% + (y=y (£))?
CeEp | - Zﬁ/mwB

Qu(leat;-) = - r (21)
2ﬁﬁ/mwB

.10.
is the probability distribution at zero temperature because
<xi> = <ayis - =
now Xg Ye ﬁ/mmB. Here Wy eB/mc . As before
-xc(t) and yb(t) are the projections of the classical déterministic
trajectories on the x and y axis.
In (M. the corresponding Schrddinger equation is:

(22)

I
=3
mlo;
e
n
,d
I
b
[= 1
<
®
wy
x
M4
o
o
e
=

R o i = L ) X e L :
where Aft) = At} + A,..q includes the dissipation through
the action of the radiation reaction potential irad'
The comparison with the SED result (21) suggest us

“to'look for an exact solution in the form:

CvED = wege) vy exe [ ET B ] e

where uy{X,y) is the ground state wave function of a charged

‘. particle in a constant magnetic field B namely(11):

(x2+y2)mwB
exp E — e ]

us{x,y) = . (24}
: /2nﬁ/mwB

We have checked that (23) is solution of ({22)

provided that Ec is the deterministic wvector function defined

by

His
w4
X
H+

< + £ A o (25)

4
n
=]
+

ale

which must be constructed by integrating the Abraham-Lorents

equation of motion




L1,

a 5 =+ e a -+ -+
mx = E r xB = 6 ﬁ (Aext +-Arad) . (26)

The function g must be such that:

. Tiw _ 2
g{t) = .TB+21—m(-p)c(t} -SEw )y o+ -2 - Bxx)*. (27

The above results are validy at zero temperature.

The extension to T>0 can be easily done within the realm of

SBD(E'3) by replacing <X%> = ﬁ/mmB at T=0 by

=3

- Auw. .
2 _ H i B
<xf> = ﬁﬁg COth'[f_T . . {28)

We do not intended to discuss the details of such extension in
QM  for this particular example because of the great analogy

" with the preceeding case of onedimensional harmonic oscillator.

6. CONCLUSIONS

We want fo finish cur discussion with a few remarks.
Firstly we note the strong symilarity between SED and QM for
those two'simple examples. This is known since 1963 from the.

() on the free harmonic oscillator. Another

work by Marshall
important point, concerning the similarity between SED and QM
are the transitions, to the excited states of the ha:monié
osciliator, induced by the external.field} We have found that
it is not possible to excite the particle to a pure state

¢n(x) {n>0) , if we start from the ground state and disturb

the system with a controllable deterministic external force,

.12,

despite of its arbitrary time depenéence. What we have found
is that a coherent state is generated and all the excited
states are instantaneously populated according to the Poisson
distribution P = " exp (-0} /n! as can be seen from {(i2a).
This observation rises again an interesting question c¢oncerning

a fundamental difference !>’

between SED and QM, In SED there
is no excited states, with discrete and.sharp energy levels,

as there is in time independent QM. The energy is continucusly
distributed(3). Despite of this fundamental difference both

(3,12) from the

theories are up to now indistinguishable
experimental point of view as far as the harmonic oscillator

is concerned. In our QM theoretical analysis of the forced
harmonic oscillator we have not been able to decide affirmatively
about the real existence of pure excited states. We have
concluded that any time dependent deterministic external
disturbance excites.quantum coherent states out of the ground

state. This is entirely consistent with SED as far as

probability distributions are concerned.
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