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ABSTRACT

We present a microscopic treatment for the small
amplitude limit of the equations of motion for the nuclear
one-body density. These were derived previously by means of
projection technigues, and allow for the expliclt-separation

of mean-field and collision effects which result from the

dynamics’ of many-body correlations. The form of the nuclear

response in the presence of collision effects is derived. An

illustrative application to a soluble model is discussed.

*Supported by Fundacao de Amparo i Pesquisa do Estado de Sao
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of the cne—body den51ty,f

“to. change 1n t me.

to- some extent

1. INTRODUCTION

In’ a prev1ous work(1) (henceforward called I) we

studled the dynamlcs of the one—body den51ty matrix of a many—

- fermion (nuclear) system, 1nclud1ng the effects of many—body

'howed there that correlatlons can he handled

correlatlone:w.We"
in'terms'of memary,_ tegrals whlch omn: the one hand,_modlfy the

Hartree-Fock mean fleld to generate the unltary tlme-dugﬂamment

-and whlch, on the other hand glve

rise to a contrlbut“ . cau51ng the occu=at10n probabllltles

of the: natural orbltals (elgenvectors of ‘the onewbcdy dens;ty}

The latter effect constitutes, therefore,i

a non—unltary aspect'of the effectlve'tlme evOluthﬂ.. The

'correspondlng contrlbutlen has .been shown in I to- reduce to. a

(2) in a weak

colllslon term of the UEhllng—Uhlembeck type
coupling, markov1an reglme. _

A way of handllng the non—unltary {collisional)
corrections to an- effectlve Hartree-Fock mean fleld descrlptlon,

in the- partlcular case of-small amplltude_collectlve motion,

hag beenfdescribed'in-ref. (3) (see.also ref. (4)). It led to

‘modified RPA éguations whose solutiohs involve, in general,

cemplexnfreqnenciee. Cerrelation corﬁiiicns to the mean field

”'evolutlon have not been treated expllcltely in (3}, however,
on the grounds that they were already 1nc1uded in the effectlve

.Hartree-Fock-mean fleld; Whlle thls can in fact be malntalned

(5),,1t is clear that rapld energy dependence

which occurefin”ccrrelatlcnfccrnaﬁlons to the mean field,

‘particular,. is ‘being left out Of the picture. This energy

dependence will be related below to that of the modified mass
cperators considered in refs. {6=-8}, where its 1mportance as a

source of the spreadlng of nuclear giant resonances has been
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demonstrated. The approach described in I will enable us: to-

derive an expre551on for the one bedy linear.response function
contalnlng'both unltary and collisional correlation corrections
expllCltely. In order to keep the drscussron as transparent as
90551ble, we w1ll assume throughout a. tw0mbody Hamlltonlan with

a potentlal soft enough to guarantee the relevance of a one-

body, Hartree—Eock type mean field. The scheme to be_given can

also be adapted for uSe in connection with phenomenolbgiealfor )

semr«phenomenologlcal effectlve forces.

The rest of the paper is organized as follows. Iin
section.z we review the main results of I in the context of a
oneaboaf'iihear”reséonse ﬁrbbleﬁ. Section 3 deals with the
spec1allzat10n to small amplltude motion of the respondlng

system and w1th the presentatlon of work;ng approx1matlons to

the various formal objects. BAn illustrative appllcatlon-of the .

equations to the soluble model of Lipkin, MGShka-and'Glﬁﬂég).
is given in section 4. The .last section 5 is devoted to a

final discussion and conclusions.

. 2. ONE-BODY LINEAR RESFPONSE

ThHe equatlon governlng the tlme evolutlon of the
one~body densrty operator p(t) in- a Weak one—body external

fleld is wrltten as (see Appendlx A)

¢E ﬁ[é FH;)+ P,f’f) [,[{) N rH:) N ru.tl-f:)'; '_ N 2

where the. objects acting on §(t) ‘én~the r.h.s. are Liouville

operators (sometlmes called superoperators), and T and

.4.
£ are 0perators a59001ated w1th 1n1t1a1 correlatlons, as

described below. The external fleld llcuv1lllan zext is

assumed to be assoc1ated w1th a one—body fleld H (t) , so

that - .
'LPA..Y._:j-'_(t)' A y |
H;E)P ) ""'[_Hm. -’_-'f& ] '
fﬁe,iater;ail.erﬁective-one—body 1iouviilian can he
split as. i i
Lwype - (4w L ] pe
where
[ﬁolt)r&)] = ln»("—}f) [H,\'JH]) (2.2a)
and

[Lwp &)‘] Wk : T)'_" (c}*,. , g:lt‘[H, GHAIARIR Rl )]]);(2_ 25)

The unccrrelated'Fock space_density FD(t) is hest written in

" terms of fermion operators g, ,c{_ associated with the time

dependent natural orbitals |a(t)> , which make FB(t} diagonal:

Pl - ; (XD 1,66) MY

Then(TOl

F.(t) = [U '(’;\)C C+ + P,C"'(- (2.3
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" and the diagonal {A=u) matrix elements (2.2a} vanish. The

contribution {2.2b}, on the other'hand, still exists bhoth for
A=y, wheﬁ it gives corfelatién:corrections to the Hartree-
Fock-like mean field of eq. (2.2a), and for A=p, giving the
collisich corrections. This shows that these two types of .
correlation corrections, although appearing in a completely
symmetric way in eq. (2;1),'are readiiy disentangled ﬁhen one
adopts the natural orbitals represehtation.

‘The propagator G(t,t'} is formally written as

(2.4)

Q) = Tonp [_Lgtac awl |
- !

where L is the liouvillian generétor associated with the
hamiltonian H , and the superoperator Q(t) essentiallj
eliminates uncorrelated parts (in the sense of Fb(t)f of
the objects upon which it acts. It is discussed in defail

in I, where, in particular'it is given'expliéitely in

terms of the ingredients appearing in Fo(t), eq. {z.3). It

appears also in the initial correlation terms which are given

by .
A - A Syt .
TL)\J[::\ =l CC}AL} [H, Gle,0) F. ] ) (2.5
and
. t .
' , ; . . ' . . i N : )
Ao =-iTald jfg‘[H-jcr&,t-)a_& )[H;:t}trl]]) (.61

Lit}fa

where Fi is the correlation part of the initial full density

matrix F{t} , i.e.,

.6,

Floo Flo)- £l
T

and it has been assumed that, in the ‘absence of g4t , FlB)

‘is stationary.

The initial®correlation terms comtain’ in genéral
both non-diagonal éhd diagonal contributions, analogoﬁél§3to
eg. (2.2b}, which thus represent unitary and non-unitary
contributions to if , respedtively. _In.p&rticular;'the time
dependence of eq.'(2.5) cancels that of eg. (2.2b}'fof g{ _
stationary state in the absence of the external force. _This.
gives, together with aq;:(z 2a}, ié-—o in this case, and
illustrates the fact that, when including expllcﬁxﬁy cmzehﬂ:cm
effects on the dynamlcal Taw for BlE)s one must always -
inelude, also-gxplrcltgly,-the apprdpriate.initial'Cerelatiohs;
if the generatioh of:uhwéntéd transients is to be avoided.
Needless to say that'épproximations should alsc.be-conéistently"
made on-the'internél and on the initial correlation-cdﬁhﬁkmtﬂxs;
A further discussion of thls point is glven in section 3 below.

It is also 111ustrated by the example presented in sectlon 4.

3. SMALL. AMPLITUDE REGIME:.THE RPA RESPONSE AND BEYOND

'The assimption -of a stationary initial étaté}.stable
agalnst the- external perturbatlon represented by H (t), ‘allows

us to llnearLze'the-equatlons_describlng the’ motion of the

system in the following: way. We- first:adopt the initial natural

orbitals - |A(0)> as thé basic representaticén and write current

‘natural orbitals at time t as

_ AL A - -
izey: (1-i¥w]ivey + 0(37) e



T
A
where :;(t) is the infinitesimal hermitean cne-body generator

of the changes of the natural orbitals. If we associate the

states |A{0}> to fermion operators a{, a, . then
¥ N A 42.
. : - at : + ] (
ciit) = af S F af Jr OF7)
This same type-of relation will also-applyitoiotherﬁobjects

such-as uncorrelated Fock space -density, eq.v(2.3{, Second; we:

write current_ocCupation.prbbabilities; PX(tI. as.;

where* ‘1tr isoto be: con51dered - small quantlty of the order:

AL
3 . It is clear that pl(tl-pl{t) ,rand that. the: sum of. all

the occupatlon fluctuatlons pxjt} vanlshes at.all tlmes.
Under~these=c1rcunstances,thevcontrlbutlon eq.. (2% Za) to J.p}q_l
can be: wrltten up to and 1nclu&1ng flISt order quantltles as

[“.Z ‘&)3 ] ln,{ +a [gg,(o}]}

Twrm)
Lin {’ k ':i-] )« an}

a[) SRR

We can also express the t;me derlvatlve of the- one—body density
in_ terms’ of Ef(t) ang of the. pilt).: -
B . :\ . '- . A _',\_ . B B
R R B O A O N S E Y
e o g Mo '
Egquations (3.3) and (3.4) can be combined-to give

an approximation to the small amplitude time evolution of the '

.8,

one body density in which all correlation effects are ignored.
This amounts to just the familiar Random Phase approximation to
the linear response problem. Since neither egs. (3.3) nor the
external driving terxrm contain contributions to the diagonal
part of é, it follows that occupation probabilities are in
this case constant. This implies the vanishing of the first
term on-the.r.h 5. of.eq. (3.3) (the vanishing of the zeroth
order part expresses 3ust the stationarity of F

g in tbls

approx1matlon}, and

33&){? 1>> . T H) H H)('p -} (3.5

VY= EHJGE Sz

where -

)\}, fr= TJ'L {[a*a .{' (o)][a*a H]S (3.6)

is the dynamical mﬁtrix which characterizes the RPA approximation.
) In order ﬁo go beyond this context in the treatment
of the time evelution of § we must handle the correlation
contributions to eq. (2.1}, which contain the complicated many-
body propagator- é(t,tf). We presently do this by treating
this object in the simplest possible approximation, which can
be motivated as 'follo'ws. In eqs. {2.2b), (2.5) and (2.6)
G{t,t"') acts on correlated states creating new correlatlons

or absorbing them. As shown in eg. (2.4}, furthermore, this

propagator contains the filtering operator Q{t) which prevents

" the system from revefting to an uncorrelated state at intermediate

times. Evehtually the correlations must evolve to forms which
are simple'enough to give nonvanishing contributions to the

overall trace. The approximation we use consists in neglecting
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intermediate creation and absorption of new correlations within
G{t,t") , which is.assumed to merely propagate the starting
correlations from time t% to time t by means of the mean
ifleld dynamlcs, i. e., following through the time evolutlon of
'the-natural orbltals.n Formally, this is a weak coupling
approxlmatlon Whlch we lmplement replaczng G(t £ ¥ by g{t,r’),
the unltary tlme~dlsplacement operator agsociated wrth the
correlatlon free mean=field propagation prescrlbed by the
£ h s.. of eq. (3. 5)::

We now deal first with the znternal correlatlon

corrections, egq. (2.2b). "Using the approximatlon above for

G(t,t') " we obtain in'e-streiqhtforward-way_(see also-refs. (1

and. {3)}

Pt "

F PRI, (Rl tyds ~ 0],

in this équatibn'.q = '~p?' the G“ matrix eieﬁents”are'the
antlsymmetrlzed two-body potentlal matrlx elements of H evahx&ed
with natural orbltals at tlmes 1ndlcated by the subscrlpt. As
shown, occupatlon probabllltles correspond to time &' . In
obtalnlng eq. (3 7T~we also neglected one—partxcle tran51t10ns
caused by the' two—body force, as these ‘are esgsentially ¢anceled

by the effect of the fllterlng operator o{t") Lsee-I for
detalls on thls polnt)._ _ _

" The 'structure of eg. (3.7) is.conveniently

illustreted hy meahsTof the Feynman-Goldstone like diagrams of

fig. (3.1), drawn under the assumption that the natural orbital

[é&j_’(}(ﬂ])\; Ll Z. 5(1{: <K5|trljup><}~}3iv(a§> (ﬁﬂs%% ‘r""i)

e G

.10.

occupation probabiiities are either zero or one at t'. The

lines represent timeédependent(11)

natural orbitals. The con-
rributionS'repreSented_by these'diagrams constitute, for A=y,
time dependent corrections to-the_Hartree-Foek mean field. For

A#p, on thelother hand, they relate to changes of the "vacum"

.oc¢c¢upation probabilities.

“Bince the time—dependence of the natural orbitals

appearing in eqf {3.7) is chosen as that which results from

eqs. 3. 5) and (3. 6}, the time propagatlon represented by the

partlcle and hole lives in- fig. (3.1) will contain all the

-complex1ty of the RPA response (fonons) at intermediate times.
_This could in fact be made explicit by rewriting eqg. (3.7) in

'ferms of some fixed single-particle base (e.g. the static

Hartree-Fock hase].:'The_multiple rescattering of particle-hole
states of the static hese is an important effect to be taken
into aceouhrrih ﬁhe F@uesidegenerateé limit" in which different
p#ﬂjcle;hoie.eneréies-differ little in comparison with typical
two~body matrix elements. In the opposite limit of widely
spaced particle-hole energies one can, as an appxoximetion,
leave ocut the two-body effects in eq._(3.6) for the purpese of
evaluating eg. (3.7). For notational simplicity we use the
latter option in the. following development. Conversion of the
results to the form.eppropriate to the quasidegenerate limit is
discussed in Appendix C. .

We ‘are now left the'task of writing down -the
linearized form of eg. (3.7). This is again straightforward -
use'of-eqs._(3.1) and (3.2]; One obtains a zeroth order term
identical to eqg. (3.7) itself but involving stationary orbitals

and occupation probabilities and collects furthermore other

terms which are linear either in the infinitesimal unitary
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generator E}(t} or in the occupaticon fluctuations p'(t}).
The complete expressions are too lengthy to be profitably
quoted at this point. We give them in Appendix B and limit the
discussicn here to a description of the structure and content
of the resulting dynamical equations.

Since in the presence of correlation effects the
occupation probabilities are no longer constant, we now get
contributions from the first term on the r.h.s. of egs. {3.3)
and {(3.4}. As a result of this we get additional contributions
involving pi(t) in {3.5) and another set of eguations involving
tﬁe time-derivatives of these quantities. Eg. (3.5) then

becomes replaced by

30«\(9-(: YR (3&)“5 ?&))
o

fr M\ ST
t

A " .
2R A BA3E) L W tpen,)

o‘ ¢ Mgz St > _ {3.8a)

t A t R
N + . _ [ [ 4{' { f. 1 TN -'f
fl0- Z e a8 310 Zjae At )

We remark first that zeroth order contributibns.héveV

been left out of these equations. This is in keeﬁing’with_the:i

linear response framework in which an initially stationary state

is assumed. Actually the zeroth order contributions reéultinq
from the linearization of eq. (3.7} fmust in this case .cancel
.against corresponding zeroth-order contributions from the
initial correlation term E(t) , eg. (2.5}. First order conaz
tributions from eq. (3.7) are collected in the memory kerﬁels

A(t,t") and A(t-t') appearing in egs. {3.8). As displayed

12,

explicitely in Appendix B, Al(t,t'] contains both a delta

function part involving the time integral from 0 to t of a

zeroth order expreésion and a memory part depending on t-t'

only (to be called the freguency-local part because of the
convolution theorem for Laplace transforms). The delta function
part comes from taking into account first order disturbance of’
the natural orbitals, involved in the two-hody matrix element,
at time t_(see eq. {(3.7}). This matrix element "closes" a
correlation process started at t'. The time dependence

associated with the upper limit of the integration interval

.must actually cancel a .corresponding first order contribution

present in E(t) .. eqg.. (2.5), in which a preexisting correlation
in the (stationary) initial state is similarly closed at time

t. These linear terms with time~dependent coefficients

.arising from the delta-function parts should therefore be left

out when dealihg @ith-the linear response of a stationary state.
However,'together with the zeroth order terms, they génerate

the:appropriate tfansients which follow from a small initial

_ dlsturbance of ‘a statlonary state in_an initial condition
'_pxoblem. These features are 111ustrated in the example discussed.
'fln sectlon 4 _ A flnal :emark concerns the source term r (t),

'eég (2 6), whlch contalns 1nterference of the external fleld

{t) Wlth 1n1t1a1 correlatlons. The evaluwation of this term

involves the problem‘of actually specifying the initial cor-

':eiatiens F (D) . Ou:-wéak;coupling appfoximation involving

the many-body propagator:,G{t,t'),'however, already considerably

restricts that part of F'{0) which leads to nonvanishing

_contributions'tox'f {t). A working approximation for this

ext’
consists then in assuming the minimal F'(0} which leads to the

cancellation of the delta-function part of Alt,t") :by the
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éorfesééndiné initial correlation contribution from F(t) ,

eqg. (2.5). This alldws us to deal with the response to a
spgcified cne-body external field ﬁexét), subject to the
validity of the weak coupling approximation, in a consistent,
'if.not complete way. .

Before concluding this section we mention-brieflf

a fﬁrther possible approximation which simplifies soﬁewhat the
.coupled equatioﬂs {3.8). It haé also been used in ref, (3) and
~consists in d£0ppin§ the last term in'eq. (3.8b) on grounds of’
the weak coupling approximation, noting that for pé(O)E G its
simplest contribution involve; already the product of four

(3)

two-body matrix elements With this approximation we may
integrate eg. (3.8b) and obtaln, from eq. (3.8a),.a closed

" equation for the unitary generator :f (t) . ~ S8ince the memdry
kernels of this eguation are all frequency-local, it can be
uéafully rewritten in a frequency representatioﬁ by means of a

Laplace transform. Defining the constant liouvillian matrix

‘G as

H»

= H" PA)%M;- }.xt

MayOT

we get in matrix notation

H

where s 1is the Laplace freguency variable, A - and 'ﬁu being

c
respectively the A=zu and the XA=py parts of Klu o'’ see
r
egs. (3.8a) and (3.8b). Eguation (3.9%) identifies the linear

response operator and its standard RPA limit, which is obtained

AU A qRmwt
(i+ Ata) A(s)]GH €8) (3.9

.14

just by 1ettihg 3-*0 . 'In general, eq. (3.9) contains what

amounts to a frequency:dependent mass operator.  The frequency

dependence comes both from unitary correlation contributions

{through Eu(s)) and " from.collisional effects (through Ec(s}).

4. SIMPLE ILLUSTRATIVE EXAMPLE

In order to make the content of at least some of
the eguationsg given in the preceding section more concrete we

describe here briefly their use in the context of the soluble

model of Lipkin, * Méshkev and Glick'?!.. We write the hamiltonian

of the modél. in: .t'he-: form“ S

" T _ S
H= & SCL N Z o .
H = "z gg— o Me “"S. -3.- u,._' _ ‘Mﬁ' ii»"s ileg - S’ o {4.1)

_where 6 =+ 1 '—1 (up,_down) and m- 1,...,N - We will

consider only states thhln a deflnlte multxplet J = N/2 6f

the quaSL-spln group associated w1th the model. In thlS caée.

~all sublevels tn have always 1dent1cal occupations for each

o. Since moreover p_+p_, = 1 we have

For= 11 [ pedf,
: w e

elieee of
Cug ¥ U ?G)Cmscm-]-; (4.2
. . A
The hermitean one-body generator 3:{t) can be
generally written as

%(‘th GZ,_ 3 (HZ Cus! | . (4.73}
'y 120

sgt

and with these elements we may evaluate directly the left-hand
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side of egq. {3.5)}. The RPA modes and frequencies result
immediately from the homogeneous version of this equation which

in this particular case reads (assuming P, = 0}
F) - ieF B+ NG W (4.4)
- +- e
and its complex conjugate. The RPA frgquencies are given by
2
qu = e’ (n-1)

They vanish at the onset of instability for the under;ying
Hartree-Fock stationary state. '

Looking now into the correlation corrections for
the model, eq. (3.7), we find first that frequency-logal terms
are zero in the present approximatioﬂ when pt(O) =.0. Besides
this, the zeroth order‘non—diagonal delta function contribution
{t.e., with A=y} and the first order in ‘g“ diagonal con-—
tribution-also'vanish identically. Collectlng therefore the
zeroth order dlagonal contrlbutlon and' the flrst order in =

contrlbutlon we are led to the 1n1tlal value prohlem for the

oecupatlons (cf. eg. (3. Bb))

t_
{; 2RV jcen 2e(t-t)[ -4 p't} ].it 12.5)

which can be solved by means of a. Laplace. transform. We shall
however retain just effects which are not more than gquadratic
in V, in which case the approximate solution of eg. (4.5} is,.

for the initial condition p'(0} =0,

.16.

l .
’Pilf) o -V L %t . {4.8)
_ e

This displays, in particular, transient oscillations of the
occupation amplitudes resulting from the nonstationarity of the
assumed initial state at t=0. The oscillations can in fact be
eliminated by introducing appropriaté initial correlations into
the problem. These are, in tﬁis case, perturbative two-particle,
two-hole amplitudes added toc the ﬁoninteracting ground state of
2

the model; which have no other effect up to order V _ The

stationary value of the occupations, namely

Ff g QU'_‘!) Vz
o ' 2e?

agreges to this. order with the occupation probabilities of the
exact stationary state. - The non-diagonal contributions from

eg. (3.7) on the otheér hand, give (cf. eqg. (3.8a})

’ o —Let
3 {ﬂ.;'_L[e;C“-')Vl]? +4.u.z~nu} iy W 3
- . &

(4 7)

and its complex conjugate. The time-dependent coefficient in
the last term is again a result of the particular initial state

that has been_assumed and can be absorbed by introducing

“initial correlatlous in. the form of perturbatlve two-particle,

two-hole amp;ltudes. Thls w111 also change other qﬂmrﬂmmlcns
only at order V3 or hlgher. Droppxng therefore this texrm one
gets- the ﬁoirected fréqﬁehcies;

- W2 Gy .

wo¥ el (- oV (4.8)

which reproduce the exact value to this.ordér in V.
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5. DISCUSSION AND CONCLUDING REMARKS

In the preceding sections we presented and
illustrated the use of a set of equations governing the time-
evolution of the one-body density of the nuclear many-fermion
system, including dynamical effects due to many-body correlations.
The time evolution is in general non unitary, with the non-
unitarity expressing itself in a simple and complete way 'in
terms of the time variation of the occupation preohabilities
(eigenvalues of the one-body density) of the one-body natural
stetes {eigenvalues of the one-body density). This neat
separation.of the nonunitary (collisional) effects also provides
for the 51multaneous identification of an extended mean field,
which also includes correlation effects. This extended'meaﬁ
field is also characterized in a simple and complete way'ae'
generating the time evdlution of the natural states. .

OQur main concern in this paper has been the

specialization of the general equations to the context of small

amplitude nuclear collective motion. We &id this by a Qzakﬁme
forward linear expansion of the general equations about a
stable stationary state. The resulting eﬁuations (3.8a) end“.
(3.Bb} are appropriate to a lineer-response situation'in'which
effects heyond those involved in the usual RPA approach are
included. They can however be used also as the eguations for
an initial condition problem, as shown explicitely in the
illustration given in section 4.

Treatments of small amplitude motion including
dynamical effects beyond those in the usual RPA have been given
before. 1In a first general line of approach, particle-phonon
coupling effects have been added as complicators of the

(7,8,12)

microscope structure of the vibrations This can be

.18.

both motivated and controlled in terms of the inclusion of bubbles

containihg phonénlike-self-energy and "induced interaction“(qz)

insertions (see fig. 3, Appendix C) in the irreducible mass
operator ‘appearing in'fhe integral eguation. for- the polarization

propagator(13}."This leads eventually to a respohse operator

" which has basically the form of eq. (3.9) without % ‘term

:elated’to_the flﬁctuetions-of the :occupation probabilities. -

. This indicates-that'the~frequency—dependent mass operator which
‘causes in this case ‘the sPreadlng of . collective RPA modes does
'fnot contain llnear response effects of the contribution to-the

-effective mean.field represented by fig;'S 1, whose importance

has been pointed out in qther'contexts( ). ~In eq. {3.9) these

effects come from the fluctuating part of the occupation

- -probabilities.and are therefore of an essentially collisional

- character.

A different appieécﬁito this problem can be found
in . ref. (4), which ‘consists. in. addlng in a phenomenologlcal way
collision effects to time—dependent Hartree-Fock -mean. fleld
equations written semlclassxgally.ln a phase—spaqe representation.

The treatment given_thefe*of a collision ‘term. of the Uehling-

- Uhlembeck type produees, with a sensible two-body effective

force,-spreading.widthslfdr the isoscalar quadrupole giant.
resonances whieh;ere.of”theecorrect order of magnitude.  This
is also the case.for -the treatments reviewed before, especially
when continuum effecte}fwhich turn out. o be nonaditive, are
also inclUded.':Gifen fﬂis'sitﬁation, it -is our view that a
correct assessmenﬁ of the relative importance of the two types
of contribution is still lacking. The numeriéal implementation
of the results of this work for‘reelistic cases} now in progress,

should contribute to clarify this issue.



+19.

ADDENDIX A -~ LINEAR RESPONSE OF THE ONE—BODY DENSITY -

. The linear. response to the external one-body field

B**% (1}, of. a stationary.state of H associated with a density

operator, FI = fi{:I:_M_lpI_[ is’ obtained. from _the_equa__ticm
’ - . ; . N . t .
LR = [H PO ][ w R ] @.1)

with the initial condition F(0}=F since F(t) differs from

Xt

I

FI by terms which are at least-of.the first order in u®
Applying to . eg, (A.1} the:projection: ._tech_ni__qu_es p_r_ésent_ed in I

we are_._lgd.i_n a straightforward way to .
Fl) = RIE) + Fl]) >
where . Fo(t) has -the form (2.3} and P'(t) is given hy
F'it) = Glt,0) FI' + Salt‘ Gt Qe l[H-‘, E(e}] +
. " .
.

o axt’
. [ i
leema) ek e
[¢]
The last term in eg. (A.3) coptains FI =F, (or + Fr . -Since Fy @)
diffexrs from.- ‘Fo(t‘) by terms which are again at least of the-

first order: in: H°°F, and since: the-external field is assumed -

to be a cne-body' field,  the contribution due . to 'F-O.(Ol vanishes

to first order, Using this e:_tp‘res-_éion-,. together with (A.2) and
[4 i+
;_P Tn, C+L>\ [H I-H:)])

one obtains immediately ecj. (2.1}).
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APPENDIX B - EXPLICIT EXPRESSIONS FOR THE COEFFICIENTS QF THE
LINEARIZED EQUATIONS

The time-dependent coefficients A and A in

egs. (3.8a) and (3.8b) are cobtained from a straightforward
A

linearization of eq. (3.7) in ¥ and p' (see egs. (3.1) and

(3.2)). We get

A, &) =S(e~t')At “) 4 A “leaty)
MysT M o ST My €t

with

t
.2 i, HErETEE
({' = - jdl: o a:- yE
A2~)".¢!"- ?‘Zf;" 0 + (cwv_lhxrdlb‘sp
. "(fxﬁt%ﬁu“ f‘;"ﬁ) +
ir L €
leJ.{:‘_ [E{-éﬁé )ﬂ:t)

Y25 IO (A A R e D

[

+_.7_S

f“ e *EP £6)iet)
KP’E

2 i W 56@%““"*P> (RPﬂ-ﬁ'r Peq )

+ ( )\4-’7}& ; Cnm?ﬂl}k Fcuguaaiﬂ) . (B.1)

and
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pe
N ') -
Mg
e g6 )bt

- 2 <tpww><r°“l>l€[5)(P,Pﬂr{;?lz peg) -

| Z' ea(e"+ep ﬂ)&.—t‘)

2 | <¢mu~1>e><}..au,|aa>(p,_p¢qﬁﬁ peq)-

LT et

a,p(m, y <xr,\u~l k?)(ﬂ}‘&lu[})(f&f?%% ‘,4-»3_)

s (N, compler conjugate).

(5.2

Primed sums are.pver sets of different ong—partié;e states;.
The.symbols p+<g and A <++) indidate interchange. of the
corresponding labels in the precedipg'expressions and matrix
elements are now evaluated betﬁeen static natural orbitals. The
variousrterms of (B.1) and (B.2) can perhaps be best visualised
in terms of the Feynman—Goldstone—like'diagrams of fig. B.1.
There the dots stand fbr antisymmetrized Ewo-bédy matrix
eléments, and the lines correspond to.meanafield time evolution.
Upﬁard‘(downward) arrows indicate the océupation factors gl(p)
in a typical term. When A#u the frequéncy-local'terms are 7
seen to be associated with the so called induced.interaction
terms and with self-energy corrections which have been considered
e.d. in connection with the damping of nuclear qiant rescnances
The corresponding terms with X =1u, on the other hand, when
é;sociated with the pé(t) terms in eq. (3.8a), give rise to

-more exotic contributions to an effective two-body interaction

(12}

.22,
akin to those -obfained -by 'funetibﬁéi-éiffé£entiation of'..
corrections involving-the_changeiof_ground-state occupation
probabilities ;n.&ensity.dependenf mean field theories !},
(See also fig. 5.1).. '
The coefficients in the last term of eg. (3.8b) are

given by(3)

M) =

= ZLZ i (Gu\\rl}xp)\ cns [(é

)(l: {‘1](751’,\%]5“* pesg) -
a'(P .

2 i(a((bi\rl)- 6')1 cos[(e ﬂ:% e‘)& e‘)](mPg(}+ ?éag_)

ap -
3 s}cleqs\j&m}fu; fereues-eetd g, < 179).
.'1Pv . '

- (B.3).
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APPENDIX C - THE QUASIDEGENERATE CASE

When'pa:ticlenhole ekcitations are quasidegenerate
it is not allowed to ighore the effects of the residual inter-
action in eq. (3.6) when evaluating eq. (3.7). The density
fluctuations resulting from distortions of the stationary state
will in this‘case occur with éharacteristic frequencies which
may be very different from the particle-hole excitation energies.
This means- that one should substitute phonons for the uncorrelated
particle-hole pairs in the intermediate propagation between t°
and & . ‘

In order to show in a simple way how this substitution
can be done in Gonnection with the linearized eéuatidns {3.8a)
and (3.8b) we consider as an example the first frequency-local
term-on the r.h.s. of eq. (B.2). _Introduciné the notation |[|af>
fqr_tﬁéﬁoperator"[q$<8| ;. to be qonsidéredeés & wvector. in .
Liouville space, with the norm defined through the intérnal
product <v&[|aB> = Tei{]y><&|}" |a><p]] , we can cast the matrix
ele@ents'gppea;ing:there.in the: form.:

(--c['si*\;l POV (144\3-_(6‘(5 =Tl Tyl <l T (o 18¢ }4I)>

Since, moreover

(66 JE-t*)
lep> e &l

(-t')
o lepdaph

.
L

e

w2

where ip stands for the mean field Liouvillian of eq. (3.6)
with the particle-hole two-body part ommited, we can rewrite

the entire term as

.24,

T HegeNtt) Lif\,[*"") 5 ‘
¢ Cn(Fleyoile wmepycupirTn(Tierpl) ) « .

* (fxfagfpﬂ't - Pe’ﬂ') :

The substitution of the phonons for the uncorrelated

Ap )

particle-hole pairs can now be carried out in a straightforward

way replacing fs by tge full RPA operator T. When a

P
Laplace transform is used to convert the time variable to a
frequency variable, the Liouville matrix element appearing in

{C.1) will be given in terms of the familiar RPA response function.
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FIGURE CAPTIONS

Fig. 3.1 - Féynman-Goldstone like picture of .eq. (3.7).. The
lines stand for natural orbitals propagating with

'the'one-body mean field,

Fig. 5.7 - Contribution to the effective one-body mean field
in&olving corrections to ground-state occupaticn

" . probabilities.

Fig. B.1 ~ Feynman-Goldstone like picture of contributions to

eqgs.. (B.1} {(top row} and (B.2} (bottom row).






